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Introduction 

In the analysis of marketing research data, there are many occasions when the researcher has a 

sample of respondents, stores, or other experimental units, and wishes to estimate separate 

regression coefficients for each unit.   

 

Consider three examples:  

 

1.  In full-profile conjoint analysis, survey respondents give preference ratings for 

hypothetical product concepts.  Regression analysis is often used, where the independent 

variables are columns of a “design matrix” describing the concepts and the dependent 

variable consists of preference ratings.  The researcher often wants to estimate regression 

coefficients that will be interpreted as “part-worths.”  Because respondents are expected 

to differ in their values, the researcher wants to produce estimates for each respondent 

individually. 

 

2.  Survey respondents in a customer satisfaction study provide ratings of several 

companies.  Some ratings are on “explanatory” variables, such as customer service, 

product durability, convenience of use, etc.  Other ratings are more general, such as 

overall satisfaction with the companies’ products.  One goal of the study is to infer the 

relative importance of each explanatory factor in determining overall satisfaction.  

Because respondents may differ, the researcher wants to produce estimates for each 

respondent individually. 

 

3.  During a pricing experiment in grocery stores, the prices of several products are varied 

systematically in different time periods, and sales of each product are measured with 

scanner data.  The independent variables are product prices and other factors such as the 

presence of displays, coupons, and newspaper features.  The dependent variables are 

product sales.  Because it is believed that customers of different stores may behave 

differently, the researcher wants to estimate price effects and cross-effects for each store 

individually. 

 

In each situation, separate regression estimates are desired for each individual (respondent or 

store).  However, in each case there is likely to be a degrees-of-freedom problem, with many 

parameters to be estimated for each individual, but relatively few observations per individual.  

 

In the past, researchers have often tried to handle this problem by ignoring heterogeneity among 

individuals, pooling all the data, and estimating a single set of regression coefficients that 

describe the “average” individual.  However, an alternative solution has become available to 

marketing researchers with the introduction of “hierarchical Bayes” (HB) methods.  Several 

articles (see for example Lenk, et al. 1996 and Allenby, et al. 1998) have shown that hierarchical 

Bayes estimation can do a creditable job of estimating individual parameters even when there are 

more parameters than observations per individual.  This is done by considering each individual to 

be a sample from a population of similar individuals, and “borrowing” information from other 

individuals in the estimation for each one. 
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HB-Reg is appropriate for the situations described above.  It estimates a hierarchical random 

coefficients model using a Monte Carlo Markov Chain algorithm.  In the material that follows we 

describe the hierarchical model and the Bayesian estimation process. 

  

Although HB methods are often computationally arduous, our software has the advantage of 

being written in compiled code (C#).  Compiled code programs are usually considerably faster 

than those written in higher-level languages such as Gauss.   

 

This is one of many HB products that Sawtooth Software has provided.  As examples, CBC/HB, 

ACA/HB, and CVA/HB are specialized applications for use with data generated by Sawtooth 

Software’s CBC, ACA, and CVA conjoint analysis software.  Because they are used in narrowly 

defined contexts, they require relatively little data processing on the part of the user.  HB-Reg is 

more general, being applicable to data from a variety of sources.  To permit this generality we 

must assume that the user is capable of arranging input data in a format acceptable to HB-Reg. 

 

In producing this software we have been helped by several sources listed in the References.  We 

have benefited particularly from the materials provided by Professor Greg Allenby in connection 

with his tutorials at the American Marketing Association’s Advanced Research Techniques 

Forum.  For some of the technical improvements in previous versions of HB-Reg, we benefited 

from direction provided by Peter Lenk, of the University of Michigan. 

 

Capacity Limitations and Hardware Recommendations 

HB-Reg can handle a maximum of 1000 independent variables and up to 1000 observations per 

individual, with no limit to the number of individuals.   

 

HB-Reg benefits from a fast computer and a generous amount of storage space.  HB-Reg 

estimates individual coefficients by doing many thousands of Monte Carlo simulation iterations.  

In a typical analysis, you might first do 10,000 iterations just to achieve convergence of the 

estimation process.  Then you might save the results of 10,000 subsequent simulations to be used 

for estimating individual coefficients.  

 

What’s New in HB-Reg Version 4? 

 

1.  Version 4 features a new user interface, borrowed extensively from the Sawtooth Software's 

MBC (Menu-Based Choice) software product. 
 

2.  HB-Reg 4 can automatically code Categorical Independent variables as dummy-coded, linear, 

or log-linear.  This removes extra data processing requirements, making it easy for you to switch 

back and forth between different independent variable coding schemes. 
 

3.  HB-Reg 4 automatically builds a "proper prior covariance matrix" when you specify a 

categorical independent variable (when dummy-coding is activated).  This is the same procedure 

as recommended by leading Bayesian academic Peter Lenk that is also used in our CBC/HB 

software. 
 

4.  Covariates may now be included in HB runs.  For more information on covariates in HB, 

please see the white paper entitled: Application of Covariates within Sawtooth Software's 
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CBC/HB Program: Theory and Practical Example (2009).  This paper may be downloaded from 

our Technical Papers library on our website: www.sawtoothsoftware.com. 
 

5.  Ability to run multiple HB runs simultaneously, utilizing multiple cores of your machine's 

processor. 
 

6.  Big gains in speed for exceptionally large datasets (>128MB) due to an improved memory 

caching technique.  We used an enormous HB-Reg dataset for testing (250MB) that experienced 

a 20x increase in speed under HB-Reg v4 compared to v3.   

 

 

The Basic Idea behind HB-Reg  
 

HB-Reg uses Bayes methods to estimate the parameters of a randomized coefficients regression 

model.  In this section we provide a non-technical description of the underlying model and the 

algorithm used for estimation.  Further details are provided in the Appendix.  To make matters 

clearer, we focus on one of the earlier examples, which we repeat here:  

 

Survey respondents in a customer satisfaction study provide ratings of several companies.  

Some ratings are on relatively specific “explanatory” variables, such as customer service, 

product durability, convenience of use, etc.  Other ratings are more general, such as 

overall satisfaction with the companies’ products.  One goal of the study is to infer the 

relative importance of each explanatory factor in determining overall satisfaction.  

Because respondents may differ in what is important, the researcher wants to produce 

unique estimates for each respondent. 

 

Regression analysis is a statistical technique that seeks a set of “weights” which, when applied to 

explanatory variables, predict or explain another variable of interest.  The explanatory variables 

are often called “independent variables” and the variable we want to explain or predict is often 

called the “dependent variable.” 

  

The weights are generally called “regression coefficients,” though in this context we might call 

them “part-worths” or “importance weights.”  The regression equation is usually of the form 

 

y  =  x1 b1 + x2 b2 + … + xnbn  + e 

 

Here the variable y is a respondent’s rating of a company (or product or service) on “overall 

satisfaction.”  The x variables are that same respondent’s ratings of the same company on other 

variables that we believe may be important in determining how satisfied that customer is with that 

company.  (In many contexts, we include an “intercept,” which is an estimate of y if all the 

independent variables had values of zero.  That can be accommodated in this formula by letting 

one of the x’s have constant values of unity.)  The symbol “e” on the right side of the equation 

stands for “error,” and represents our inability to predict y with complete accuracy by adding up 

weighted sums of the x’s.  If the respondent has rated several companies, we have several values 

of y, several corresponding sets of x’s, and several corresponding values of e.   

 

Under certain conditions, regression analysis can provide estimates of the b’s for this respondent.   
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 Usually we assume the errors are random, have mean of zero, and are independent of 

the x’s.  If we are using “least squares” regression, we also assume the sum of squared 

errors is as small as possible.     

 

 The respondent must have rated at least as many companies as the number of variables 

for which we seek importance weights.  Another way of saying this is that the number 

of unknowns (the b’s) must be no larger than the number of data points (the y’s).   

 

 The respondent’s ratings on different variables (the x’s) must have some degree of 

independence from one another.  For example, if there were two variables for which 

each company got equal ratings, we would have no way of deciding how importance 

should be allocated among those two variables. 

 

Unfortunately, researchers doing customer satisfaction studies usually find that none of these 

conditions is satisfied.   

 

The first condition is seldom satisfied because survey respondents tend to bunch their ratings at 

the top ends of the scale, so random variability tends to be smaller for highly rated products.  

Researchers have tried for many years to overcome this problem, one of the attempts being Rossi 

et al. (1999).  Although this is an important problem, its complete solution will probably require 

new methods of data collection that encourage respondents to discriminate more finely among 

companies they like.  

 

The second condition is an even more serious impediment to the estimation of individual 

importance weights.  The persons funding the research are often interested in a large number of 

possible explanatory variables, but it is usually not possible for each respondent to provide 

knowledgeable ratings of a large number of companies.  Respondents get bored when asked to 

rate many companies on many attributes, and the quality of their output suffers.  Also, many 

respondents are familiar with only a few companies, so their ratings of other companies contain 

little real information.  Fortunately, HB methods can provide significant help in overcoming this 

problem.  Unlike conventional regression analysis, HB-Reg can provide reasonable estimates for 

each respondent’s importance weights, even when each respondent rates fewer companies than 

the number of variables for which weights are to be estimated.  The ability of HB-Reg to provide 

reasonable individual-level estimates in this case may be enhanced by constraining the signs of 

the coefficients to be positive or negative. 

 

Failure to satisfy the third condition is also a serious problem.  Often respondents fail to 

distinguish among variables as precisely as researchers would like.  The researcher may want to 

learn whether “reliability” is more or less important than “durability;” but if those words mean 

nearly the same thing to a respondent, he or she is likely to produce identical ratings on each 

variable.  This failure is known as “colinearity,” and describes the condition in which ratings on 

one variable are predictable from ratings on others.  For most efficient estimation, we would like 

a respondent’s ratings on several variables to be completely independent of one another, but that 

is almost never true.  Fortunately, HB methods can also provide significant help in overcoming 

colinearity.   

 

The model underlying HB-Reg is called “hierarchical” because it has two levels.  At the upper 

level, respondents are considered as members of a population of similar individuals.  Their 

importance weights are assumed to have a multivariate normal distribution described by a vector 

of means and a matrix of variances and covariances. 
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At the lower level, each individual’s importance weights are assumed to be related to his ratings 

by the simple equation above.  That is to say, when deciding on his level of overall satisfaction 

with a company, he is assumed to consider several explanatory variables, multiplying his rating of 

that company on each variable by an importance weight and adding up those products. 

 

Suppose there are N individuals, each of whom has rated products on n explanatory variables.  If 

we were to do ordinary regression analysis separately for each respondent, we would be 

estimating N*n importance weights.  With the hierarchical model we also estimate N*n 

importance weights, and we further estimate n mean importance weights for the population as 

well as an n x n matrix of variances and covariances for the distribution of individuals’ 

importance weights.  Because the hierarchical model requires that we estimate a larger number of 

parameters, one might expect it would work less well than ordinary regression analysis.  

However, because each individual is assumed to be drawn from a population of similar 

individuals, information can be “borrowed” from other individuals in estimating parameters for 

each one, with the result that estimation is usually enhanced.   

 

In particular, it becomes possible to estimate individual parameters even though each respondent 

has rated only a small number of products, and even though there may be considerable colinearity 

in a respondent’s ratings on explanatory variables.  For example, suppose an individual has given 

similar ratings to two variables, such as reliability and durability, so that an ordinary regression 

analysis might be unable to allocate importance between them.  But since we assume this 

respondent is drawn from a distribution with known characteristics, we can use information about 

that distribution to resolve ambiguities for each individual. 

The Hierarchical Model 

To recapitulate, the model used by HB-Reg is called “hierarchical” because it has two levels.   

 

At the higher level, we assume that individuals’ regression weights are described by a 

multivariate normal distribution.  Such a distribution is characterized by a vector of means and a 

matrix of covariances.  To make this explicit, we assume individual regression weights have the 

multivariate normal distribution,  

 

i ~ Normal(, D) 

where: 

 

i = a vector of regression (or importance) weights for the ith individual, 

 

= a vector of means of the distribution of individuals’ regression weights, 

 
D = a matrix of variances and covariances of the distribution of regression weights across 

individuals. 

 

At the lower level we assume that, given an individual’s regression weights, values of the 

dependent variable are described by the model: 

 

yij = xij’ i  +  eij 

 

where: 
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yij = the dependent variable for observation j by respondent i, 

 
xij’ = a row vector of values of independent variables for the jth observation for 

respondent i, 

 

eij  =  random error term, distributed normally with mean of zero and variance 2. 

 

Continuing the customer satisfaction example, this model says that individuals have vectors of 

importance weightsi drawn from a multivariate normal distribution with mean vector  and 

covariance matrix D.  Individual i’s rating of overall satisfaction with the jth company yij is 

normally distributed, with mean equal to the sum of that respondent’s ratings on the independent 

variables, each weighted by the corresponding importance coefficient (which is equal to the 

vector product xij’i) and variance equal to some value 2. 

 

The parameters to be estimated are the vectors i  of part-worths for each individual, the vector  

of means of the distribution of regression weights, the matrix D of the variances and covariances 

of that distribution, and the scalar 2. 

Iterative Estimation of the Parameters 

The parameters are estimated by an iterative process which is quite robust, and for which final 

results do not depend on starting values.  As initial estimates of each parameter we use values of 

zero or unity.  We use zeros as initial estimates of the betas, alpha, and the covariances, and we 

use unity as initial estimates of the variances and of sigma.  Given those initial values, each 

iteration consists of these steps (further details are provided in the Appendix): 

 

Using present estimates of the betas and D, generate a new estimate of .  We assume  
is distributed normally with mean equal to the average of the betas and covariance matrix 

equal to D divided by the number of respondents.  A new estimate of is drawn 

randomly from that distribution. 

  

Using present estimates of the betas and , draw a new estimate of D from the inverse 

Wishart distribution. 

 

Using present estimates of , D, and, generate new estimates of the betas.  We use 

different methods for doing this, depending on the format of the input data.  If every 

respondent has the same values for his explanatory variables (as is frequently the case in 

full-profile conjoint analysis) we use a “normal draw” procedure to get a new estimate of 

beta for each individual.  That is to say, we draw a random vector from the distribution 

characterizing his regression weights.  If every respondent can have unique values for his 

explanatory variables (as is usually the case in customer satisfaction research) we obtain 

a new estimate of beta for each individual using a Metropolis Hastings algorithm.   

  

Using present estimates of , D, and the betas, generate a new estimate of .  For this 

purpose we again use the inverse Wishart distribution. 

 

In each of these steps we re-estimate one set of parameters conditionally, given current values for 

the other three.  This technique is known as “Gibbs sampling,” and eventually converges to the 
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correct distributions for each set of parameters.  Another name for this procedure is a “Monte 

Carlo Markov Chain,” deriving from the fact that the estimates in each iteration are determined 

from those of the previous iteration by a constant set of probabilistic transition rules.  This 

Markov property assures that the iterative process converges. 

  

This process is continued for a large number of iterations, typically 10,000 or more.  After we are 

confident of convergence, the process is continued for many further iterations, and the actual 

draws of beta for each individual as well as estimates of , D, and are saved to the hard disk.  

The final estimates of regression coefficients for each individual, and also of , D, and , are 

obtained by averaging those values that have been saved. 

 

Parameter Constraints   
 

There are modeling situations in which the researcher knows ahead of time that certain 

parameters must not be less in magnitude than others.  As one example, conjoint studies 

frequently include product attributes for which almost everyone would be expected to prefer one 

level to another.  However, estimated part worths sometimes turn out not to have those expected 

orders.  This can be a problem, since part worths with the wrong slopes are likely to yield 

nonsense results and can undermine users’ confidence.  As another example, a model may include 

company ratings on different aspects of service or product quality, where higher ratings imply 

greater satisfaction.  If those variables are used to predict some overall outcome such as 

likelihood of purchase or overall rating for the company, one should expect all betas to be 

positive.  Due to the sparse nature of the data and random noise, many of the individual-level 

betas may be negative, but the researcher may want to constrain them to be positive. 

 

HB-Reg provides the capability of enforcing constraints between two parameters, or sign 

constraints for individual parameters.  The same constraints are applied for all respondents, so 

constraints should only be used for variables that have unambiguous a-priori orders or signs.   

 

Evidence to date suggests that constraints can be useful when the researcher is primarily 

interested in the accuracy of individual models (such as for classification or estimating “hit 

rates”).  However, constraints appear to be less useful, and indeed can be harmful, if the 

researcher is primarily interested in making aggregate predictions, such as predictions of shares of 

choices within choice simulators.  The use of constraints can also get in the way of hypothesis 

testing, where the researcher may require the unconstrained distribution of parameters. 

 

In a paper available on the Sawtooth Software Web site  (Johnson, 2000) we explored several 

ways of enforcing constraints with HB among part-worths in the conjoint analysis context.  

Realizing that most conjoint analysis users are probably interested in predicting individual 

choices as well as aggregate shares, we examined the success of each method with respect to both 

hit rates and share predictions.  One of the methods seemed consistently successful was referred 

to in that paper as “Simultaneous Tying.”  We have implemented that method in HB-Reg.  We 

call it “Simultaneous” because it applies constraints during estimation, so the presence of the 

constraints affects the estimated values.   

 

Simultaneous Tying 
 

This method features a change of variables between the “upper” and “lower” parts of the HB 

model.  For the upper model, we assume that each individual has a vector of (unconstrained) 

betas, with distribution: 
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i  ~ Normal(, D) 

where: 

 

i  = unconstrained betas for the ith individual, 

= means of the distribution of unconstrained betas, 

D = variances and covariances of the distribution of unconstrained betas. 

 

With this model, we consider two sets of betas for each respondent: unconstrained and 

constrained.  The unconstrained betas are assumed to be distributed normally in the population, 

and are used in the upper model.  However, the constrained betas are used in the lower model to 

evaluate likelihoods. 

 

We speak of “recursively tying” because, if there are several variables involved in constraints, 

tying two values to satisfy one constraint may lead to the violation of another.  The algorithm 

cycles through the constraints repeatedly until they are all satisfied.  

 

When constraints are in force, the estimates of population means and covariances are based on the 

unconstrained betas.  However, since the constrained betas are of primary interest, we plot the 

constrained betas to the screen.  Only the constrained betas are saved to the .bet and .csv files. 

 

When constraints are in place, measures of fit (average r-squared) are decreased.  Constraints 

always decrease the goodness-of-fit for the sample in which estimation is done.  This is accepted 

in the hope that the constrained solution will work better for predictions in out-of-sample 

situations.   

 

Preparing Data Files for HB-Reg 
 

Independent and dependent variables must be scaled with appropriate ranges (variance) so that 

HB converges quickly and properly.  In our experience, variables should be coded in the 

magnitude of about single digits.   This means that prices of $100,000 to $500,000 should be 

divided by 100,000 so that they range from 1 to 5, etc.  Also take care that the range should not 

be too small.  For example, a variable that runs from -0.00001 to 0.00001 would not lead to 

quick and proper convergence. 
 

File Format 
 

We have made it very easy to prepare data files for HB-Reg.  We use the .csv (comma-

separate values) text format, which may be saved from Excel and by most software that is 

used for collecting and processing data.  The first row contains labels, but all data in the 

remaining rows must be numeric only.  Missing data are not supported.  Here are the first few 

rows from our Sample1 data set as displayed by Excel: 
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Rows 
 

Each row represents an observation and each respondent (or other unit of analysis) should 

have multiple observations (in the example above, each respondent has 10 observations).  

Each respondent ID must be unique.  The number of observations may differ per respondent, 

but the observations for each case must be available in consecutive rows (each respondent's 

data must be grouped together). 
 

Columns 
 

Regression analysis runs usually have multiple Independent Variables and a single Dependent 

Variable.  Your data file can have as many Independent Variables and Dependent Variables 

as you wish (though only one Dependent Variable may be specified in any one model).  

When you build models, you'll be asked to indicate which variables are independent and 

dependent, as well as which ones to include within your estimation run. 
 

Reading the File into HB-Reg 
 

Once you have prepared your .csv data file, you simply browse to it from the Data Files tab, or 

when prompted to do so in the project wizard dialog.  You may also supply an optional (separate) 

demographics file that is in .csv format, with Respondent ID followed by segmentation variables 

(to use as filters or covariates).   
 

Variable Type 
 

After HB-Reg reads your data, you can open the Variables tab to see how it has interpreted the 

file.  A row is shown in the data table corresponding to each column in your data file.  The labels 

that you had specified in the first row of your data file are displayed.  For example, if you open 

the Sample1.csv file available in the Sample1 project (you can open this project by clicking Help 

| Sample Data Sets), you see: 
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For each variable in your data file, you need to specify whether it is: 
 

 Independent (Continuous) 

 Independent (Categorical) 

 Dependent 
 

Continuous (User-Specified) 
 

Independent variables are Continuous when they take on many unique metric values, such as 

the weight of an individual in kilos, ratings on a 10-point scale, or factor scores with decimal 

places of precision.  Continuous independent variables are used as-is in the design matrix for 

parameter estimation.  In the popular CBC/HB software, such variables are called "User-

Specified," meaning you as the user have specified exactly how each independent variable 

should be coded for parameter estimation. 
 

Independent (Categorical) 
 

Independent variables are Categorical if they take on a limited number of discrete values, 

such as colors of product concepts (red=1, blue=2, green=3), ratings (1=definitely would not 

buy, 2=probably would not buy, 3=might/might not buy, 4=probably would buy, 5=definitely 

would buy), or even a limited number of discrete prices (1=$100, 2=$150, 3=$200, 4=$250).  

For an attribute like color, it isn't appropriate to treat the values in a metric fashion, where a 

code of 3 (green) is three times as large as a code of 1 (red).  Categorical independent 

variables are typically dummy-coded and HB-Reg will automatically dummy-code these 

variables for you if you request "part-worth" functional form on the Specify Models tab.   
 

If your categorical independent variable is something like a 5-point rating scale or four 

discrete levels of price, then the Categorical coding type gives you flexibility to fit a part-

worth functional form, a linear function, or a loglinear function (you select these options on 

the Specify Models tab).  In all cases, HB-Reg does the coding automatically for you. 
 

Dependent 
 

This is the variable that is to be predicted by the independent variables.  Dependent variables 

may be integers or continuous, with additional decimal places of precision if desired. 
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Setting Estimation Parameters 

 
 

Number of iterations before using results:  HB usually requires thousands of iterations to 

obtain good estimates of respondent utilities and of the population means and 

covariances.  The preliminary iterations are the "burn-in" iterations that are not actually 

used in the final utility run, but are undertaken as a means to obtain convergence.  

Typically, 10000 or more iterations should be performed before convergence is assumed 

in HB-Reg.  Only after a run is completed can one examine the history of part-worths 

estimated across the iterations to assess if the model indeed has converged to a relatively 

stable solution.  The part-worth utilities should oscillate randomly around their true 

values, with no indication of trend.  If convergence is not obtained, then you will want to 

re-run the HB estimation and specify a larger number of initial iterations. 
 

Number of draws to be used for each respondent:  Each iteration, after convergence is 

assumed, leads to a candidate set of utilities for each respondent.   The default is to 

use/save 1000 draws for each respondent, which is generally more than enough for most 

every practical application. 
 

Save random draws: Clicking this box will save the draws for each respondent into the 

zipped archive folder.  You can export the draws by highlighting a run and clicking 

Export... from the Utility Runs tab. 
 

Skip factor for saving random draws:  The skip factor is a way of compensating for the 

fact that successive draws of the betas are not independent. A skip factor of k means that 

results will only be used for each kth iteration.  It is useful to use every kth draw for each 

respondent to capture more completely the distribution of draws that characterize each 

respondent's preferences.  The utilities can oscillate in rather lengthy wave-like patterns, 
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with cycles measured in the thousands of iterations, so we recommend using a large skip 

factor for saving draws.    
 

Skip factor for displaying in graph: Indicates the skip factor employed when deciding for 

how many draws the results should be displayed on the graph.  
 

Skip factor for printing in log file: This controls the amount of detail that is saved in the 

Estimation_log.txt file to record the history of the iterations.  You can export the 

Estimation_log.txt file by highlighting a run and clicking Export... from the Utility Runs 

tab. 
 

Include a constant in the design:  This controls whether a constant column is added to the 

design matrix.  This is also referred to as the intercept in regression analysis. 
 

Target Acceptance:  We employ an adaptive algorithm to adjust the average jump size, 

attempting to keep the acceptance rate near 0.30.  The proportionality factor is arbitrarily 

set at 0.1 initially.  For each iteration we count the proportion of respondents for whom 

the new candidate beta is accepted.  If that proportion is less than 0.3, we reduce the 

average jump size by a tenth of one percent.  If that proportion is greater than 0.3, we 

increase the average jump size by a tenth of one percent.  As a result, the average 

acceptance rate is kept close to the target of 0.30.  You may set the acceptance rate to a 

different value if desired. 
 

Starting Seed:  HB uses random number generators in various stages of its algorithm, so a 

starting seed must be specified.  Setting a seed of “0” indicates to use a seed based on the 

computer clock, but users can specify a specific seed to use (integers from 1 to 10000), so 

that results are repeatable.  When using different random seeds, the posterior estimates 

will vary, but insignificantly, assuming convergence has been reached and many draws 

have been used. 
 

Advanced Settings 

 

 
 

Prior degrees of freedom: This value is the additional degrees of freedom for the prior 

covariance matrix (not including the number of parameters to be estimated) and can be 

set from 2 to 100000. The higher the value, the greater the influence of the prior variance 

and more data are needed to change that prior. The scaling for degrees of freedom is 

relative to the sample size. If you use 50 and you only have 100 subjects, then the prior 

will have a big impact on the results. If you have 1000 subjects, you will get about the 
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same result if you use a prior of 5 or 50. As an example of an extreme case, with 100 

respondents and a prior variance of 0.1 with prior degrees of freedom set to the number 

of parameters estimated plus 50, each respondent's resulting part worths will vary 

relatively little from the population means. We urge users to be careful when setting the 

prior degrees of freedom, as large values (relative to sample size) can make the prior 

exert considerable influence on the results. 
 

Prior variance: The default is 1 for the prior variance for each parameter, but users can 

modify this value.  You can specify any value from 0.1 to 100.  The scaling of your 

independent and dependent variable should guide your decision. Increasing the prior 

variance tends to place more weight on fitting each individual's data and places less 

emphasis on "borrowing" information from the population parameters. The resulting 

posterior estimates are relatively insensitive to the prior variance, except a) when there is 

very little information available within the unit of analysis relative to the number of 

estimated parameters, and b) the prior degrees of freedom for the covariance matrix 

(described above) is relatively large.  
 

Note: we use the prior covariance matrix as recommended by Professor Peter Lenk and 

described in the CBC/HB software documentation, Appendix G.  Part-worth functions for 

Categorical Independent Variables are dummy-coded and follow Lenk's recommended 

prior covariance structure. 

 

Coding Independent Variables 

Continuous Independent Variables (User-Specified) 

 

With standard OLS regression, multiplying all values of a particular variable by any constant will 

result in the estimated regression coefficient being scaled by the reciprocal of that constant.  But, 

this is not always the case with HB methods.  The default priors we have set (prior covariance 

matrix) tend to work quite well if all your independent and dependent variables are scaled 

approximately in the single digits.  But, if you try to use an independent or dependent variable 

scaled in the 100s or 1000s of units, HB estimation may fail to converge, leading to biased 

parameter estimates.  For this reason, we recommend your continuous independent variables be 

coded in the magnitude of about single digits. 

 

(Note: advanced users can specify their own prior covariance matrix to deal with situations in 

which some betas have quite different expected posterior variances than others.) 

 

Categorical Independent Variables 

 

By “categorical variables” we mean variables like color or style, for which the various possible 

states or categories do not have obvious numeric values.  HB-Reg has a built-in provision for 

automatically dummy-coding or linear-coding categorical data. 

 

Dummy-Coding 

 

Often categorical variables are coded using “dummy variables.”  This means that a separate 

variable is devoted to each state, scored with a one if that state is present and a zero if that state is 

absent.   It is desirable to delete one state of each variable, since otherwise there would be 

colinearity, with the sum of codes for each variable being exactly unity.  Omitting one state for 
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each variable is equivalent to assuming that the regression coefficient for that state is equal to 

zero and that the other coefficients for that variable measure effects with respect to the omitted 

state.  This is the simplest and most straightforward procedure.  Using dummy coding for 

categorical variables also makes it possible to constrain any of the “explicit” levels with respect 

to the “omitted” variable, as the omitted variable is zero. 

 

Two states (such as red, green) 

  

If red, code 0 

If green, code 1 

 

Three states (such as red, green, blue) 

 

If red, code 0, 0 

If green, code 1, 0 

If blue, code 0, 1 

 

Four states (red, green, blue, yellow) 

 

If red, code 0, 0, 0 

If green, code 1, 0, 0 

If blue, code 0, 1, 0 

If yellow, code 0, 0, 1 

 

The deleted state has an implied regression coefficient (zero).   

 

Linear (and Log-Linear) Coding 

 

You can ask HB-Reg to code a categorical independent variable as a single linear or log-linear 

term.  Rather than dummy-coding, values are placed into a single column of the design matrix 

representing the different levels of the categorical variable.  If the function is truly linear, this can 

save degrees of freedom and lead to better models.  This only makes sense when the independent 

variable is associated with specific quantities such as speed, weight, or price.   

 

The values you type into the Variables tab for a categorical independent variable can be of any 

magnitude you wish, such as 1000, 1100, 1200.  HB-Reg automatically transforms the variable 

into zero-centered values that have a range of one unit, for quicker convergence in HB-Reg.  You 

can observe the results of the transformation by clicking the Preview Design Matrix button on the 

Variable Codings tab when you are specifying models. 

 

Proper Prior Covariance Matrix and Dummy Coding 

 

We have found with extremely sparse data that dummy coding can sometimes lead to improper 

estimates of the omitted level (with respect to the other levels).  The problems are enhanced as the 

number of mutually exclusive levels within a factor is increased.  We faced the same challenges 

in our CBC/HB software with choice data, where the data can become especially sparse, so in our 

CBC/HB software we modify the prior covariance matrix to deal more effectively with effects 

coding (see the appendix of the CBC/HB software manual for details).   
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With HB-Reg, when you use HB-Reg's capability to automatically recode categorical 

independent variables as "part-worth" (dummy-coding), we automatically implement the proper 

prior covariance coding, per the methodology described in CBC/HB software's appendix.   

 

Monitoring the Computation 

While the computation is in progress, information summarizing its current status and recent 

history is provided on a screen like the example below: 

 

 
 

Multiple HB-Reg models may be run simultaneously (which takes advantage of multi-core 

processors).  In the example above, only one model is running, “DV1”. 

 

On the Statics tab, it shows that this run uses 10,000 initial iterations, with 1000 draws used per 

case, for which each tenth iteration is used, leading to a total of 20,000 iterations to perform.  The 

data in the two columns further down in the upper-left panel provide a summary of the status of 

the computation, and we shall examine those values in a moment.  At the bottom of this section is 

an estimate of the total time of 1:10 remaining to complete this computation.  Note that this is a 

tiny problem.  More realistic problems will require from several minutes to an hour or more. 
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There are a few key statistics to pay attention to: 
 

Avg R-Squared.  This abbreviation is short for the average squared correlation between 

each respondent’s predicted and actual data for the 10 observations of the dependent 

variable.  Because we start with estimated regression coefficients of zero, the average R-

squared will be zero initially and improve throughout the early part of the computation. 
 

RMS Heterogeneity is short for “root mean square heterogeneity.”  Recall that we 

estimate the variances and covariances for the betas (regression coefficients) among 

respondents.  “RMS Heterogeneity” is just the square root of the average of those 

variances.  The SAMPLE1 and SAMPLE2 data sets were both constructed to have 

heterogeneity of unity, so our estimation of this quantity is quite accurate. 
 

The next statistic is “RMS Error” which is a measure of the average error in predicting 

each respondent’s dependent variable from his/her independent variables.  This is nearly 

the same thing as the Sigma parameter that we estimate, except that this value is 

computed directly from the data, whereas Sigma is estimated by making a normal draw 

from an estimated distribution.  The SAMPLE1 and SAMPLE2 data sets were also 

constructed to have RMS error of unity, so this quantity is also estimated quite 

accurately. 
 

The next statistic is “RMS Change in alpha.”  Alpha is the estimate of average regression 

coefficients for the population from which the individuals are drawn.  This estimate is 

updated on each iteration.  The RMS Change is the square root of the average squared 

change from one iteration to the next.   
 

Viewing the history of Mean Betas across the burn-in and used iterations is one of the best way to 

assess how well the model has converged.  Click the Graph tab.  After a few moments the history 

of average betas for the sample is displayed.   

 

 
 

 

The first (burn-in) iterations are shown in the grey region at the left.  The last (used) iterations are 

shown in the white region at the right.  There should be some oscillation in the betas, but no 

remaining trend once the iterations have transitioned to the used (white) region of the history 

chart. 
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Assessing Convergence 

We have already noted that one of the easiest ways to try to determine convergence is to study the 

pattern of average estimates for the parameters as plotted in the visual graphic displayed during 

iterations.  There is yet another way to assess convergence.  After the computation has finished 

you can inspect its history by looking at a file named Estimation Log.txt (you export this from 

the Utility Runs tab).  We specified that results of each 1,000th iteration were to be saved to the 

log file, and we reproduce that information here: 
 
 Iteration AVG Heter Error  Change 

  Rsq RMS RMS Alpha 

 1000 0.920 0.940 0.972 0.094 

 2000 0.926 1.015 0.966 0.164 

 3000 0.921 0.963 0.981 0.165 

 4000 0.930 1.233 0.918 0.117 

 5000 0.923 0.999 0.985 0.147 

 6000 0.926 1.026 0.955 0.133 

 7000 0.922 1.092 0.980 0.250 

 8000 0.922 0.991 0.963 0.137 

 9000 0.921 0.900 0.991 0.117 

 10000 0.920 1.053 0.994 0.124 

 11000 0.922 1.290 0.968 0.239 

 12000 0.922 1.039 0.961 0.088 

 13000 0.922 1.019 0.974 0.150 

 14000 0.922 0.977   0.965 0.076 

 15000 0.926 1.027 0.959 0.116 

 16000 0.931 1.019 0.915 0.141 

 17000 0.924 1.192 0.952 0.155 

 18000 0.926 1.108 0.949 0.150 

 19000 0.920 1.045 0.984 0.216 

 20000 0.922 1.101 0.968 0.081 

 

As you can see there is no apparent trend in any of these four columns.  Apparently this process 

converged long before the 10,000 iterations which we had allowed for that to occur. 
 

You can also export and inspect/plot the contents of the Alpha Matrix.csv file which contains 

each saved estimate of alpha (the vector of estimated means of the distribution of the betas). 

 

Deciding Which Variables to Include 

At the bottom of the Estimation Log.txt file is a summary which provides information about the 

relative influence of each independent variable.  Here is the result for the SAMPLE1 run 

(assuming you choose to save draws): 
 

Summary of Analysis 
 
  Mean of Mean of t Ratio Mean Sq Mean Sq F Ratio 
Variable Beta Variance for Mean Between Within Hetero- 
  Draws Draws of Betas Cases Cases geneity 
     1 1.995      0.949     20.479 767.349 0.123 6237.25 
     2 0.879      0.978 8.888 773.739 0.143 5404.96 
     3 0.049      1.098 0.468 794.375 0.254 3123.81 
     4 -1.184      1.191 -10.849 871.575 0.253 3450.51 
    5 -2.061      1.051 -20.104 828.806 0.162 5109.51 
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The first column gives point estimates for the means of the distribution of respondents’ regression 

coefficients.  This is obtained by averaging the 1000 saved values of alpha which are available in 

the Alphas.csv file.  As can be seen, the values are reasonably close to the expected values of 2, 

1, 0, -1, and -2, particularly considering that we are dealing with a small sample of only 100 

respondents. 
 

The second column gives the estimate of the variance of the distribution of each regression 

coefficient across respondents.  This is obtained by averaging the 1,000 saved estimates for the 

variances.   
 

The third column gives a t ratio that expresses the difference of each mean from zero.  The 

standard error of the mean, estimated from the variance, furnishes the denominator for the t ratio.  

The t values give an indication of the average importance of each attribute in the regression 

equation, but reveal nothing about the value of that variable in differentiating among respondents.  

The importance of each variable in accounting for heterogeneity is given by the last three 

columns.  The Mean Square Between Cases is a measure of the difference among respondents for 

that regression coefficient.  The Mean Square Within Cases is a measure of the amount of random 

variation within respondents, obtained in different random draws for the same respondents.  The 

ratio of those two variances is an F ratio, which measures the extent to which differences among 

respondents exceed differences within respondents.  As you can see, these F ratios are all very 

large. 
 

The t and F ratios from this table may be helpful in deciding on the relative importance of each 

variable.  If a variable has a larger-than-average t ratio, or F ratio, it is probably more powerful 

than average in terms of accounting for variation in the dependent variable.  A high t ratio 

indicates a variable on which individuals tend to agree and a high F ratio indicates a variable on 

which they disagree, but which is important to them.   
 

Although these t and F ratios provided indications of the relative effects of variables in 

accounting for overall preference, we do not advocate using them for tests of statistical 

significance, since they would be biased upwards.  The situation is similar to that of cluster 

analysis, where it is improper to do statistical tests on t or F statistics computed using the same 

data as was used to find maximally differing groups. 
 

Following the table described above is a second table that reports the proportion of respondents 

for which a “pseudo-t” ratio is greater than an absolute value of 1.96.  Each t value is computed 

by taking the point estimate of beta for each individual and dividing it by the standard deviation 

of the draws for that beta for that individual.  Although this measure of t is somewhat ad hoc (not 

based on Bayesian theory), it has intuitive appeal. 
 

Variable      % of respondents with t-ratio for beta absolute value > 1.96 

    1             93.0 

    2             56.0 

    3             26.0 

    4             54.0 

    5             94.0 
 

A variable that has a significant t-ratio (critical value of 1.96 corresponds to 95% confidence) for 

very few respondents is of lesser value in the model.  Most analysts would agree that variables 

one and five add substantial value to the model. Variable three is “significant” for 26% of the 

subjects.  In this case, the user must make a judgment call regarding whether to include variable 
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three in further analysis.  It may be that these respondents comprise an important segment of the 

market for which variable three has a significant effect relative to the dependent variable.  

 

How Good Are The Results? 
 

In this section we present some findings from the analysis of both synthetic and real data sets.  

For synthetic data sets we already know the “right answers,” and we assess HB-Reg’s 

performance by measuring how well it recovers those known parameters.  For real data sets we 

assess performance by the ability to predict holdout choices. 

 

Before reviewing this evidence, we should point out that HB-Reg is one of four Sawtooth 

Software products that use HB to estimate individual coefficients.  Other products are CBC/HB 

for use in estimating individual part-worths in choice studies using a multinomial logit 

formulation, ACA/HB for estimating individual part-worths from ACA data using a linear 

regression formulation, and CVA/HB for estimating individual part-worths for traditional 

conjoint analysis also using a linear regression formulation.  For each of those products we have 

done a similar performance review, finding HB estimation to be as good or better than the 

alternative in every case.  That evidence is available in three technical papers that can be 

downloaded from the sawtoothsoftware.com web site (Sawtooth Software 2002, 2003a, 2003b). 

 

Synthetic Data Sets 

Note: all the results presented in this section are based on the default settings for the prior 

covariance matrix as were used in HB-Reg version 2 and earlier. 

 

We first review results from three kinds of synthetic data sets.  Each contained 300 respondents, 

with five independent variables.   Although there are some differences in details, each data set 

was constructed with similar steps: 

 

Average “true” betas of (2, 1, 0, -1, -2) were chosen. 

 

Idiosyncratic betas were chosen for each respondent by perturbing each element of the average 

betas by random normal heterogeneity with mean of zero and standard deviation of unity.  

 

The independent variables were rectangularly distributed random integers in the range of 1 - 9, 

and were unique for each individual.   

 

The dependent variable for each observation was constructed by summing the products of each 

respondent’s independent variables for that observation and his/her corresponding beta, and then 

to that sum adding normal error with mean of zero and standard deviation of unity.   

 

Thus, we created data representing samples of respondents from a population normally 

distributed with alpha (the mean of the betas) = (2,1,0,-1,-2),  variances of unity and covariances 

of zero, and with sigma of unity. 

 

The number of observations per respondent varied from 1 to 10, and three different data sets were 

made for each number of observations per respondent.  Each data set was used in a separate 

estimation run, and the three results for that number of observations were averaged for reporting. 
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In the second and third kinds of data sets we introduce colinearity and multiple populations.  

However, Table 1 provides results for the first analysis, in which the independent variables are 

independent of one another, and with a single population of respondents. 

  
   Table 1: Accuracy of Estimation with 
  No Colinearity, Single Population of Respondents 
 
            —  RMS RECOVERY — Ind - EST SDs FOR - 
Obs/IndOLS AGG HB AGG     HB IND Corr Heter Error 
 
      1 0.313 0.263 0.992 0.826 1.383 5.213 
      2 0.177 0.087 0.856 0.870 1.062 0.895 
      3 0.193 0.049 0.717 0.910 1.020 1.093 
      4 0.187 0.046 0.564 0.947 1.043 1.018 
      5 0.144 0.019 0.418 0.971 1.033 1.044 
      6 0.125 0.025 0.319 0.983 1.033 0.976 
      7 0.122 0.013 0.249 0.989 1.023 0.999 
      8 0.117 0.009 0.207 0.993 1.049 1.011 
      9 0.095 0.009 0.175 0.995 0.979 1.009 
    10 0.078 0.014 0.160 0.996 1.060 0.989 

 

The first three columns of the table measure the success at recovering respondents’ betas, 

individually and in aggregate.  Each statistic is a “root mean square” error of estimation, so 

smaller values are better.   

 

The first column provides an evaluation for ordinary least squares regression, done by pooling all 

respondents’ observations to do aggregate regressions.  The parameters that we seek to recover in 

that regression are the average betas.   

 

The second column provides an evaluation for HB-Reg’s ability to recover the same average 

values.  Note that every number in the second column is smaller (more favorable) than the 

corresponding number in the first column.  We may conclude that HB-Reg has done a better job 

than ordinary regression at estimating the mean of the population, probably because it has been 

able to separate true heterogeneity from random error.  Since ordinary regression is unbiased, we 

would expect this superiority to decrease as the sample size increases; but it should be noted that 

300 is not an unusually small number of respondents for practical research projects. 

 

The third column provides an evaluation for HB-Reg’s ability to estimate individual betas.  These 

numbers are quite a lot larger (worse) than the corresponding aggregate numbers.  However, they 

decrease regularly as the amount of information per respondent increases.  To assess the 

magnitude of these errors, consider the fourth column, which gives the average correlation 

between actual and estimated individual betas.  With as few as 3 observations per individual, the 

average correlation is in the .90’s.  Of course, success will depend on the amount of error in the 

data.  We have arbitrarily used error of unity.  If the data had a different amount of response error, 

the results could be either better or worse. 

 

The fifth and sixth columns give estimates of heterogeneity and random error, for which the 

correct values are both unity.  The precision of these estimates is already reasonably good with as 

few as two observations per respondent, and continues to improve with more observations.   

 

In this comparison, HB-Reg does a better job than ordinary regression at recovering the average 

parameters.  It is able to make creditable estimates of individual parameters even with as few as 

three observations per respondent, an accomplishment denied ordinary regression, which requires 

that there be at least as many observations as parameters to be estimated per individual.  
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However, this data set may be more favorable for HB-Reg than most real data sets would be, 

because it conforms to the underlying assumptions about heterogeneity, and presents no problems 

due to colinearity.   

 

For the second group of data sets we introduce colinearity.  Another 30 data sets were produced 

in exactly the same way, except that a common random value with large variance was added to 

the independent variable values for each observation, making the average correlation among 

independent variables approximately .85.  This is a large amount of colinearity, perhaps 

approximating what might occur in a typical customer satisfaction study.  Table 2 provides results 

for this analysis. 

 
   Table 2: Accuracy of Estimation with 
  Colinearity, Single Population of Respondents 
 
                       — RMS RECOVERY—   Ind     -EST SD FOR- 
Obs/IndOLS AGG HB AGG HB IND Correl Heter Error 
 
 1 1.521 1.296 1.668 0.564 6.955 17.766 
 2 0.833 0.172 0.915 0.846 0.944 2.064 
 3 0.666 0.067 0.791 0.890 0.941 1.354 
 4 0.690 0.068 0.669 0.922 0.954 1.426 
 5 0.487 0.038 0.507 0.957 1.036 1.077 
 6 0.518 0.028 0.380 0.975 1.007 1.082 
 7 0.682 0.016 0.312 0.984 1.064 1.004 
 8 0.455 0.011 0.245 0.990 1.066 1.016 
 9 0.602 0.014 0.208 0.993 0.968 1.003 
 10 0.390 0.007 0.177 0.995 1.009 1.001 

 

This table has many similarities to the previous table, but the presence of colinearity has  impeded 

the recovery of the true parameters. 

 

The first column again measures the ability of ordinary regression to recover average betas for the 

population.  The errors are about five times as large as without colinearity, and again decrease 

uniformly as the number of observations increases. 

 

The second column again measures the ability of HB-Reg to recover the same average betas.  For 

a single observation per respondent its error is also about five times as large as without 

colinearity.  But this improves dramatically as the number of observations increases.  With only 

two observations per respondent the error is only about twice as great as without colinearity, and 

with three or more observations per respondent its errors are less than any tabled case for ordinary 

regression with no colinearity.   

 

The third column, measuring HB-Reg’s recovery of individual betas, again shows much larger 

errors for the case of a single observation per respondent.  But these also improve rapidly with 

increases in the number of observations per respondent.  The fourth column shows that with as 

few as two observations per respondent, average correlations between true and estimated 

individual betas are in the .80s, and with as few as four they are in the .90s.  (Again, results would 

be different with different error levels in the data.) 

 

Finally, the fifth and sixth columns show that estimates of heterogeneity and sigma are much 

worse than the case without colinearity, but the heterogeneity estimate is quite good with as few 

as two observations per respondent, and the estimate of sigma becomes reasonable when there are 

as many observations per individual as parameters estimated. 

 



 23 

To summarize we see that colinearity is damaging to both ordinary regression and HB-Reg, 

although the impact on ordinary regression is much more severe.  With as few as two 

observations per respondent, HB-Reg is able to produce good estimates of the population mean 

and of the amount of heterogeneity.  With three observations per respondent, HB-Reg is able to 

produce reasonable estimates of individual betas. 

 

For the final set of artificial data sets we explore HB-Reg’s ability to deal with data representing a 

mix of two populations, rather than the single population its model assumes.  A group of 30 more 

synthetic data sets were created which did not have colinearity, but for which half of the 

respondents had average betas of (2,1,0,-1,-2) and the other half had betas of opposite sign.  Thus, 

average betas for the population were zero, although those would not describe either sub-

population accurately. 

 
   Table 3: Accuracy of Estimation with 
 No Colinearity, but Two Populations of Respondents 
 
   — RMS RECOVERY— Ind  -EST SD FOR- 
Obs/IndOLS AGG HB-AGG HB-IND Correl Heter Sigma 
 
 1 0.307 0.255 1.578 0.412 3.840 2.890 
 2 0.200 0.164 1.300 0.680 3.058 1.078 
 3 0.162 0.074 0.981 0.826 3.148 0.708 
 4 0.155 0.043 0.701 0.913 3.195 0.965 
 5 0.131 0.034 0.502 0.957 2.900 0.919 
 6 0.153 0.019 0.352 0.980 3.094 0.987 
 7 0.138 0.017 0.271 0.988 2.929 1.030 
 8 0.089 0.014 0.215 0.992 2.989 0.980 
 9 0.126 0.008 0.181 0.995 3.103 1.000 
 10 0.097 0.011 0.161 0.996 2.871 0.988 

 

Comparison of the first and second columns of Table 3 shows that HB-Reg is again better able to 

recover average betas for the population, with a margin of superiority that increases with the 

number of observations per respondent. 

 

Individual betas are again recovered poorly with few observations per respondent, but with as 

many as three observations per respondent the average correlation between true and estimated 

individual betas is in the .80s, and with four the average correlation is in the .90s, a performance 

similar to its performance with colinearity (and which, again, depends on the arbitrary assumption 

of unit error).  With the two sub-populations having betas with opposite signs, the true 

heterogeneity should be 3, and it is estimated quite accurately with two or more observations, as 

is the true value of 1 for sigma. 

 

Summarizing these three kinds of data sets, we find that HB-Reg is consistently superior to 

ordinary least squares regression in its ability to recover the true population mean, and its margin 

of superiority increases with the number of observations per respondent.  We find that even in the 

presence of colinearity or a mixture of normal populations, HB-Reg is able to produce reasonable 

estimates of individual betas with as few as three observations per respondent.  HB-Reg is also 

able to produce quite reasonable estimates of the true amount of heterogeneity among 

respondents with as few as two observations per respondent. 

 

HB-Reg is able to produce reasonable estimates of individual betas even when the number of 

observations per individual is less than the number of parameters to be estimated.  Although this 

is an impressive accomplishment, we believe it is equally impressive that HB-Reg is able to 

estimate group parameters so accurately.  With ordinary regression the analyst is required to pool 
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observations from different respondents, and in doing so must confound heterogeneity and error.  

Recognizing the difference between these sources of variance seems to permit greater accuracy in 

the estimation of average betas for the population. 

  

Real Data Sets 

Note: the results presented in this section are based on the default settings for the prior 

covariance matrix as were used in HB-Reg version 2 and earlier. 

 

We turn now to two small examples using real data sets, both examples of conjoint analysis. 

 

The first is from a study reported by Orme et al. (1997).  MBA students from three universities 

were respondents.  The subject of the study was personal computers, and nine attributes were 

studied, each with two or three levels.  There were a total of 80 respondents.  Each respondent did 

a full-profile card-sort in which 22 hard-copy cards were sorted into four piles based on 

preference, and then rated using a 100 point scale.  Those ratings were converted to logits, which 

were used as the dependent variable, both for ordinary least squares regression and also by HB-

Reg.  In these regressions each respondent contributed 22 observations and a total of 16 

parameters were estimated for each, including an intercept. 

 

In addition, each respondent saw five full-profile holdout choice sets, each containing three 

product concepts.  These choice sets were constructed randomly and uniquely for each 

respondent.  Respondents rank ordered the concepts in each set, but the results we report here 

were based only on first choices.  (Hit rates in the original paper are based on implied paired 

comparisons, whereas those reported here are based on triples, and are therefore lower.)  We have 

computed hit rates for predicting holdout choices: 

 

 Ordinary Least Squares     72.00% 

 HB-Reg   73.50% 

 

Neither of these sets of part-worths was constrained so that “obviously better” levels are at least 

as high as “obviously worse” levels.  This can be done easily simply by tying offending pairs of 

values.  Constraining part-worths in that way usually improves their performance in predicting 

choice.  However, since we have not imposed constraints on either set of part-worths, this is a fair 

comparison, and HB-Reg has a 1.5% margin of superiority.   

 

The second data set is from a study reported by Orme and King (1998) in which 280 individuals 

responded to an Internet conjoint study of credit cards with four attributes, each with three levels.  

There were a total of 9 parameters to be estimated for each respondent (including an intercept), 

and each respondent saw 9 concept cards, each of which was rated for likelihood of signing up on 

a 5 point scale.  This design provided no extra degrees of freedom for error. 

 

Each respondent also answered 9 paired-comparison questions dealing with the same attributes, 

to test the relative effectiveness of single-concept full-profile conjoint analysis to paired-

comparison full-profile conjoint analysis.  The authors concluded that the two data collection 

formats had equivalent performance.  We consider only the single-concept data in our 

comparison. 
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Each respondent also saw three holdout tasks at the beginning of the survey, in which the 

preferred concept was selected for each set.  The same questions were repeated at the end of the 

questionnaire, with rotation of concept position.  The test-retest reliability was 83%. 

 

We again compare hit rates for predicting holdout choices: 

 

 Ordinary Least Squares                  78.50% 

 HB-Reg    79.83% 

 

Again, neither set of part-worths was constrained, although either set could have been. HB-Reg 

again has a slight margin of superiority. 

 

 

References 

 

Allenby, G. M., Arora, N., and Ginter, J. L. (1998) “On the Heterogeneity of Demand,” Journal 

of Marketing Research, 35, (August) 384-89. 

 

Allenby, G. M. and Ginter, J. L. (1995) “Using Extremes to Design Products and Segment 

Markets,” Journal of Marketing Research, 32, (November) 392-403. 

 

Chib, S. and Greenberg, E. (1995) “Understanding the Metropolis-Hastings Algorithm,” 

American Statistician, 49, (November) 327-35.  

 

Gelman, A., Carlin, J. B., Stern H. S. and Rubin, D. B. (1995) “Bayesian Data Analysis,” 

Chapman & Hall, Suffolk. 

 

Green, P. E., Krieger, A. M., and Agarwal, M. K. (1991) “Adaptive Conjoint Analysis: Some 

Caveats and Suggestions,” Journal of Marketing Research, 28 (May), 215-22. 

 

Huber, J., Orme B. K., and Miller, R. (1999) “Dealing with Product Similarity in Conjoint 

Simulations,” Sawtooth Software Conference Proceedings, Sawtooth Software, Sequim, 253-66. 

 

Lenk, P. J., DeSarbo, W. S., Green P. E. and Young, M. R. (1996) “Hierarchical Bayes Conjoint 

Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs,” Marketing 

Science, 15, 173-91. 

 

Orme, B. K., Alpert, M. I. & Christensen, E. (1997) “Assessing the Validity of Conjoint Analysis 

– Continued,” Sawtooth Software Conference Proceedings, Sawtooth Software, Sequim, 209-26. 

 

Orme, B. K. and King, W. C. (1998) “Conducting Full-Profile Conjoint Analysis over the 

Internet,” Sawtooth Software Technical Paper, accessible from sawtoothsoftware.com web site. 

 

Rossi, P. E., Zvi, G., and Allenby, G. M. (1999) “Overcoming Scale Usage Heterogeneity: A 

Bayesian Hierarchical Approach.” Paper read at ART Forum, American Marketing Association. 

 

Sawtooth Software (2002) “The CVA/HB Technical Paper,” Technical Paper accessible from 

sawtoothsoftware.com web site.  

 

Sawtooth Software (2003a) “The CBC/HB Module for Hierarchical Bayes Estimation,” 

Technical Paper accessible from sawtoothsoftware.com web site.  



 26 

 

Sawtooth Software (2003b) “The ACA/HB Module for Hierarchical Bayes Estimation,” 

Technical Paper accessible from sawtoothsoftware.com web site. 

 

 



 27 

Appendix: 

 

Details of Estimation 
 

WE previously attempted to provide an intuitive understanding of the HB estimation process, and 

to avoid complexity we omitted some details that we shall provide here. 

 

Gibbs Sampling 
 

The model we wish to estimate has many parameters: an alpha vector of population means, a beta 

vector for each individual, a D matrix of population variances and covariances, and a scalar sigma 

squared of error variances.  Estimating a model with so many parameters is made possible by our 

ability to decompose the problem into a collection of simpler problems. 

 

As a simple illustration, suppose we have two random variables, x and y for which we want to 

simulate the joint distribution.  We can do so as long as we are able to simulate the distribution of 

either variable conditionally, given knowledge of the other.  The procedure is as follows: 

 

 (1)  Draw a random value of x 

 (2)  Draw a random value of y, given that value of x 

 (3)  Draw a random value of x, given that value of y 

 (4)  Repeat steps 2 and 3 many times 

 

The paired values of x and y provide a simulation of the joint distribution of x and y.  This 

approximation of the joint distribution by a series of simpler conditional simulations is known as 

Gibbs Sampling. 

 

With our model we are interested in the joint distribution of alpha, the betas, D, and sigma, so our 

task is a little more complicated, but in principle it is like the two-variable example.  We start 

with arbitrary estimates for each parameter.  Then we estimate each of the four types of 

parameters in turn, conditional on the others.  We do this for a very large number of iterations.  

Eventually the observed distribution of each parameter converges to its true distribution 

(assuming the model is stated correctly).  Then by continuing the process and saving subsequent 

draws we can capture the distribution of each parameter.  Since our model involves normal 

distributions, the point estimate for each parameter is simply the mean of those random draws. 

 

It remains to specify how the conditional draws are made in each iteration.  We differentiate 

between two types of data: (1) A fixed design matrix for all individuals, and (2) independent 

variables that can take different values for each individual.  The draws of alpha, D, and sigma are 

done the same way, regardless of type of data, but draws of the betas differ.  With the first type of 

data we use “normal draws” for the betas.  For the second type of data we use a Metropolis 

Hastings algorithm, which is more efficient in that case. 

 

Random Draw from a Multivariate Normal Distribution 
 

Many times in the iterative process we must draw random vectors from multivariate normal 

distributions with specified means and covariances.  We first describe a procedure for doing this. 
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Let be a vector of means of the distribution and D be its covariance matrix.  D can always be 

expressed as the product T T’ where T is a square, lower-triangular matrix.  This is frequently 

referred to as the Cholesky decomposition of D.   

 

Consider two column vectors, u and v = T u.  Suppose the elements of u are normal and 

independently distributed with means of zero and variances of unity.  Since for large n, 1/n nu 

u’ approaches the identity, 1/n nvv’ approaches D as shown below:   

 

  1/n nvv’ = 1/n n Tu u’T’ = T (1/n n u u’)T’ => T T’ = D 

 

where the symbol => means “approaches.” 

 

Thus, to draw a vector from a multivariate distribution with mean  and covariance matrix D, we 

perform a Cholesky decomposition of D to get T, and then multiply T by a vector of u of 

independent normal deviates.  The vector  + T u is normally distributed with mean  and 

covariance matrix D. 

 

Estimation of Alpha 
 

If there are n individuals who are distributed with covariance matrix D, then their mean,  is 

distributed with covariance matrix 1/n  D.  Using the above procedure, we draw a random vector 

from the distribution with mean equal to the mean of the current betas, and with covariance 

matrix 1/n  D.   

 

Estimation of D 
 

Let p be the number of parameters estimated for each of n individuals, and let N = n + p.  Our 

prior estimate of D is the identity matrix I of order p.  We compute a matrix H which combines 

the prior information with current estimates of andi    

 

H = pI + n ( - i  ) ( -   )’ 

 

We next compute H–1 and the Cholesky decomposition  

 

H–1 = T T’ 
 

Next we generate N vectors of independent random values with mean of zero and unit variance, 

ui, multiply each by T, and accumulate the products: 

 

S = N (T ui) (T ui)’ 

 

Finally, our estimate of D is equal to S–1.   

 

Estimation of Sigma 
 

We draw a value of 2 from the inverse Wishart distribution in a way similar to the way we draw 

D, except that 2 is a scalar instead of a matrix.   
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Let M be the total number of observations fitted by the model, aggregating over individuals and 

questions within individual.   Let Q be the total sum of squared differences between actual and 

predicted answers for all respondents.  Let the scalar c = p + Q, analogous to H above.  We draw 

M + p random normal values, each with mean of zero and standard deviation of unity, multiply 

each by 1/sqrt(c), and accumulate their sum of squares, analogous to S above.  Our estimate of 2 

is the reciprocal of that sum of squares. 

 

Estimation of Betas Using Normal Draws 
 

Assuming that every individual has the same design matrix X and individual i has vector of data 

yi, then each i of regression weights for individual i is distributed normally with mean i and 

covariance matrix C, where  

 

    C = ( D–1 + -2 X’X ) –1 

 

    i  = C (D–1  + -2 X’ yi  ) 

 

 

Each i is drawn using the random draw procedure described above, using mean vector i  and 

covariance matrix C. 

 

Estimation of Betas Using a Metropolis Hastings Algorithm 
 

We now describe the alternative procedure used to draw each new set of betas, done for each 

respondent in turn.  We use the symbol o (for “beta old”) to indicate the previous iteration’s 

estimation of an individual’s part-worths.  We generate a trial value for the new estimate, which 

we shall indicate as n (for “beta new”), and then test whether it represents an improvement.  If 

so, we accept it as our next estimate.  If not, we accept or reject it with probability depending on 

how much worse it is than the previous estimate. 

 

To get n we draw a random vector d of “differences” from a distribution with mean of zero and 

covariance matrix proportional to D, and letn  =  o+ d.  We regard n as a candidate to replace 

o if it has sufficiently high posterior probability.  We evaluate each posterior probability as the 

product of its density (the prior) and its likelihood. 

 

We first calculate the relative probability of the data, or “likelihood,” given each candidate,o 

and n.  We do not calculate the actual probabilities, but rather simpler values that are 

proportional to those probabilities.  We first compute the sum of squared differences between the 

actual answers and our predictions of them, given each set of betas.  The two likelihoods are 

proportional to the respective quantities foro  and n: 

 

exp[-1/2 (sum of squared differences)/ 2]. 

 

Call the resulting values po and pn, respectively.   
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We also calculate the relative density of the distribution of the betas corresponding too andn, 

given current estimates of parameters, D, and.  Again, we do not compute actual 

probabilities, but rather simpler values that are proportional to the desired probabilities.  This is 

done by evaluating the following expression for each candidate: 

 

  exp[-1/2*( - )’ D-1
 ( - )] 

 

Call the resulting values do and dn, respectively.   

 

Finally we then calculate the ratio:  

r  = pn  dn  / po  do  
 

From Bayes’ theorem, the posterior probabilities are proportional to the product of the likelihoods 

times the priors.  The values pn  and po are proportional to the likelihoods of the data given 

parameter estimates respectively.  The values dn  and do  are proportional to the probabilities of 

drawing those values of n and o, respectively, from the distribution of betas, and play the role 

of priors.  Therefore, r is the ratio of posterior probabilities of n and  o, given current estimates 

of , D, and , as well as information from the data.  

 

If r is greater than or equal to unity, n  has posterior probability greater than or equal to that of 

o, and we accept n  as our next estimate of beta for that individual.  If r is less than unity, then 

n  has posterior probability less than that of  o.  In that case we use a random process to decide 

whether to accept n or retain o for at least one more iteration.  We accept n with probability 

equal to r.  

 

As can be seen, two influences are at work in deciding whether to accept the new estimate of 

beta.  If it fits the data better than the old estimate, then pn  will be larger than po, which will 

tend to produce a larger ratio.  However, the relative densities of the two candidates also enter 

into the computation, and if one of them has a higher density with respect to the current estimates 

of  and D, and , then that candidate has an advantage. 

 

If the densities were not considered, then betas would be chosen solely to maximize likelihoods.  

This would be similar to estimating for each individual separately, and eventually the betas for 

each individual would converge to a distribution that fits his/her data, without respect to any 

higher-level distribution.  However, since densities are considered, and estimates of the higher-

level distribution change with each iteration, there is considerable variation from iteration to 

iteration.  Even after the process has converged, successive estimations of the betas are still quite 

different from one another.  Those differences contain information about the amount of random 

variation in each individual’s betas that best characterizes them. 

 

We mentioned that the vector d of differences is drawn from a distribution with mean of zero and 

covariance matrix proportional to D, but we did not specify the proportionality factor.  In the 

literature the distribution from which d is chosen is called the “jumping distribution,” because it 

determines the size of the random jump from o to n.  This scale factor must be chosen well 

because the speed of convergence depends on it.  Jumps that are too large are unlikely to be 

accepted, and those that are too small will cause slow convergence. 
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Gelman, Carlin, Stern, and Rubin (p 335) state:  “A Metropolis algorithm can also be 

characterized by the proportion of jumps that are accepted.  For the multivariate normal 

distribution, the optimal jumping rule has acceptance rate around 0.44 in one dimension, 

declining to about 0.23 in high dimensions …”  This result suggests an adaptive simulation 

algorithm.” 

 

We employ an adaptive algorithm to adjust the average jump size, attempting to keep the 

acceptance rate near 0.30.  The proportionality factor is arbitrarily set at 0.1 initially.  For each 

iteration we count the proportion of respondents for whom n is accepted.  If that proportion is 

less than 0.3, we reduce the average jump size by a tenth of one percent.  If that proportion is 

greater than 0.3, we increase the average jump size by a tenth of one percent.  As a result, the 

average acceptance rate is kept close  

to the target of 0.30. 

 

The iterative process has two stages.  During the first stage, while the process is moving toward 

convergence, no attempt is made to save any of the results.  During the second stage we assume 

the process has converged, and results for hundreds or thousands of iterations are saved to the 

hard disk.  For each iteration there is a separate estimate of each of the parameters.  We are 

particularly interested in the betas, which are estimates of individuals’ betas.  We produce point 

estimates for each individual by averaging the results from many iterations.  We can also estimate 

the variances and covariances of the distribution of respondents by averaging results from the 

same iterations. 

 

Readers with solid statistical background who are interested in further information about the 

Metropolis Hastings Algorithm may find the article by Chib and Greenberg (1995) useful. 
 


