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Introduction 
 

The CBC/HB System is software for estimating part worths for Choice-Based Conjoint (CBC) 
questionnaires.  It can use either discrete choices or constant sum (chip) allocations among alternatives in 
choice sets.  Other advanced options include the ability to estimate first-order interactions, linear terms, 
covariates in the upper-level model, and the ability to handle MaxDiff data. 
 
CBC/HB uses data files that can be automatically exported from Sawtooth Software’s Lighthouse Studio or 
Discover systems.  It can also use data collected in other ways, so long as the data conform to the 
conventions of the .csv or text-only format input files, as described in the appendices of the CBC/HB user 
manual. 
 
The earliest methods for analyzing choice-based conjoint data (e.g., the 70s and 80s) usually did so by 
combining data across individuals.  Although many researchers realized that aggregate analyses could 
obscure important aspects of the data, methods for estimating robust individual-level part worth utilities 
using a reasonable number of choice sets didn't become available until the 90s.   

 
The Latent Class MNL Segmentation Module was offered as the first add-on to our CBC software in the 
mid-90s, permitting the discovery of groups of individuals who respond similarly to choice questions.  

 
Landmark articles by Allenby and Ginter (1995) and Lenk, DeSarbo, Green, and Young (1996) described 
the estimation of individual part worths using Hierarchical Bayes (HB) models.  This approach seemed 
extremely promising, since it could estimate reasonable individual part worths even with relatively little 
data from each respondent.  However, it was very intensive computationally.  The first applications 
required as much as two weeks of computational effort, using the most powerful computers available to 
academics! 

 
In 1997 Sawtooth Software introduced the ICE Module for Individual Choice Estimation, which also 
permitted the estimation of part worths for individuals and was much faster than HB.  In a 1997 paper 
describing ICE, we compared ICE solutions to those of HB, observing: 

 
"In the next few years computers may become fast enough that Hierarchical Bayes becomes the 
method of choice; but until that time, ICE may be the best method available for other than very 
small data sets." 

 
Over the next few years, computers indeed became faster, and our CBC/HB software soon could handle 
even relatively large-sized problems in an hour or less.  Today, most datasets will take about 10 minutes or 
less for HB estimation. 

 
HB has been described favorably in many journal articles.  Its strongest point of differentiation is its ability 
to provide estimates of individual part worths given only a few choices by each individual.  It does this by 
"borrowing" information from population information (means and covariances) describing the preferences 
of other respondents in the same dataset.  Although ICE also makes use of information from other 
individuals, HB does so more effectively, and requires fewer choices from each individual. 

 
Latent Class MNL is also a valuable method for analyzing choice data.  Because Latent Class can identify 
segments of respondents with similar preferences, it is an additional valuable method.  Recent research 
suggests that default HB MNL is actually faster for researchers to use than Latent Class MNL, when one 
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considers the decisions that should be made to fine-tune Latent Class models and select an appropriate 
number of classes to use (McCullough 2009). 

 
Our software estimates an HB MNL model using a Monte Carlo Markov Chain algorithm.  In the material 
that follows we describe the HB model and the estimation process.  We also provide timing estimates, as 
well as suggestions about when the CBC/HB System may be most appropriate. 

 
We at Sawtooth Software are not experts in Bayesian data analysis.  In producing this software we have 
been helped by several sources listed in the References.  We have benefited particularly from the materials 
provided by Professor Greg Allenby in connection with his tutorials at the American Marketing 
Association's Advanced Research Technique Forum, and from correspondences with Professor Peter Lenk. 
 

Capacity Limitations 
 

Because we anticipate that the CBC/HB System may be used to analyze data from sources other than our 
Lighthouse Studio or Discover programs, it can handle data sets that are larger than the limits imposed by 
CBC questionnaires.  The CBC/HB System has these limitations: 

 
 • The maximum number of parameters to be estimated for any individual is 1000.  
 • The maximum number of alternatives in any choice task is 1000. 
 • The maximum number of conjoint attributes is 1000. 
 • The maximum number of levels in any attribute is 1000.  
 • The maximum number of tasks for any one respondent is 1000. 
 

The CBC/HB System requires a fast computer and a generous amount of storage space, as offered by most 
every PC that can be purchased today.    
 
There is a great deal of activity writing to the hard disk and reading back from it, which is greatly 
facilitated by Windows' ability to use extra RAM as a disk cache.  The availability of RAM may therefore 
be almost as critical as sheer processor speed. 
 

Understanding the CBC/HB System 
 

This section attempts to provide an intuitive understanding of the Hierarchical Bayes method as applied to 
the estimation of conjoint part worths for this standalone system as well as for HB MNL integrated within 
Lighthouse Studio.  For those desiring a more rigorous treatment, we suggest “Bayesian Data Analysis” 
(1996) by Gelman, Carlin, Stern, and Rubin. 

 
 

Bayesian Analysis 

In statistical analysis we consider three kinds of concepts:  data, models, and parameters.    
 

• In our context, data are the choices that individuals make. 
 

• Models are assumptions that we make about data.  For example, we may assume that a distribution 
of data is normally distributed, or that variable y depends on variable x, but not on variable z.   

 

• Parameters are numerical values that we use in models.  For example, we might say that a 
particular variable is normally distributed with mean of 0 and standard deviation of 1.  Those 
values are parameters. 

 
Often in conventional (non-Bayesian) statistical analyses, we assume that our data are described by a 
particular model with specified parameters, and then we investigate whether the data are consistent with 
those assumptions.  In doing this we usually investigate the probability distribution of the data, given the 
assumptions embodied in our model and its parameters. 
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In Bayesian statistical analyses, we turn this process around.  We again assume that our data are described 
by a particular model and do a computation to see if the data are consistent with those assumptions.   But in 
Bayesian analysis, we investigate the probability distribution of the parameters, given the data.  To 
illustrate this idea we review a few concepts from probability theory.  We designate the probability of an 
event A by the notation p(A), the probability of an event B by the notation p(B), and the joint probability 
of both A and B by the notation p(A,B).  
 
Bayesian analysis makes much use of conditional probability.  Feller (1957) illustrates conditional 
probability with an example of sex and colorblindness.  Suppose we select an individual at random from a 
population.  Let A indicate the event of that individual being colorblind, and let B indicate the event of that 
individual being female.  If we were to do many such random draws, we could estimate the probability of a 
person being both female and colorblind by counting the proportion of individuals found to be both females 
and colorblind in those draws.   
 
We could estimate the probability of a female’s being colorblind by dividing the number of colorblind 
females obtained by the number of females obtained.  We refer to such a probability as “conditional;” in 
this case the probability of a person being colorblind is conditioned by the person being female.  We 
designate the probability of a female’s being colorblind by the symbol p(A|B), which is defined by the 
formula: 

 
p(A|B) = p(A,B) / p(B). 

 
That is to say, the probability an individual’s being colorblind, given that she is female, is equal to the 
probability of the individual being both female and colorblind, divided by the probability of being female. 
  
Notice that we can multiply both sides of the above equation by the quantity p(B) to obtain an alternate 
form of the same relationship among the quantities: 
 

p(A|B) p(B) = p(A,B). 

 
We may write a similar equation in which the roles of A and B are reversed: 

  
p(B|A) p(A) = p(B,A). 

 
and, since the event (B,A) is the same as the event (A,B), we may also write: 

 
p(B|A) p(A) = p(A,B). 

 
The last equation will be used as the model for a similar one below. 
 
Although concrete concepts such as sex and colorblindness are useful for reviewing the concepts of 
probability, it is helpful to generalize our example a little further to illustrate what is known as “Bayes 
theorem.”  Suppose we have a set of data that we represent by the symbol y, and we consider alternative 
hypotheses about parameters for a model describing those data, which we represent with the symbols H

i
, 

with i = 1, 2, ….    
 
We assume that exactly one of those alternative hypotheses is true.  The hypotheses could be any set of 
mutually exclusive conditions, such as the assumption that an individual is male or female, or that his/her 
age falls in any of a specific set of categories. 
  
Rather than expressing the probability of the data given a hypothesis, Bayes’ theorem expresses the 
probability of a particular hypothesis, H

i 
, given the data.  Using the above definition of conditional 

probability we can write 
 

p(H
i 
| y) = p(H

i 
, y) / p(y). 
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But we have already seen (two equations earlier) that: 
 

p(H
i 
, y) =  p(y | H

i 
) p(H

i 
) 

 
Substituting this equation in the previous one, we get 

 
p(H

i
 | y) = p(y | H

i 
) p(H

i 
) / p(y) 

 
Since we have specified that exactly one of the hypotheses is true, the sum of their probabilities is unity.  
The p(y) in the denominator, which does not depend on i, is a normalizing constant that makes the sum of 
the probabilities equal to unity.  We could equally well write 

 

p(H
i
 | y)  p(y | H

i 
) p(H

i 
) 

  

where the symbol  means “is proportional to.” 
  

This expression for the conditional probability of a hypothesis, given the data, is an expression of “Bayes 
theorem,” and illustrates the central principle of Bayesian analysis: 

 

• The probability p(H
i 
) of the hypothesis is known as its “prior probability,” which describes our 

belief about that hypothesis before we see the data. 
 

• The conditional probability p(y | H
i 
) of the data, given the hypothesis, is known as the 

“likelihood” of the data, and is the probability of seeing that particular collection of values, given 
that hypothesis about the data.   

 

• The probability p(H
i
 | y) of the hypothesis, given the data, is known as its “posterior probability.”  

This is the probability of the hypothesis, given not only the prior information about its truth, but 
also the information contained in the data. 

 
The posterior probability of the hypothesis is proportional to the product of the likelihood of the data under 
that hypothesis, times the prior probability of that hypothesis.  Bayesian analysis therefore provides a way 
to update estimates of probabilities.  We can start with an initial or prior estimate of the probability of a 
hypothesis, update it with information from the data, and obtain a posterior estimate that combines the prior 
information with information from the data. 
 
In the next section we describe the hierarchical model used by the CBC/HB System.  Bayesian updating of 
probabilities is the conceptual apparatus that allows us to estimate the parameters of that model, which is 
why we have discussed the relationship between priors, likelihoods, and posterior probabilities. 
 
In our application of Bayesian analysis, we will be dealing with continuous rather than discrete 
distributions.  Although the underlying logic is identical, we would have to substitute integrals for 
summation signs if we were to write out the equations.  Fortunately, we shall not find it necessary to do so. 
 

The Hierarchical Model 

The Hierarchical Bayes model used by the CBC/HB System is called “hierarchical” because it has two 
levels.   

 

• At the higher level, we assume that individuals’ part worths are described by a multivariate normal 
distribution.   Such a distribution is characterized by a vector of means and a matrix of 
covariances. 

 

• At the lower level we assume that, given an individual’s part worths, his/her probabilities of 
choosing particular alternatives are governed by a multinomial logit model. 
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To make this model more explicit, we define some notation.  We assume individual part worths have the 
multivariate normal distribution,  

 

ß
i 
 ~ Normal(, D) 

 
where: 

 
ß

i  
= a vector of part worths for the ith individual 

 

 = a vector of means of the distribution of individuals’ part worths 
 
D = a matrix of variances and covariances of the distribution of part worths across individuals 
At the individual level, choices are described by a multinomial logit model.  The probability of the ith 
individual choosing the kth alternative in a particular task is 
 

p
k
 = exp(x

k
’ ß

i 
) /

j 
exp(x

j
’ ß

i 
) 

where: 
 
p

k
 = the probability of an individual choosing the kth concept in a particular choice task 

 
x

j 
= a vector of values describing the jth alternative in that choice task 

 
In words, this equation says that to estimate the probability of the ith person’s choosing the kth alternative 
(by the familiar process used in many conjoint simulators) we: 

 
1.  add up the part worths (elements of ß

i 
) for the attribute levels describing the kth alternative 

(more generally, multiply the part worths by a vector of descriptors of that alternative) to get 
the ith individual’s utility for the kth alternative 

 
2.  exponentiate that alternative’s utility  
 
3.  perform the same operations for other alternatives in that choice task, and  
 
4.  percentage the result for the kth alternative by the sum of similar values for all alternatives. 

 

The parameters to be estimated are the vectors ß
i 
of part worths for each individual, the vector  of means 

of the distribution of worths, and the matrix D of the variances and covariances of that distribution. 
 

Iterative Estimation of the Parameters 

The parameters ß, , and D are estimated by an iterative process.   That process is quite robust, and its 
results do not appear to depend on starting values.  We take a conservative approach by default, setting the 

elements of ß, , and D equal to zero.  
  
Given the initial values, each iteration consists of these three steps: 

 

• Using present estimates of the betas and D, generate a new estimate of   We assume  is 
distributed normally with mean equal to the average of the betas and covariance matrix equal to D 

divided by the number of respondents.  A new estimate of  is drawn from that distribution (see 
Appendix A for details). 

 

• Using present estimates of the betas and , draw a new estimate of D from the inverse Wishart 
distribution (see Appendix A for details). 
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• Using present estimates of  and D, generate new estimates of the betas.  This is the most 
interesting part of the iteration, and we describe it in detail below.  A procedure known as a 
“Metropolis Hastings Algorithm” is used to draw the betas.  Successive draws of the betas 
generally provide better and better fit of the model to the data, until such time as increases are no 
longer possible.  When that occurs we consider the iterative process to have converged.  

 

In each of these steps we re-estimate one set of parameters (, D or the betas) conditionally, given current 
values for the other two sets.  This technique is known as “Gibbs sampling,” and converges to the correct 
distributions for each of the three sets of parameters.   
 
Another name for this procedure is a “Monte Carlo Markov Chain,” deriving from the fact that the 
estimates in each iteration are determined from those of the previous iteration by a constant set of 
probabilistic transition rules.  This Markov property assures that the iterative process converges. 
  
This process is continued for a large number of iterations, typically several thousand or more.  After we are 
confident of convergence, the process is continued for many further iterations, and the actual draws of beta 

for each individual as well as estimates of  and D are saved to the hard disk.  The final values of the part 

worths for each individual, and also of  and D, are obtained by averaging the values that have been saved. 
 

The Metropolis Hastings Algorithm 

We now describe the procedure used to draw each new set of betas, done for each respondent in turn.  We 
use the symbol ß

o
 (for “beta old”) to indicate the previous iteration’s estimation of an individual’s part 

worths.  We generate a trial value for the new estimate, which we shall indicate as ß
n 
(for “beta new”), and 

then test whether it represents an improvement.  If so, we accept it as our next estimate.  If not, we accept 
or reject it with probability depending on how much worse it is than the previous estimate. 
 
To get ß

n
 we draw a random vector d of “differences” from a distribution with mean of zero and covariance 

matrix proportional to D, and let ß
n  

= 
 
ß

o
+ d.   

 
We calculate the probability of the data (or “likelihood”) given each set of part worths, ß

o  
and ß

n
, using the 

formula for the logit model given above.  That is done by calculating the probability of each choice that 
individual made, using the logit formula for p

k 
above, and then multiplying all those probabilities together.   

Call the resulting values p
o 
and p

n
, respectively.   

 
We also calculate the relative density of the distribution of the betas corresponding to ß

o 
and ß

n
, given 

current estimates of parameters  and D (that serve as “priors” in the Bayesian updating).  Call these values 
d

o 
and d

n
, respectively.  The relative density of the distribution at the location of a point ß is given by the 

formula  
 

Relative Density = exp[-1/2(ß - )’ D-1[(ß - )] 
 

Finally we then calculate the ratio:  
 

r  = p
n  

d
n 
 / p

o  
d

o
 
 

 
Recall from the discussion of Bayesian updating that the posterior probabilities are proportional to the 
product of the likelihoods times the priors.  The probabilities p

n  
and p

o
 are the likelihoods of the data given 

parameter estimates ß
n  

and 
 
ß

o
, respectively.  The densities d

n  
and d

o 
 are proportional to the probabilities of 

drawing those values of ß
n 
and ß

o
, respectively, from the distribution of part worths, and play the role of 

priors.  Therefore, r is the ratio of posterior probabilities of those two estimates of beta, given current 

estimates of  and D, as well as information from the data.  
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If r is greater than or equal to unity, ß
n  

has posterior probability greater than or equal to that of 
 
ß

o
, and we 

accept ß
n  

as our next estimate of beta for that individual.  If r is less than unity, then ß
n  

has posterior 

probability less than that of 
 
ß

o
.  In that case we use a random process to decide whether to accept ß

n  
or 

retain
 
ß

o
 for at least one more iteration.  We accept  ß

n
 with probability equal to r.  

 
As can be seen, two influences are at work in deciding whether to accept the new estimate of beta.  If it fits 
the data much better than the old estimate, then p

n  
will be much larger than p

o
, which will tend to produce a 

larger ratio.  However, the relative densities of the two candidates also enter into the computation, and if 

one of them has a higher density with respect to the current estimates of     and D, then that candidate has 
an advantage. 

 
If the densities were not considered, then betas would be chosen solely to maximize likelihoods.  This 
would be similar to conducting logit estimation for each individual separately, and eventually the betas for 
each individual would converge to values that best fit his/her data, without respect to any higher-level 
distribution.  However, since densities are considered, and estimates of the higher-level distribution change 
with each iteration, there is considerable variation from iteration to iteration.  Even after the process has 
converged, successive estimations of the betas are still quite different from one another.  Those differences 
contain information about the amount of random variation in each individual’s part worths that best 
characterizes them. 
 
We mentioned that the vector d of differences is drawn from a distribution with mean of zero and 
covariance matrix proportional to D, but we did not specify the proportionality factor.  In the literature, the 
distribution from which d is chosen is called the “jumping distribution,” because it determines the size of 
the random jump from ß

o
 to ß

n
.  This scale factor must be chosen well because the speed of convergence 

depends on it.  Jumps that are too large are unlikely to be accepted, and those that are too small will cause 
slow convergence. 
 
Gelman, Carlin, Stern, and Rubin (p 335) state:  “A Metropolis algorithm can also be characterized by the 
proportion of jumps that are accepted.  For the multivariate normal distribution, the optimal jumping rule 
has acceptance rate around 0.44 in one dimension, declining to about 0.23 in high dimensions…  This 
result suggests an adaptive simulation algorithm.” 
 
We employ an adaptive algorithm to adjust the average jump size, attempting to keep the acceptance rate 
near 0.30 (though you may change that value).  The proportionality factor is arbitrarily set at 0.1 initially.  
For each iteration we count the proportion of respondents for whom ß

n
 is accepted.  If that proportion is 

less than 0.3, we reduce the average jump size by ten percent. If that proportion is greater than 0.3, we 
increase the average jump size by ten percent.   As a result, the average acceptance rate is kept close to the 
target of 0.30. 
 
The iterative process has two stages.  During the first stage, while the process is moving toward 
convergence, no attempt is made to save any of the results.  During the second stage we assume the process 
has converged, and results for hundreds or thousands of iterations are saved to the hard disk.  For each 
iteration there is a separate estimate of each of the parameters.  We are particularly interested in the betas, 
which are estimates of individuals’ part worths.  We produce point estimates for each individual by 
averaging the results from many iterations.  We can also estimate the variances and covariances of the 
distribution of respondents by averaging results from the same iterations. 
 
Readers with solid statistical background who are interested in further information about the Metropolis 
Hastings Algorithm may find the article by Chib and Greenberg (1995) useful. 
 

How Long Does It Take? 

The CBC/HB System is one of the most computationally-intensive software systems that Sawtooth 
Software has ever produced. It requires a fast computer with plenty of RAM and hard disk storage.  
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A couple decades ago, run times for CBC/HB v1 commonly were from 3 to 24 hours. With today's faster 
PCs, run times should take about 10 minutes or less for most data sets. This is a dramatic improvement 
indeed.  
 
After a few iterations, the CBC/HB System provides quite an accurate estimate of the amount of time that 
will be required for any particular problem.  
 

 
Using the CBC/HB System 

 

Selecting a Data File 
 
CBC/HB supports .CSV, .CHO, or .CHS files that are automatically produced by our Lighthouse Studio or 
Discover systems.   You may create these files using your own tools (such as Excel), and details are 
provided in the documentation to do so.   The first step in using the software is to browse to and select this 
file. 
 

Setting Parameters 
 

The next step is to set parameter values that govern the estimation.  A dialog is provided: 
 

 
 
The numbers shown in each field are default values that you can change if you wish.  

 
Number of iterations before using results is the number of iterations that will be done before 
convergence is assumed. The default value is 10,000, but we have seen data sets where fewer 
iterations were required, and others that required many more (such as with very sparse data 
relative to the number of parameters to estimate at the individual level). One strategy is to accept 
this default but to monitor the progress of the computation, and halt it earlier if convergence 
appears to have occurred. Information for making that judgment is provided on the screen as the 
computation progresses, and a history of the computation is saved in a file named studyname.log. 
The computation can be halted at any time and then restarted from that point.   
  
Number of draws to be used for each respondent is the number of iterations used in analysis, 
such as for developing point estimates.  If not saving draws (described next), we recommend 
accumulating draws across 10,000 iterations for developing the point estimates.  If saving draws, 
you may find that using more than about 1,000 draws can lead to truly burdensome file sizes. 

 
Save random draws: Check this box to save random draws to disk, in which case point estimates 
of respondents' betas are automatically computed by averaging each respondent's draws after 
iterations have finished. The default is not to save random draws, but rather to have the means and 
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standard deviations for each respondent's draws accumulated as iteration progresses. In that case 
the means and standard deviations are available immediately following iterations, with no further 
processing. We believe that their means and standard deviations summarize almost everything 
about them that is likely to be important to you. If you elect not to save the draws you will be 
spared computer storage problems that can occur with very large files.   
 
Skip factor for using draws (if saving draws) is only applicable when saving draws to disk. The 
skip factor is a way of compensating for the fact that successive draws of the betas are not 
independent. A skip factor of k means that results will only be used for each kth iteration. Recall 
that only about 30% of the "new" candidates for beta are accepted in any iteration; for the other 
70% of respondents, beta is the same for two successive iterations. This dependence among draws 
decreases the precision of inferences made from them, such as their variance. If you are saving 
draws to disk, because file size can become critical, it makes sense to increase the independence of 
the draws saved by conducting several iterations between each two for which results are saved. If 
1,000 draws are to be saved for each respondent and the skip factor is 10, then 10,000 iterations 
will be required to save those 1,000 draws.   
    
We do not skip any draws when draws are "not saved," since skipping draws to achieve 
independence among them is not a concern if we are simply collapsing them to produce a point 
estimate. It seems wasteful to skip draws if the user doesn't plan to separately analyze the draws 
file. We have advocated using the point estimates as we believe that draws offer little incremental 
information for the purposes of running market simulations and summarizing respondent 
preferences. However, if you plan to save the draws file and analyze them, we suggest using a skip 
factor of 10. In that case, you will want to use a more practical number of draws per person (such 
1,000 rather than the default 10,000 when not saving draws), to avoid extremely large draws files.   
 
Skip factor for displaying in graph controls the amount of detail that is saved in the graphical 
display of the history of the iterations.  If using a large number of iterations (such as >50,000), 
graphing the iterations can require significant time and storage space.  It is recommended in this 
case to increase the number to keep estimation running efficiently. 
 
Skip factor for printing in log file controls the amount of detail that is saved in the 
studyname.log file to record the history of the iterations.  Several descriptive statistics for each 
iteration are printed in the log file.  But since there may be many thousand iterations altogether, it 
is doubtful that you will want to bother with recording every one of them.  We suggest only 
recording every hundredth.  In the case of a very large number of iterations, you might want to 
record only every thousandth. 

 
Advanced Settings 
 
Most users will probably never change the defaults on the Advanced Settings screen. However, we've 
provided additional settings to provide more flexibility to deal with extreme types of data sets and to give 
advanced users greater control over estimation 

 
Use effects/dummy coding: With effects coding, the last level within each attribute is "omitted" 
to avoid linear dependency, and is estimated as negative the sum of the other levels within the 
attribute. With dummy coding, the last level is also "omitted," but is constrained to zero, with the 
other levels estimated with respect to that level's zero parameter.   
 
Since the release of CBC v1 in 1993, we have used effects-coding for estimation of parameters for 
CBC studies. Effects coding and dummy coding produce identical results (within an additive 
constant) for OLS or logit estimation. But, the part worths estimated using effects coding are 
generally easier to interpret than for dummy coding, especially for models that include interaction 
terms, as the main effects and interactions are orthogonal (and separately interpretable).  For HB 
analysis (as Rich Johnson pointed out in his paper "The Joys and Sorrows of Implementing HB 
Methods for Conjoint Analysis,") the results can depend on the design coding procedure, when 
there is limited information available at the unit of analysis relative to the number of parameters to 
estimate. Even though we have introduced negative prior correlations in the off-diagonal elements 
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of the prior covariance matrix to reduce or eliminate the problem with effects coding and the 
"omitted" parameter for extreme data sets, there may be cases in which some advanced analysts 
still prefer to use dummy coding. This is a matter of personal preference rather than a choice 
whether one method is substantially better than the other.   
 
Prior degrees of freedom: This value is the additional degrees of freedom for the prior 
covariance matrix (not including the # parameters to be estimated) and can be set from 2 to 
100,000. The higher the value, the greater the influence of the prior variance and more data are 
needed to change that prior. The scaling for degrees of freedom is relative to the sample size. If 
you use 50 and you only have 100 subjects, then the prior will have a big impact on the results. If 
you have 1000 subjects, you will get about the same result if you use a prior of 5 or 50. As an 
example of an extreme case, with 100 respondents and a prior variance of 0.1 with prior degrees of 
freedom set to the number of parameters estimated plus 50, each respondent's resulting part worths 
will vary relatively little from the population means. We urge users to be careful when setting the 
prior degrees of freedom, as large values (relative to sample size) can make the prior exert 
considerable influence on the results.   
 
Prior variance: The default is 1 for the prior variance for each parameter, but users can modify 
this value. You can specify any value from 0.1 to 999. Increasing the prior variance tends to place 
more weight on fitting each individual's data and places less emphasis on "borrowing" information 
from the population parameters. The resulting posterior estimates are relatively insensitive to the 
prior variance, except 1) when there is very little information available within the unit of analysis 
relative to the number of estimated parameters, and 2) the prior degrees of freedom for the 
covariance matrix (described above) is relatively large.   
 
Use custom prior covariance matrix: CBC/HB uses a prior covariance matrix that works well 
for standard CBC studies (see Appendix C for more information). Some advanced users may wish 
to specify their own prior covariance matrix (for instance, for analysis of MaxDiff data sets). 
Check this box and click the Edit... button to supply your own prior covariance matrix containing 
an NxN matrix of values, where N is equal to the number of parameters to be estimated. The user-
specified prior covariance matrix overrides the default prior covariance matrix (see Appendix C) 
as well as the prior variance setting on the Advanced Estimation Settings tab.   
 
Random starting seed: In early versions of HB, a random seed was drawn based on the 
computer's clock. But, users can now specify a specific seed to use (integers from 1 to 32000), so 
that results are repeatable. When using different random seeds, the posterior estimates will vary, 
but insignificantly, assuming convergence has been reached and many draws have been used.   
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Monitoring the Computation 
 

While the computation is in progress, information summarizing its current status and recent history is 
provided on a screen like the example below: 

 

 
 

These are results for an actual data set, obtained relatively early in the computation. The information at the 
top of the screen describes the settings that were chosen before the computation was begun. This run uses 
the default settings of 10,000 initial iterations, followed by 10,000 further iterations during which each 
iteration is used, but the random draws themselves are not saved to disk.  
 
At the time this screen print was made, the 5,206th iteration had just been completed. A graphic shows a 
history of the estimates of respondent parameters (elements of alpha) to this point in the computation. This 
graphic is useful for assessing whether convergence has been reached. The graphic is divided into two 
regions, a gray region at the left, which represents the initial "burn in" iterations, prior to assuming 
convergence, and the white region at the right in which the subsequent draws are used to create point 
estimates of the parameters for each respondent.  
 
The information in the two columns in the middle-left of the screen provides a detailed summary of the 
status of the computation, and we shall examine those values in a moment. Also, an estimate of the time 
remaining is shown. 11 minutes and 47 seconds are required to complete this computation. This 
information is updated continuously.  
 
At the bottom of the screen is the Stop estimation button. When this is pressed, the current iteration is 
finished and the current status of the computation is saved to disk for potential re-starting later. If the Stop 
estimation button is clicked during the second stage of estimation (the gray region of the graphic, after 
10,000 iterations in this case) after we've assumed convergence and begun to use subsequent draws, the run 
will be halted and the current status saved, but the results from previous iterations will be deleted. When 
the computation is restarted all of the iterations during which results are to be used will be repeated.  
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We now describe the statistics displayed on the screen. There are two columns for most. In the first column 
is the actual value for the previous iteration. The second column contains an exponential moving average 
for each statistic. At each iteration the moving average is updated with the formula:  
   
      new average = .01*(new value) + .99*(old average)   
    
The moving average is affected by all iterations of the current session, but the most recent iterations are 
weighted more heavily. The most recent 100 iterations have about 60% influence on the moving averages, 
and the most recent 500 iterations have about 99% influence. Because the values in the first column tend to 
jump around quite a lot, the average values are more useful.  
 
On the left are four statistics indicating "goodness of fit" that are useful in assessing convergence. The "Pct. 
Cert." and "RLH" measures are derived from the likelihood of the data. We calculate the probability of 
each respondent choosing as he/she did on each task, by applying a logit model using current estimates of 
each respondent's part worths. The likelihood is the product of those probabilities, over all respondents and 
tasks. Because that probability is an extremely small number, we usually consider its logarithm, which we 
call "log likelihood."  
 
"Pct. Cert." is short for "percent certainty" and also is known as McFadden’s Rho-squared, and indicates 
how much better the solution is than chance, as compared to a "perfect" solution. It is equal to the 
difference between the final log likelihood and the log likelihood of a chance model, divided by the 
negative of the log likelihood for a chance model. It typically varies between zero and one, with a value of 
zero meaning that the model fits the data at only the chance level, and a value of one meaning perfect fit. 
The value of .598 for Pct. Cert. on the screen above indicates that the log likelihood is 59.8% of the way 
between the value that would be expected by chance and the value for a perfect fit.  
 
RLH is short for "root likelihood," and measures the goodness of fit in a similar way. To compute RLH we 
simply take the nth root of the likelihood, where n is the total number of choices made by all respondents in 
all tasks. RLH is therefore the geometric mean of the predicted probabilities. If there were k alternatives in 
each choice task and we had no information about part worths, we would predict that each alternative 
would be chosen with probability 1/k, and the corresponding RLH would also be 1/k. RLH would be one if 
the fit were perfect. RLH has a value of .524 on the screen shown above. This data set has five alternatives 
per choice task, so the expected RLH value for a chance model would be 1/5 = .2. The actual value of .524 
for this iteration would be interpreted as just better than two and a half times the chance level.  
 
The Pct. Cert. and RLH measures convey essentially the same information, and both are good indicators of 
goodness of fit of the model to the data. The choice between them is a matter of personal preference.  
 
The final two statistics, "Avg Variance" and "Parameter RMS," are also indicators of goodness of fit, 
though less directly so. With a logit model the scaling of the part worths depends on goodness of fit: the 
better the fit, the larger the estimated parameters. Thus, the absolute magnitude of the parameter estimates 
can be used as an indirect indicator of fit. "Avg Variance" is the average of the current estimate of the 
variances of part worths, across respondents. "Parameter RMS" is the root mean square of all part worth 
estimates, across all part worths and over all respondents.  
 
As iterations progress, all four values (Pct. Cert., RLH, Avg Variance, and Parameter RMS) tend to 
increase for a while and then level off, thereafter oscillating randomly around their final values. Their 
failure to increase may be taken as evidence of convergence. However, there is no good way to identify 
convergence until long after it has occurred. For this reason we suggest planning a large number of initial 
iterations, such as 10,000 or more, and then examining retrospectively whether these four measures have 
been stable for the last several thousand iterations.  
 
The studyname.log file contains a history of these measures, and may be inspected after the iterations have 
concluded, or at any time during a run by clicking Stop estimation to temporarily halt the iterative process. 
If values for the final few thousand iterations are larger than for the preceding few thousand, that should be 
considered as evidence that more iterations should be conducted before inferences are made about the 
parameters.  
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At the bottom of the screen are current estimates of average part worths. The entire "expanded" vector of 
part worths is displayed (up to the first 100 part worths), including the final level of each attribute that is 
not counted among the parameters estimated directly.   
 

Using Constraints   
 

Conjoint studies frequently include product attributes for which almost everyone would be expected to 
prefer one level to another.  However, estimated part worths sometimes turn out not to have those expected 
orders.  This can be a problem, since part worths with the wrong slopes, or coefficients with the wrong 
signs, are likely to yield nonsense results and can undermine users’ confidence. 
 
CBC/HB provides the capability of enforcing constraints on orders of part worths within attributes, and on 
signs of linear coefficients.  The same constraints are applied for all respondents, so constraints should only 
be used for attributes that have unambiguous a-priori preference orders, such as quality, speed, price, etc.   
 
Evidence to date suggests that constraints can be useful when the researcher is primarily interested in the 
prediction of individual choices, as measured by hit rates for holdout choice tasks.  However, constraints 
appear to be less useful, and indeed can be harmful, if the researcher is primarily interested in making 
aggregate predictions, such as predictions of shares of choices.   
 
Wittink (2000) pointed out that constraints can be expected to reduce variance at the expense of increasing 
bias.  He observed that hit rates are sensitive to both bias and variance, so trading a large amount of 
variance for a small amount of bias is likely to improve hit rates.  He also observed that aggregate share 
predictions are mostly sensitive to bias since random error is likely to average out, and share predictions are 
therefore less likely to be improved by constraints. 
 
In a paper available on the Sawtooth Software website (Johnson, 2000) we explored several ways of 
enforcing constraints among part worths in the HB context.  Realizing that most CBC/HB users are 
probably interested in predicting individual choices as well as aggregate shares, we examined the success 
of each method with respect to both hit rates and share predictions.  Two methods which seemed most 
consistently successful are referred to in that paper as “Simultaneous Tying” and “Tying After Estimation.”  
We have implemented both of them in CBC/HB.  We call the first method “Simultaneous” because it 
applies constraints during estimation, so the presence of the constraints affects the estimated values.  The 
second procedure is a less formal method of simply tying offending values of saved draws from estimation 
done without constraints.  Although it appears to work nearly as well in practice, it has less theoretical 
justification.   
 

Simultaneous Tying 
 

This method features a change of variables between the “upper” and “lower” parts of the HB model.  For 
the upper model, we assume that each individual has a vector of (unconstrained) part worths, with 
distribution: 

  


i
  ~ Normal(, D) 

where: 
 


i
  = unconstrained part worths for the ith individual 

= means of the distribution of unconstrained part worths 
D = variances and covariances of the distribution of unconstrained part worths 
 

For the lower model, we assume each individual has a set of constrained part worths, b
i 
where b

i
 is obtained 

by recursively tying each pair of elements of 
i
 that violate the specified order constraints, and the 

probability of the ith individual choosing the kth alternative in a particular task is 
 

p
k
 = exp(x

k
’ b

i
 ) /

j
 exp(x

j
’ b

i
 ) 
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With this model, we consider two sets of part worths for each respondent: unconstrained and constrained.  
The unconstrained part worths are assumed to be distributed normally in the population, and are used in the 
upper model.  However, the constrained part worths are used in the lower model to evaluate likelihoods. 
 
We speak of “recursively tying” because, if there are several levels within an attribute, tying two values to 
satisfy one constraint may lead to the violation of another.  The algorithm cycles through the constraints 
repeatedly until they are all satisfied.  
 
When constraints are in force, the estimates of population means and covariances are based on the 
unconstrained part worths.  However, since the constrained part worths are of primary interest, we report 
the average of the constrained part worths on-screen, and a history of their average during iterations is 
available in the studyname.meanbeta.csv file.  Also, final averages of both constrained and unconstrained 
part worths as well as the unconstrained population covariances are given in the studyname.summary.txt 
file. 
 
When constraints are employed, two kinds of changes can be expected in the on-screen output: 
 
Measures of fit (Pct. Cert. and RLH) will be decreased.  Constraints always decrease the goodness-of-fit 
for the sample in which estimation is done.  This is accepted in the hope that the constrained solution will 
work better for predictions in new choice situations. 
 
Measures of scale (Avg. Variance and Parameter RMS), which are based on unconstrained part worths, will 
be increased.  The constrained part worths have less variance than the unconstrained part worths, because 
they are produced by tying unconstrained values.  Since constrained part worths are used to assess the fit of 
the model to the data (by computing likelihood), the constrained values take on the “correct” scaling, and 
the unconstrained values therefore have greater variance. 
 
You may impose constraints on either categorical or linear attributes. 
 
Please note that if using Simultaneous Tying, the estimates of alpha (population means) will wander 
significantly and not seem to reach convergence.  This is expected and we do not recommend paying much 
attention to the estimates of alpha if using Simultaneous Tying. 

 

Using Covariates 
 

Covariates are additional explanatory variables, such as usage, behavioral/attitudinal segments, 
demographics, etc. that can enhance the way HB leverages information from the population in estimating 
part worths for each individual.  Rather than assuming respondents are drawn from a single, multivariate 
normal distribution (as has been the case in earlier versions of CBC/HB), covariates map respondents to 
characteristic-specific locations within the population distribution.  When covariates are used that are 
predictive of respondent preferences, this leads to Bayesian shrinkage of part worth estimates toward 
locations in the population distribution that represent a larger density of respondents that share the same or 
similar values on the covariates.  Using high quality external variables (covariates) that are predictive of 
respondent preferences can add new information to the model (that wasn't already available in the choice 
data) that improves the quality and predictive ability of the part worth estimates. One particularly sees 
greater discrimination between groups of respondents on the posterior part worth parameters relative to the 
more generic HB model where no covariates are used. 
 
To use covariates, one first associates a .CSV file of demographics with the project on the Data Files tab.  
Respondent number must be in the first column.  Covariates follow in subsequent columns.  Covariates can 
be categorical (e.g. small_company=1, medium_company=2, large_company=3) or continuous (amount 
expect to pay for next automobile).  Categorical covariates are coded in the Z matrix as dummy-coding, 
with the final level omitted as the reference zero.  The covariates model is a regression-type model, where 
the population mean part worth parameters are estimated as a function of a matrix Z defining the 
respondent characteristics and a set of weights (Theta) associated with each respondent descriptor variable. 
 
A set of weights (Theta) associated with the intercept of the population estimates of part worths as well as 
adjustments to the population part worth means due to characteristics of the covariates is written to the 
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studyname_alpha.csv file.  For example, if a 3-level categorical covariate were being used, the first 
columns of the studyname_alpha.csv file would contain estimates for each of the part worth utilities 
associated with the intercept of the coded covariates matrix Z (in the case of categorical coding, the 
intercept would be the population mean part worth estimates associated with respondents taking on the final 
level of the categorical covariate).  Then, the next columns would contain of set of regression weights 
(Theta) for the adjustments to the population estimates for each of the part worth utilities associated with 
respondents taking on the 1st level of the categorical covariate, followed by a set of estimates for 
adjustments to alpha for respondents taking on the 2nd level of the categorical covariate.  The columns are 
clearly labeled in the .CSV file.  For example, if an estimate for the level "red" for respondents taking on 
characteristic 2 of Variable2 was equal to 0.75, then this would indicate that respondents with characteristic 
2 of Variable2 had a mean part worth utility for Red that was 0.75 utiles higher than respondents taking on 
characteristic 3 of Variable2 (since the final column is coded as the omitted, zero, state). 
 
One typically examines the weights in the _alpha.csv file associated with covariates to help determine the 
usefulness of the covariates.  Only the "used" draws should be examined.  For example, if your HB run 
includes 10,000 burn-in iterations followed by 10,000 used iterations, then only the final 10,000 rows of the 
_alpha.csv file should be examined.  One can examine the mean of these draws, as well as the percentage 
of the draws that are positive or negative.  The means should have face validity (make sense from a 
behavioral standpoint, based on what you know about the respondent characteristics on the covariates).  If 
the percent of draws (associated with a part worth utility) that have the same sign is 95% or greater, this is 
often taken as evidence that this realization of the covariate has a significant effect (90% confidence level, 
two-tailed test) on the part worth utility estimate.  If a relatively large number of columns for a covariate 
have significant weights, then this gives evidence that the covariate is useful. 
 
More detail on the usefulness of covariates in CBC/HB is provided in the white paper, "Application of 
Covariates within Sawtooth Software's CBC/HB Program: Theory and Practical Example" available for 
downloading from our Technical Papers library at www.sawtoothsoftware.com. 
 

How Good Are the Results? 
 

Background 

Several articles have discussed the application of Hierarchical Bayes (HB) to the estimation of individual 
conjoint part worths. 

  

• Allenby, Arora, and Ginter (1995) showed how HB could be used advantageously to introduce 
prior information  about monotonicity constraints in individual part worths. 

 

• In quite a different application, Allenby and Ginter (1995) showed that HB could be used to 
estimate individual part worths for choice data, even with relatively little data from each 
respondent.  

 

• Lenk, DeSarbo, Green, and Young (1996) showed that HB could estimate individual part worths 
effectively even when each individual provided fewer answers than the number of parameters 
being estimated.   

 
These results were impressive and suggested that HB might become the preferred method for estimation of 
individual part worths.  In the past few years, this seems to have been the case.  However, HB computation 
takes longer than methods such as latent class and logit, which led some to doubt about its feasibility in 
real-world applications in the mid-1990s.  The Allenby and Ginter example used 600 respondents but 
estimated only 14 parameters for each.  The Lenk et al. example used only 179 respondents, also with 14 
parameters per respondent.  Many commercial applications involve much larger data sets. 
  
When Sawtooth Software introduced ICE in 1997 as a method for estimating individual part worths for 
choice data, we observed that computers were not yet fast enough to make HB feasible for other than small 
data sets.  Since then computers have become faster, and it is now possible to do HB estimation within a 
relatively short amount of time for even relatively large data sets. 
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A Close Look at CBC/HB Results 

We shall now examine CBC/HB results from a study especially designed to investigate the quality of 
individual part worth estimates.  This is the third data set examined by Huber et al. and we first describe it 
in more detail. 

 
A total of 352 respondents answered CBC questionnaires about TV preferences (this data set is available as 
a “tutorial” study within the Lighthouse Studio Platform from Sawtooth Software).  Each respondent 
answered 18 customized choice questions consisting of 5 alternatives with no “None” option.  There were 6 
conjoint attributes having a total of 17 levels in all.  The data were coded as part worths, so 17 – 6 = 11 
parameters were estimated for each respondent.  The respondents were randomly divided into four groups, 
and those in each group answered 9 holdout tasks, each with 5 alternatives.  The first and eighth tasks were 
identical to permit an estimate of reliability.  The percentage of reliable choices for the repeated task ranged 
from 69% to 89%, depending on version, with an average of 81%. 
 
The holdout tasks contained some alternatives that were very similar and sometimes identical to each 
another.  This was done to present a challenge to conjoint simulators based on the logit model and having 
IIA properties.   
 
To be absolutely sure of convergence, 100,000 iterations were done with the CBC/HB System before 
saving any results.  We then investigated several aspects of the estimates. 
 

Estimation with Few Tasks 

The first property examined was the ability to predict holdout choices using part worths estimated from 
small numbers of tasks.  Six sets of part worths were estimated for each respondent, based on these 
numbers of tasks:  all 18, 9 even-numbered, 9 odd-numbered, 6, 4, and 2.  (The last three conditions used 
tasks distributed evenly throughout the questionnaire.)   Each set of part worths was obtained by doing 
1000 additional HB iterations and saving results of each 10th iteration.  Each set of part worths was 
evaluated in two ways: 

 

• Point estimates of each individual’s part worths were obtained by averaging the 100 random 
draws, and those estimates were used in a first-choice conjoint simulator to measure hit rates.   

 

• The random draws were also used individually in 100 separate first-choice simulations for each 
respondent, and accumulated over respondents to measure MAE (mean absolute error) in 
predicting choice shares.   

 
With first-choice simulators, adding Gumbel-distributed random error to the summed utilities flattens share 
predictions in the same way that logit simulations are flattened by multiplying utilities by a number less 
than unity. With Gumbel error scaled to have unit standard deviation, the optimal proportion to be added 
was about 0.1, and this did not differ systematically depending on the number of tasks used in estimation.   
 
Here are the resulting Hit Rate and MAE statistics for the several sets of part worths: 

 
   Holdout Prediction with Subsets of Tasks 

 
 # Tasks Hit Rate MAE 
   18 0.660 3.22 
     9 odd 0.605 3.72 
     9 even 0.602 3.52 
     6 0.556 3.51 
     4 0.518 4.23 
     2 0.446 5.31 
 



 18 

Hit Rate and MAE for all 18 tasks are both slightly better than those reported by Huber et al.  This may be 
partly due to our having achieved better convergence with the large number of iterations.  Our MAEs have 
also been aided slightly by tuning with Gumbel error.   
 
The important thing to notice is that performance is excellent and remains quite good as the number of 
choice tasks is reduced.  With only 9 tasks per respondent the hit rate is about 90% as good as with all 18, 
and the MAE is only about 15% higher.  Dropping to only 4 tasks per respondent produces a reduction in 
hit rate of only about 20%, and an increase in MAE of only about 30%.  This does not seem to us to be a 
strong argument for using shorter questionnaires, because improvements from using 18 tasks instead of 9 
seem worth having.  But these results do give comforting evidence of robustness. 
 

Distribution of Replicates within Individuals 

Another 10,000 iterations were computed using data from all 18 tasks, and each 10 th replicate was saved for 
each respondent.  Those replicates were then examined to see how the 1,000 random draws for each 
individual were distributed.  This was investigated by first subtracting each individual’s mean part worths 
from those of each replicate to obtain a vector of deviations.  Several things were done with those 352,000 
vectors of deviations. 
 
First, the 17 x 17 matrix of pooled within-individual covariances was examined.  Effects coding guarantees 
that the sum of variances and covariances within each attribute must be zero, so the sum of covariances for 
levels within each attribute must be the negative of the sum of the variances for that attribute.  That 
naturally leads to negative covariances among the levels of each attribute.  However, the covariances for all 
pairs of levels from different attributes were close to zero.  This meant that the information about within-
respondent distributions could be assessed by separate examination of each part worth element. 
 
Next, pooled within-individual variances were examined for each level, and they did differ substantially 
among the 17 levels, with a ratio of approximately 4 to 1 for the maximum and minimum.   
 
Next, skewness was also computed for each level.  Skewness is zero for a symmetric distribution.  For 
those 17 levels, 9 had slight negative skewness and 8 had slight positive skewness.  All in all, the 
distributions were nearly symmetric. 
 
Finally, kurtosis was computed for each level.  Kurtosis indicates the relative thickness of the tails of a 
distribution.  Values larger than 3.0 indicate thicker tails than the normal distribution.  That was true for all 
17 levels, with the minimum and maximum values being 3.1 and 4.1.   
 
Therefore we can conclude that with this data set the many random draws for each individual were 
distributed around that individual’s mean (a) independently, (b) symmetrically, and (c) with slightly 
thicker-than-normal tails.  The regularity of these distributions suggests that little information will be lost 
using individuals’ mean part worths rather than preserving all the individual draws.  However, the 
individual part worths do have different variances, to which we shall again refer in a moment.  
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Distributions across Individuals 

Separate analyses were done for the even- and odd-numbered tasks.  An additional 100,000 iterations were 
done initially for each and then a final 10,000 iterations for which each 10th was saved.  The purpose of this 
analysis was to examine the estimates of covariances across individuals, rather than within individuals as 
described above.  The covariance estimates obtained by averaging those 1000 random draws of covariance 
estimates were compared, as were covariance matrices obtained directly from the final point estimates of 
the part worths.  Again, the only covariances examined were those involving levels from different 
attributes. 
 
In neither case did the covariances seem very different from zero.  As a check on this, we counted the 
number of times corresponding covariances had the same sign.  For the population estimates this was only 
69%, and there was only one case where the corresponding correlation had absolute values greater than .2 
with similar signs in both tables.  Thus, as with the within-individual covariances, there does not appear to 
be much structure to the distribution across individuals. 
 
However, for both halves of the data there were large differences among the between-respondent variances, 
with ratios of maximum to minimum of more than 10 to 1.  Also, these differences in variance were quite 
reliable, having a correlation between the two data sets of .87.  Interestingly, the between-respondent 
variances were also highly correlated with the within-respondent variances, each set being correlated more 
than .90 with the within-respondent variances. 
 

Conclusions 

To summarize the findings with this data set: 
 

• The individual point estimates do an excellent job of predicting holdout concepts, and produce 
high hit rates using a first-choice model.  Similarly, the random draws from which they are 
derived also do an excellent job of predicting choice shares. 

 

• For the random draws, data for the conjoint levels appear to be distributed independently, 
symmetrically, and with slightly thicker-than normal tails.  They differ in variances, which are 
approximately proportional to the across-respondent variances. 

 

• The formal estimates of across-individual covariances do not appear to contain much information, 
except for the variances, among which there are strong differences.  

 

• Similar analyses with other data sets will be required to confirm this conclusion, but it appears that 
nearly all the information produced by CBC/HB is captured in the point estimates of individual 
part worths, and little further useful information is available in the numerous random draws 
themselves, or in the covariances across individuals.  This will be welcome news if confirmed, 
because it may point the way to a simpler model that works just as well with less computational 
effort. 
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Appendix A 

 

Computational Procedures 
 

Introduction 
 
We previously provided an intuitive explanation of the HB estimation process, and to avoid complexity it 
omits some details that we shall provide here. 
 

With each iteration we re-estimate , a vector of means of the distribution of individuals, the covariance 
matrix D of that distribution, and a vector ß

i 
 of part worths or other parameters for each individual.  

Previously, we described the estimation of the betas in some detail.  Here we provide details for the 

estimation of  and D. 
 

Random Draw from a Multivariate Normal Distribution: 

Often in the iterative computation we must draw random vectors from multivariate normal distributions 
with specified means and covariances.  We now describe a procedure for doing this. 
 

Let   be a vector of means of the distribution and D be its covariance matrix.  D can always be expressed 
as the product T T’ where T is a square, lower-triangular matrix.  This is frequently referred to as the 
Cholesky decomposition of D.   
 
Consider a vector u and another vector v = T u.  Suppose the elements of u are normal and independently 

distributed with means of zero and variances of unity.  Since for large n, 1/n  
n
u u’  approaches the 

identity, 1/n 
n
vv’ approaches D as shown below:   

 

    1/n 
n
vv’ = 1/n 

n
 Tu u’T’ = T (1/n 

n
 u u’)T’ => T T’ = D 

 
where the symbol => means “approaches.” 
 

Thus, to draw a vector from a multivariate distribution with mean    and covariance matrix D, we perform 
a Cholesky decomposition of D to get T, and then multiply T by a vector of u of independent normal 

deviates.  The vector   + T u is normally distributed with mean  and covariance matrix D. 
 

Estimation of Alpha: 

If there are n individuals who are distributed with covariance matrix D, then their mean, , is distributed 
with covariance matrix 1/n  D.  Using the above procedure, we draw a random vector from the distribution 
with mean equal to the mean of the current betas, and with covariance matrix 1/n  D.   
 

Estimation of D: 

Let p be the number of parameters estimated for each of n individuals, and let N = n + p.  Our prior 
estimate of D is the identity matrix I of order p.  We compute a matrix H that combines the prior 

information with current estimates of  and ß
i   

 

 

         H = pI + 
n 
( - ß

i  
) ( - ß

i  
)’ 

 
We next compute H–1 and the Cholesky decomposition  

 
         H–1 = T T’ 
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Next we generate N vectors of independent random values with mean of zero and unit variance, u
i
, multiply 

each by T, and accumulate the products: 
 

               S = 
N 

(T u
i
) (T u

i
)’ 

 
Finally, our estimate of D is equal to S–1.   
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Appendix B 
 

How Constant Sum Data Are Treated in CBC/HB 
 

Introduction 
 
Conjoint analysis has been an important marketing research technique for several decades.  In recent years, attention 
has focused on the analysis of choices, as opposed to rankings or ratings, giving rise to methodologies known as 
"Discrete Choice Analysis" or "Choice-Based Conjoint Analysis." 

 
Choice analysis has the advantage that experimental choices can mimic actual buying situations more closely than other 
types of conjoint questions.  However, choices also have a disadvantage: inefficiency in collecting data.  A survey 
respondent must read and understand several product descriptions before making an informed choice among them.  
Yet, after all of that cognitive processing the respondent provides very scanty information, consisting of a single choice 
among alternatives.  There is no information about intensity of preference, which products would be runners up, or 
whether any other products would even be acceptable. 

 
Many researchers favor the comparative nature of choice tasks, but are unwilling to settle for so little information from 
each of them.  This leads to the notion of asking respondents to answer more fully by allocating "constant sum scores" 
among the alternatives in each choice set rather than by just picking a single one.   For example, a survey respondent 
might be given 10 chips and asked to distribute them among alternatives in each choice set according to his/her 
likelihood of purchasing each.  Alternatively, the respondent might be asked to imagine the next 10 purchase occasions, 
and to estimate how many units of each alternative would be purchased in total on those occasions.   Such information 
can be especially informative in categories where the same individuals often choose a mix of products, such as 
breakfast cereals or soft drinks. Constant sum scores are particularly appropriate when it is reasonable for the 
respondent to treat the units as probabilities or frequencies.  

 
Constant sum scores certainly can provide more information than mere choices, although they are not without 
shortcomings of their own.  One disadvantage is that it takes respondents longer to answer constant sum tasks than 
choice tasks (Pinnell, 1999).  Another is that one can't be sure of the mental process a respondent uses in providing 
constant sum data.  The requirement of summing to 10 or some other total may get in the way of accurate reporting of 
relative strengths of preference.  Finally, since respondents' processes of allocating points are unknown, it's not clear 
what assumptions should be made in analyzing the resulting data. 

 
The CBC/HB strategy for analyzing constant sum data begins with the notion that each constant sum point is the result 
of a separate choice among alternatives.  Suppose 10 points are awarded among three alternatives, with the scores [7, 3, 
0].  We could treat this as equivalent to 10 repeated choice tasks, in which the first alternative was chosen 7 times, the 
second chosen 3 times, and the third never chosen.   But, there is a difficulty with this approach: one can't be sure that 
constant sum points are equivalent to an aggregation of independent choices.  Perhaps this respondent is inclined 
always to give about 7 points to his/her first choice and about 3 points to his/her second choice.  Then we don't have 10 
independent choices, but something more like two.   

 
Bayesian analysis provides superior results by combining data from each respondent with information from others 
when estimating values for that respondent.  These two sources of information are combined in a way that reflects the 
relative strength of each.  If a respondent conscientiously makes 10 independent choices in allocating 10 points, then 
those data contain more information and should receive greater weight than if he/she uses some simpler method.  
Likewise, if a respondent were always to allocate points among products without really reflecting on the actual 
likelihood of choice, those data contain less information, and should be given less weight in estimation of his/her 
values.   

 
With the CBC/HB module we deal with this problem by asking the analyst to estimate the amount of weight that should 
be given to constant sum points allocated by respondents.  We provide a default value, and our analysis of synthetic 
data sets shows that CBC/HB does a creditable job of estimating respondent part worths when using this default value, 
although the analysis can be sharpened if the user can provide a more precise estimate of the proper weight.  
 
How Constant Sum Data Are Coded in CBC/HB 

 
In earlier versions of CBC/HB, we used a less efficient process for estimating part worths from allocation-based CBC 
data.  It involved expanding the number of choice tasks to be equal to the number of product alternatives that had 
received allocation of points.  We are indebted to Tom Eagle of Eagle Analytics for showing us an equivalent 
procedure that is much more computationally efficient and therefore considerably faster. 
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First, although we have spoken of "constant sum data," that is something of a misnomer.  There is no requirement that 
the number of points allocated in each task have the same sum.  During estimation, the data from each task are 
automatically normalized to have the same sum, so each task will receive the same weight regardless of its sum.  
However, to avoid implying that their sums must be constant, we avoid the term "constant sum" in favor of "chip 
allocation" in the balance of this appendix. 
 
CBC/HB reads the studyname.CHS file (or data from a .CSV file) which contains chip allocation data in text format 
and produces a binary file for faster processing.  The simplest of procedures might treat chip allocation data as though 
each chip were allocated in a separate choice task.  If, for example, the chips allocated to alternatives A, B, and C were 
[A = 7, B = 3, C = 0] then we could consider that 10 repeated choice tasks had been answered, with seven answered 
with choice of A and three answered with choice of B. 
 
In our hierarchical Bayes estimation procedure we compute the likelihood of each respondent's data, conditional on the 
current estimate of that respondent's part worths.  This likelihood consists of a series of probabilities multiplied 
together, each being the probability of a particular choice response.  If the chips allocated within a task have the 
distribution [A = 7, B = 3, C = 0], then the contribution to the likelihood for that task is 
 
 Pa* Pa* Pa* Pa* Pa* Pa* Pa* Pb* Pb* Pb  

 
which may be rewritten as: 
 

 Pa
7

 * Pb
3

     (1) 

 
where Pa is the likelihood of choosing alternative a from the set and Pb is the likelihood of choosing alternative b from 

the set.  According to the logit rule: 
 
 Pa = exp(Ua) / SUM(exp(Uj))  (2) 

 
and 
 
 Pb = exp(Ub) / SUM(exp(Uj))  (3) 

 
where Ua is the total utility for concept a, Ub is the total utility for concept b, and j is the index for each of the concepts 

present in the task. 
 
Substituting the right-hand side of equations 2 and 3 into equation 1, we obtain an alternate form for expressing the 
likelihood of our example choice task where 7 chips are given to A and 3 chips to B: 
 

 (exp(Ua) / SUM(exp(Uj))
7

 * (exp(Ub) / SUM(exp(Uj))
3

  

 
And, an equivalent expression is: 
 

 exp(Ua)
7 

* exp(Ub)
3
 / SUM(exp(Uj))

10 
(4) 

 
There is a potential problem when so many probabilities are multiplied together (equivalently, raising the probability of 
the alternative to the number of chips given to that alternative).  The HB estimation algorithm combines data from each 
respondent with data from others, and the relative weight given to the respondent's own data is affected by the number 
of probabilities multiplied together.  If the respondent really does answer by allocating each chip independently, then 
the likelihood should be the product of all those probabilities.  But if the data were really generated by some simpler 
process, then if we multiply all those probabilities together, we will in effect be giving too much weight to the 
respondent's own data and too little to information from other respondents. 
 
For this reason we give the user a parameter which we describe as "Total task weight."  If the user believes that 
respondents allocated ten chips independently, he should use a value of ten.  If he believes that the allocation of chips 
within a task are entirely dependent on one another (such as if every respondent awards all chips to the same 
alternative) he should use a value of one.  Probably the truth lies somewhere in between, and for that reason we suggest 
5 as a default value. 
 
We use the Task Weight in the following way. 
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Rather than assume that each chip represents an independent choice event, we first normalize the number of chips 
allocated within each task by dividing the exponents in equation 4 by the total number of chips allocated. This 
simplifies the formula to: 
 

 exp(Ua)
0.7 

* exp(Ub)
0.3

 / SUM(exp(Uj)) 

  
We can then apply the task weight to appropriately weight the task.  Assuming the researcher wishes to apply a task 
weight of 5, the new formula to represent the probability of this task is: 
 

 [ exp(Ua)
0.7 

* exp(Ub)
0.3

 / SUM(exp(Uj)) ]
5
 

 
Which may be rewritten as: 
 

 exp(Ua)
(0.7*5)

 * exp(Ub)
(0.3*5)

 / SUM(exp(Uj))
5
 

 
Mathematically, this is identical to the likelihood expression based on expanded tasks that we used in earlier versions 
of CBC/HB software, but it avoids expanding the tasks and is more efficient computationally. 
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Appendix C 
 

Specifying the Prior Covariance Matrix 
 

 
In earlier versions of CBC/HB, the prior variance-covariance matrix was assumed to be the identity matrix.   
That is to say, prior variances for all part worths (heterogeneity values) were assumed to be unity, and all 
parameters were assumed to be uncorrelated.  This assumption is less reasonable with effects coding of 
categorical attributes, where the sum of parameters for any attribute is zero, which implies negative 
covariances within attributes.  And with dummy coding, this assumption is also less reasonable since 
parameters within a categorical attribute are positively correlated. 
 
Though not rigorously correct, the assumption of zero prior covariances served well.  Most data sets have 
enough respondents and enough tasks for each respondent that the priors have little effect on the posterior 
estimates for either effects coding or dummy coding.  
 
When using the identity matrix as the prior covariance matrix, variances for the omitted levels of each 
attribute were overstated, and for dummy coding the variances for omitted levels (after zero-centering) 
were (to a lesser degree) understated, as was pointed out by Johnson (1999) in a paper available on the 
Sawtooth Software web site.  However, for most CBC/HB data sets, this had been of little consequence, 
and it had not seemed worthwhile to increase the complexity of the software to deal with this situation. 
 
However, recently we have increased the maximum number of levels permitted per attribute.  We have 
noticed that when there are many levels, estimation of the omitted level of each attribute is less accurate, 
and the inaccuracy increases as the number of levels increases.  This problem can be traced to the incorrect 
assumption of independence in the priors.  Accordingly, we have changed the software so that the prior 
covariance matrix is specified more appropriately when either effects or dummy coding is employed.  We 
have made several related changes. 
 

• From the Advanced Estimation Settings tab, the user can specify the prior variances rather than 
having to assume they are equal to unity. The default value is 2.0.   

  

• The user can also specify the prior degrees of freedom from that same tab, which must be at least 
equal to two more than the number of parameters being estimated. The default number is equal to 
the number of parameters plus 5. A larger number causes the priors to be weighted more heavily in 
computation of posterior parameter estimates.   

 

• The user can specify their own prior covariance matrix from the Advanced Estimation Settings tab 
by clicking Use custom prior covariance matrix. Then, specify a text-only, space-delimited 
rectangular prior covariance matrix in the supplied text field, which overrides the automatic 
specification of the prior covariance matrix as described in this appendix.   

 
If you are curious regarding the prior covariance matrix that has been used for your most recent run, please 
refer to the .PRC file, which is one of the default output files. This is a text-only file containing the prior 
covariance matrix used for the HB run.   
 
Prior Covariance Matrix under Effects Coding 

 
If effects coding is used, the prior covariances are automatically given appropriate negative values.  
Consider two attributes, a with I levels (a1, a2, … aI)  and b with J levels (b1, b2, … bJ).   Actually, only I-1 
plus J-1 parameters will be estimated.  If there is an interaction term, denote it as cij, for which (I-1)*(J-1) 
parameters will be estimated.  Denote the common variance as v.   
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Then the prior variances are: 
 

Var(ai) = (I-1)*v/(I) 
Var(bj) = (J-1)*v/(J) 
Var(cij) = (I-1)*(J-1)*v/(I*J) 

  
The effects between attributes are uncorrelated: 
 

Cov(ai, bj) = 0 
Cov(ai, cij) = 0 
Cov(bj, cij) = 0 

  
Within an attribute, the effects are correlated: 
 

Cov(ai, ak) = -v/(I)  for i not equal to k 
Cov(bj, bl) = -v/(J)  for j not equal to l  
Cov(cij, ckl) = +v/(I*J)  for i not equal to k and j not equal to l 
Cov(cij, cil) = - (I-1)v/(I*J)  for j not equal to l 
Cov(cij, ckj) = - (J-1)v/(I*J)  for i not equal to k 

 
As a numerical example, consider two attributes having 3 and 4 levels, respectively.  The prior covariance 
matrix for main effects is equal to the prior variance multiplied by: 
 
 a1 a2 b1 b2 b3 
  2/3 -1/3  0  0  0 a1 
 -1/3  2/3  0  0  0 a2 
  0  0  3/4 -1/4 -1/4 b1 
  0  0 -1/4  3/4 -1/4 b2 
  0  0 -1/4 -1/4  3/4 b3 
 
The interaction between these two attributes involves 2 * 3 = 6 variables.  The prior covariance matrix is 
proportional to the following, with proportionality constant equal to the common variance divided by 12:  
 

  c11            c12            c13           c21              c22           c23 
   6               -2               -2               -3                1                1                 c11 
  -2                6               -2                1               -3                1                 c12 
  -2               -2                6                1                1               -3                 c13 
  -3                1                1                6               -2               -2                 c21 
   1               -3                1               -2                6               -2                 c22 
   1                1               -3               -2               -2                6                 c23 

 

Prior Covariance Matrix under Dummy Coding 
 
If dummy coding is used, the prior covariances are automatically given appropriate positive values.  
Consider two attributes, a with I levels (a1, a2, … aI)  and b with J levels (b1, b2, … bJ).   Actually, only I-1 
plus J-1 parameters will be estimated.  Denote the common variance as v.   
 
Then the prior variances are: 
 

Var(ai) = 2*v 
Var(bj) = 2*v 

 
The effects between attributes are uncorrelated: 
 

Cov(ai, bj) = 0 
 
Within an attribute, the effects are correlated: 
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Cov(ai, ak) = v  for i not equal to k 
Cov(bj, bl) = v  for j not equal to l  

 
As a numerical example, consider two attributes having 3 and 4 levels, respectively.  The prior covariance 
matrix for main effects is equal to the prior variance multiplied by: 
 
 a1 a2 b1 b2 b3 
  2  1  0  0  0 a1 
  1  2  0  0  0 a2 
  0  0  2  1  1 b1 
  0  0  1  2  1 b2 
  0  0  1  1  2 b3 
 
A proper prior covariance matrix for dummy-coded models with interaction effects is not available in 
CBC/HB.  If you specify an interaction when using with dummy coding, CBC/HB software reverts to a 
“default” prior covariance matrix (the identify matrix), unless a STUDYNAME.mtrx file is supplied.  
Dummy coding with interactions poses significant difficulties for determining an appropriate prior 
covariance matrix.  One simple solution is to “collapse” two attributes involved in a first-order interaction 
into a “super attribute,” coded as a single attribute in the .CHO file.  Then, the super attribute may be 
treated as a main effect, with prior covariance structure as specified above. 
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Appendix D 
 

Utility Constraints for Attributes Involved in Interactions 
 

CBC/HB can constrain utilities to conform to user-specified monotonicity constraints within each 
individual.  Whether dummy-coding or effects-coding is in place, main effect parameters may be 
constrained.  Constraints can also be used for attributes involved in interaction terms if effects-coding is 
employed. 

When Both Attributes Are Categorical: 

Consider two attributes both with known preference order (level1 < level2 < level3) involved in an 
interaction effect.  Main effects and first-order interaction effects may be estimated under effects coding in 
CBC/HB.  Effects coding results in zero-centered main effects that are independent of the zero-centered 
first-order effects. 

To impose monotonicity constraints, for each individual, construct a table containing the joint utilities 
when two levels from each attribute combine.  In the joint effects table below, A is equal to the main effect 
of Att1_Level1 plus the main effect of Att2_Level1 plus the interaction effect of Att1_Level1 x 
Att2_Level1. 

 Att2_Level1 Att2_Level2 Att2_Level3 

Att1_Level1 A B C 

Att1_Level2 D E F 

Att1_Level3 G H I 

 

Given that these two attributes have known a priori rank order of preference from “worst to best,” we 
expect the following utility relationships: 

 A<B<C 
 D<E<F 
 G<H<I 
 A<D<G 
 B<E<H 
 C<F<I 
 
For any pair of joint utilities that violates these preference orders, we tie the values in the joint effects table 
by setting both offending elements equal to their average.  We recursively tie the values, because tying two 
values to satisfy one constraint may lead to a violation of another.  The algorithm cycles through the 
constraints repeatedly until they are all satisfied. 

After constraining the values in the joint table, the new row and column means represent the new 
constrained main effects.  For example, Let J equal the mean of (A, B, C); J is the new main effect for 
Att1_Level1.  Let M equal the mean of (A, D, G); M is the new main effect for Att2_Level1.   

Finally, we compute the constrained first-order interactions.  Subtract the corresponding constrained main 
effects from each cell in the joint effects table to arrive at the constrained interaction effect.  For example, 
assume that J is the constrained main effect for Att1_Level1 and M is the constrained main effect for 
Att2_Level1.  The constrained interaction effect Att1_Level1 x Att2_Level1 is equal to A-J-M. 
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The example above assumed full rank-order constraints within both attributes.  The same methodology is 
applied for constraining selected relationships within the joint utility table.  For example, if the only 
constraint was Att1_Level1>Att1_Level2, then the only joint effects to be constrained are A>D, B>E, and 
C>F. 

For Categorical x Linear Attributes: 

 
Assume two attributes, one categorical (with three levels) and one linear term. Assume the following 
constraints are in place: 
 
 Att1_Level1>Att1_Level2 
 Att2 is negative 
 
The main effects for the categorical attribute may be considered (and constrained) independently of the 
effects involving the linear term (we can do this because the elements in the X matrix for Att2 are zero-
centered).  Constrain the main effects for the categorical levels of Att1, by tying offending items (by setting 
offending values equal to their average). 
 
Next, we build an effects table, representing the effect of linear attribute Att2, conditional on levels of Att1 
(and independent of the main effect for Att1): 
 
  

 Att2 

Att1_Level1 A 

Att1_Level2 B 

Att1_Level3 C 

 
 
For example, A is equal to the linear term main effect of Att2 plus the interaction effect Att1_Level1 x 
Att2.  In other words, A is the level-specific linear effect of Att2 for Att1_Level1.  (Note that we do not add 
the main effect of categorical term Att1_Level1 to A). 
 
Next, we constrain any elements A, B, C that are positive to zero. 
 
We re-compute the constrained linear main effect for Att2 as the average of the column.  (Example: Let D 
equal the mean of (A, B, C); the constrained linear main effect for Att2 is equal to D.) 
 
Finally, estimate the constrained interaction effects by subtracting the constrained linear main effect for 
Att2 from each element.  (Example: the constrained interaction effect for Att1_Level1 x Att2 is equal to A-
D.  Repeat in similar fashion for all rows).   
 
For Linear x Linear Attributes: 
 
Assume two attributes Att1 and Att2, both estimated as linear terms. Assume the following constraints are 
in place: 
 
 Att2 is negative 
 
In this case, if Att2 is found to be positive, we simply constrain Att2 to be zero.  No action is taken with the 
interaction effect.    
 
If both main effects are constrained, we similarly only apply constraints to main effects. 

 


