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Introduction 

Latent Class Multinomial Logit (MNL) is available within Sawtooth Software’s Lighthouse 
Studio platform as well as via the standalone Latent Class MNL software program.  It divides 
respondents into segments having similar preferences based on their choices in CBC or MaxDiff 
questionnaires.  It uses latent class MNL for this purpose, which simultaneously estimates part 
worth utilities for each segment and the probability that each respondent belongs to each segment.   

Readers unfamiliar with CBC or MaxDiff should start with the CBC and MaxDiff technical 
papers.   

Many articles have examined the use of latent class MNL analysis as a segmentation method in 
the marketing literature, and it has been found to be effective for that purpose.  Thus, it solves 
many problems occurring with aggregate (pooled respondents) conjoint analysis:  

• There is usually sparse information at the individual level for defining segments. 

• If there truly are segments with different preferences, an aggregate analysis may give 
misleading and inaccurate answers. 

Latent class MNL became popular in about the mid-1990s as a tool for analyzing CBC data sets.  
The model typically provided more insight about the structure of respondent preferences than 
aggregate logit, and the resulting market simulations were usually more accurate than similarly 
defined aggregate models.  The latent class approach was effective in reducing the negative 
effects of the IIA (Independence of Irrelevant Alternatives) assumption in logit analysis.   At 
about the same time, another even more computationally intensive technique called hierarchical 
Bayes (HB) MNL became available to leading researchers and academics.  At that time, latent 
class MNL provided a discrete model of respondent heterogeneity, whereas HB MNL assumed a 
continuous model of heterogeneity following a multivariate normal distribution.  During the late 
1990s, the use of HB for modeling CBC data eclipsed that of latent class in terms of popularity.  
However, latent class retains a strong following and offers unique benefits, so researchers often 
use both HB MNL and latent class MNL approaches to model CBC and MaxDiff datasets.  We'll 
further compare and contrast HB and latent class in the last stage of this documentation. 

 

Running Latent Class Estimation 

Latent class MNL has a role analogous to that of CBC and MaxDiff aggregate logit programs, but 
rather than finding average part worth utilities for all respondents together, it detects subgroups 
with differing preferences and estimates part worths for each segment.  The subgroups have the 
characteristic that the respondents within each group are relatively similar but the preferences are 
quite different from group to group. You may specify how many groups are to be considered, 
such as the range of 1 through 6 (a 1-group solution provides results identical to aggregate logit).  
Latent Class results may be used in subsequent market simulations.  The segment membership 
that each respondent most likely belongs to may be used as a new segmentation/filtering variable 
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in the market simulator.  Though not done as often as with HB utilities, the latent class part worth 
utilities may be used in the simulator to predict shares of preference for simulation scenarios. 

The latent class estimation process works like this: 

1.  Initially, select random estimates of each group’s utility values. 

2. Use each group’s estimated utilities to fit each respondent’s data and estimate the relative 
probability that each respondent belongs to each group. 

3.  Using those probabilities as weights, re-estimate the logit weights for each group.  
Accumulate the log-likelihood over all groups. 

4. Continue repeating steps 2 and 3 until the log-likelihood fails to improve by more than 
some small amount (the convergence limit).  Each iteration consists of a repetition of 
steps 2 and 3.   

Latent class MNL reports the part worth utilities for each subgroup or “segment.”   Latent class 
does not assume that each respondent is wholly “in” one group or another.  Rather, each 
respondent is considered to have some non-zero probability of belonging to each group.  If the 
solution fits the data very well, especially as the number of groups increases, then those 
probabilities approach zero or one. 

Latent Class Settings include (depending on which software you are using these settings may be 
arranged across multiple tabs or dialogs):   

 

Explanations of these parameters follow. 
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Minimum and maximum number of groups: (defaults: Minimum = 1, Maximum = 5) are 
the numbers of segments for which solutions should be computed.  Up to a 30-group solution 
can be modeled.  If you specify a 1-group solution, this will lead to the same results as an 
aggregate logit utility run.   

Number of replications for each solution (default: 5) lets you conduct automatic 
replications of each solution from different random starting points.  The solution with the 
highest likelihood for each number of groups is retained as the final solution.  Before 
accepting a particular solution as optimal, we suggest you confirm that you can replicate that 
solution from several different random starting points.  (For 1-group solutions, only one 
replication is performed, since results are identical irrespective of the starting seed.) 

Maximum number of iterations determines how long the computation is permitted to go 
when it has difficulty converging.  The default iteration limit is 100, although acceptable 
convergence may be achieved in many fewer iterations.  You may substitute another iteration 
limit.  

Convergence limit for log-likelihood determines how much improvement there must be in 
the log-likelihood from one iteration to the next for the computation to continue.  We 
recommend a limit such as either 0.01 or 0.001, but you may substitute a different value.  

Total task weight for constant sum data: This option is only applicable if respondents 
provided allocation-based responses rather than discrete choices. If you believe that 
respondents allocated ten chips independently, you should use a value of ten. If you believe 
that the allocation of chips within a task are entirely dependent on one another (such as if 
every respondent awards all chips to the same alternative) you should use a value of one. 
Probably the truth lies somewhere in between, and for that reason we suggest 5 as a default 
value. A data file using discrete choices will always use a total task weight of 1. 

Include 'None' parameter if available: Although you may have included a "None" 
alternative in your questionnaire, you may not want to include respondents' propensities to 
choose that alternative in the information used for segmentation.  

Note: For any respondents who choose None for all tasks, there will be no information 
with which to classify them into clusters, and they will be automatically classified into the 
largest cluster. 

Tasks to include for best/worst data:  If you used best/worst data collection (an option for 
both CBC and MaxDiff), you can select which tasks to include in utility estimation: best only, 
worst only, or best and worst. 

Report standard errors:  Standard errors and t ratios are only reported if this box is 
checked.  We have made this information optional. 

Display re-scaled utilities and attribute importances: determines whether a table is 
provided within the Latent Class output in which the part worth utilities for each group are re-
scaled to be more comparable from group to group (using the normalization method of "zero-
centered diffs"). Latent Class MNL produces utilities close to zero if members of a group are 
confused or inconsistent in their ratings and produces larger values if members of a group 
have consistent patterns of responses. Because groups differ in the scaling of their utilities, it 
is often difficult to interpret differences from group to group. This option leads to an 
additional table of normalized (zero-centered diffs) part worth utilities for each group to make 
them comparable: the average range of values for each attribute (the difference between that 
attribute's maximum and minimum utilities) is set equal to 100.  This option also provides 
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summaries of attribute importances for each group, obtained by percentaging the attributes' 
utility ranges.  

Tabulate all pairs of solutions refers to tabulations of the respondent group membership for 
all the solutions with one another.  Although each respondent has some probability of 
belonging to each group, we also classify each respondent into the group to which he or she 
has highest probability of belonging and tabulate each solution with those adjacent to it.  That 
is to say, the two-group solution is tabulated against the three-group solution, the three-group 
solution is tabulated against the four-group solution, etc.  If you check this box, then all pairs 
of solutions are tabulated against each other rather than just those that are adjacent.   

Starting seed Gives you control of the random number generator that is used to provide the 
initial random start.  The reason for giving you this control is so you can repeat a run later if 
you want to.  Latent class analysis will probably give you a somewhat different solution each 
time you re-run the analysis with the same data set.  The solutions depend on the initial 
starting values, which are random.  If you provide a value here (in the range from 1 to 32000) 
you will get the same solution each time, but different values will lead to different solutions.   

Utility constraints accesses a dialog in which you can specify utility constraints (also known 
as monotonicity constraints).  This can be useful for constraining part worths (or signs for 
linear coefficients) to conform to rational expectations.  This prohibits the solutions from 
returning results for segments that defy expectations regarding respondent preferences. 

Constrain groups to a common scale is a second type of constraint that restricts the 
solutions to those in which each group has equal scale (where we use the standard deviation 
across the vector of utilities for each group as a proxy for scale).  This helps ensure that we 
don't discover groups that differ just in terms of scale (magnitude of utilities) but have the 
same relative pattern of preferences. 

 

Estimating Interaction Effects 

Our implementation of Latent Class MNL estimation by default assumes a main effects (additive) 
model for CBC datasets.  Most of the information regarding respondent preferences is usually 
captured with main effects.  However, sometimes interaction effects can significantly improve 
model fit, and CBC analysis under Latent Class permits inclusion of first-order interaction effects 
(two-way interactions between attributes).   
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For example, consider two attributes (automobile models and colors): 

 Car    Color 
 Convertible   Black 
 Sedan    Gray 
 Limousine   Red 
 
Under main effects assumptions, we assume that we can accurately measure preferences for car 
types independent of the color.  However, the color red goes exceptionally well with convertibles 
and generally not so well with limousines.  Therefore, there indeed may be a relatively strong and 
important interaction effect between car and color.  The interaction terms may indicate a decrease 
in the net utility of a red limousine after accounting for the main effects of limousine and the 
color red, and an increase in the net utility of a red convertible after accounting for the main 
effects of convertible and the color red. 

Given the right kind of experimental design, CBC can be an excellent tool for measuring all 
potential two-way interactions among attributes.  However, many of the interactions we observe 
in aggregate analysis (such as with aggregate logit), are largely due to unrecognized 
heterogeneity.  It is entirely plausible that a latent class analysis may uncover different groups of 
respondents: a group that prefers convertibles, a group that prefers sedans, and a group that 
prefers limousines.  And, it may also detect that the group that prefers convertibles also tends to 
prefer the color red, and the group that prefers limousines also tends to reject red as a color for the 
automobiles they choose.  If this occurs, then the latent class solution used within market 
simulations will indicate a “revealed” interaction during sensitivity simulations (after 
accumulating shares across segments), even though an interaction between model and color was 
never specified in the model.  For example, if a black limousine is changed to red, those 
respondents principally contributing share to that product would react quite strongly, reducing its 
share to a greater degree than if either a convertible or a sedan were modified from black to red.  
To the degree that interactions observed in conjoint data sets are due principally to unrecognized 
heterogeneity, methods that model heterogeneity such as latent class may obtain excellent model 
fit using just main effects models.  The same argument holds for other models that model 
heterogeneity, including HB. 

The above example involving automobiles and colors was deliberately extreme, to convey the 
point.  It is possible that in the real world an additional first-order interaction would be required 
between model and color, because the interaction may indeed occur within each individual’s 
utility structure, rather than be an interaction observed due to respondent heterogeneity. 

In the previous example, we argued in favor of more parsimonious models within latent class, 
such as main effects only.  However, some data sets may indicate the presence of significant 
interaction terms, even after accounting for heterogeneity, and latent class often provides very 
good estimation of interaction effects, particularly if you have relatively large sample sizes.   

 

Linear Variables 

You can treat quantitative attributes as linear rather than as discrete.   For example, suppose you 
have a price variable with five price levels.  The standard approach is to solve for separate part 
worth utilities for those five discrete levels.  You have the option of simplifying the model by 
fitting a single linear coefficient to the five price levels, which requires estimating only one 
parameter rather than four (five levels, minus one for effects-coding).  This capability may be 
useful for several reasons: 
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Smoothing noisy data:  Often in conjoint analysis we know that levels of an attribute have 
an a priori order, and we want the resulting utilities to display that order.  However, 
unless the sample is very large, random error may cause some part worth values to 
display order reversals.  For example, we usually want higher prices to have lower 
utilities.  Sometimes we may even be confident of the shape of the curve relating utility 
to the underlying attribute.  If we can assume utility is linearly related to the log of price, 
then all the information in our data is concentrated on estimating the single parameter 
which represents the steepness of the utility curve, and we can be assured that the 
resulting utilities will lie on a smooth curve. 

More power to study interactions:  The usual way to handle interactions is to estimate 
separate coefficients for each combination of levels.  For example, with 20 brands and 5 
price levels, there are a total of 100 combinations, each of which needs to be estimated in 
some way.  Often, the size of the largest interaction dictates the sample size for the study.  
However, if we could treat price as a linear or log-linear variable, we would only need to 
estimate twenty values, the slope of the price curve for each brand.  Even more 
dramatically, if we have two attributes that can be regarded as linear, such as price and, 
say, speed, then we could handle both main effects and their interaction with a total of 
only three coefficients. 

More parsimonious models: If linear relationships hold for intermediate levels, you can 
conserve degrees of freedom relative to part worth models. 

Of course, to use this capability properly, you must be confident of the shapes of the underlying 
utility curves.  Latent class MNL can be of some help in that regard as well, since you can use 
trial and error to see whether you achieve better fit with linear values, their logs, or other 
transformations.  We should note that analysts often find that more parsimonious models often 
improve individual levels of fit (such as hit rates), but often reduce aggregate measures of fit 
(such as share prediction accuracy).  Therefore, the modeling goals influence the decision 
regarding whether to fit linear terms rather than part worths. 

 

Monotonicity (Utility) Constraints: 

Sometimes there are attributes such as speed, quality, or price, where the levels have a natural 
order of preference.  Higher speeds are preferred to lower speeds, higher quality to lower quality, 
and lower prices to higher prices (all else being equal).  Given a good study design, execution, 
and adequate sample size, part worths (when summarized across groups in latent class) rarely 
depart from the expected rational order for such attributes.  However, some studies reflect 
reversals in naturally ordered part worths.  These reversals are usually due to inadequate sample 
size and can be explained as due to random error.  Even so, reversals can be disconcerting for 
clients, and in some cases can detract from predictive accuracy.  With higher-dimension solutions 
(more groups) in latent class MNL, reversals are quite common within groups, though they are 
typically not present when viewing the summarized results across groups. 

Latent class MNL provides an effective manner for “smoothing” reversals (within group) using 
monotonicity constraints.  These constraints often improve individual-level predictions.  They 
also tend to keep higher-dimension solutions better behaved, helping control overfitting and 
leading to more meaningful and interpretable within-group preferences.  Constraints should be 
used with caution, as it is our experience that they sometimes can slightly reduce share prediction 
accuracy. 
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We have described the use of constraints for attributes with discrete levels, but not for attributes 
treated as linear, for which single parameters are estimated.  Those attributes may be constrained 
to have positive or negative signs.  For example, with price, it often seems reasonable to constrain 
the sign of the coefficient to be negative so that higher prices correspond to larger negative 
utilities.  With a performance attribute, it might be reasonable to constrain the sign to be positive.   

If you employ constraints, a message to that effect appears in the output, and you are warned that 
standard errors and t values may not be accurate. 

 

How the Choice Simulator Uses Latent Class Utilities 
 

With Latent Class MNL, rather than computing a set of part worths (utilities) for each respondent, 
the algorithm finds groups of respondents with similar preferences and estimates average part 
worths within these segments.  As when using cluster analysis, the Latent Class analyst specifies 
how many groups to use in the segmentation.  In contrast to cluster analysis, respondents are not 
assigned to different segments in a discrete (all-or-nothing) manner, but have probabilities of 
membership in each segment that sum to unity.  The sum of the probabilities of membership 
across respondents for each group defines the total weight (class size) of that segment. 
 
One can conduct market simulations with Latent Class MNL results by computing shares of 
preference within each segment and taking the weighted average of these shares across segments.  
Another way to use Latent Class data is to convert the segment-based results into individual-level 
estimates.  While these estimates are usually not as accurate at characterizing respondent 
preferences as Hierarchical Bayes analysis, they are an appropriate extension of the Latent Class 
model.  Recent evidence has shown that ensembles of high-dimensionality latent class solutions 
can lead to hit rates for holdouts at the same rate or even higher than a single HB solution 
(Lattery 2015). 
 
When you save a Latent Class run for use in Sawtooth Software’s Choice Simulator, the choice 
simulator converts the group-based Latent Class part worths into individual-level part worths in 
the following way: For each respondent, a weighted combination of the group part worth vectors 
is computed, where the weights are each respondent’s probabilities of membership in each group. 
 
Converting the Latent Class utilities to individual-level part worths provides added flexibility for 
market simulations.  It lets the analyst apply other segmentation variables (such as company size, 
age, etc.) as filters, banner points or weights without requiring that a new Latent Class solution be 
computed each time.  (Within our market simulator, you can export the individual-level part 
worths to an Excel-friendly .csv file from the Analysis Manager, by choosing the latent class run 
and clicking Export Utilities.) 
 
However, creating individual-level utilities from a segment-based solution slightly alters the 
results compared to the method of estimating weighted shares of preference across groups.  While 
the overall shares of preference for the market are nearly identical, the within-class results 
reported in the Market Simulator output are slightly less differentiated between segments (pulled 
toward the overall market mean).  That is because for the purpose of banner points and filters, the 
Market Simulator assigns respondents fully into the latent class for which he/she has the greatest 
probability of membership.  For example, consider a respondent whose preferences are 
characterized as 80% like group 1 and 20% like group 2.  His contribution to the mean values 
reported in the group 1 column (banner point) includes some group 2 tendencies. 
 
The differences between the within-class means reported by Latent Class and the Market 
Simulator are not very strong, since respondents’ probabilities of membership in classes usually 
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tend toward zero or one.  The smoothing that occurs when reporting the by-segment results in the 
Market Simulator will probably not substantially change your interpretation of the results.  If the 
differences concern you, you can always refer to the original Latent Class output and your own 
simulations based on the group-level part worths, weighted by the segment sizes.   

 

A Numeric Example 

In this section we present and describe the latent class analysis of a sample data set.  This 
example uses an artificial data set constructed as follows: First, part worth utility values were 
chosen for three hypothetical groups on three attributes: 

 Hypothetical Utilities for Three Segments 
  Segment 1 Segment 2 Segment 3 
  (N = 80) (N = 160)  (N = 240) 

 Brand 1     2.0    -1.0 -1.0 
 Brand 2    -1.0         2.0    -1.0 
 Brand 3    -1.0        -1.0     2.0 

 Pack 1     -1.0        -1.0     -1.0 
 Pack 2     -1.0        -1.0     2.0 
 Pack 3      2.0         2.0    -1.0 

 Price - -    2.0         2.0 2.0 
 Price -     1.0         1.0          1.0 
 Avg Price   0.0         0.0          0.0 
 Price +    -1.0        -1.0         -1.0 
 Price ++   -2.0        -2.0         -2.0 

One hypothetical group likes each brand best.  Pack 3 is preferred by two groups and Pack 1 is 
preferred by no group.  All agree on the desirability of paying lower prices.   

From these utilities, artificial data for 480 respondents were constructed.  We drew 80 simulated 
respondents from the first segment, 160 from the second, and 240 from the third.  A CBC 
questionnaire was created for each individual, containing 20 tasks, each presenting three 
alternatives plus a “None” option.  Answers for each question were simulated by first summing 
the respondent’s utilities for each alternative, adding a random component to each sum, and then 
selecting the highest of the resulting values.  The random components were distributed double-
exponentially with variance of unity. 

We have chosen an example based on simulated data rather than data from real respondents 
because with simulated data we know what the “right answer” is: that there are really three 
segments of sizes 80, 160, and 240, and the pattern of utilities for each segment.   

One of the problems in interpreting logit-based utilities is that logit analysis stretches or shrinks 
its parameter estimates according to the goodness of its fit.  If the data for a group are fit very 
well, its utilities tend to be far from zero.  If the data for a group are fit poorly, the utilities will be 
closer to zero.  (You should be on the lookout for latent class segments that show utilities all 
relatively close to zero, because they may represent the group of respondents who are answering 
near-randomly and are candidates for data cleaning.)  Because some groups may be fit better 
than others, it can be confusing to compare results for different groups.  To facilitate such 
comparisons, we provide the option of re-scaling each group’s estimated utilities so the average 
range within an attribute is 100 (termed zero-centered diffs).  To provide a target against which to 
later compare the estimated utilities, we scale the above hypothetical utilities in the same way: 
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  Hypothetical Utilities, Re-scaled for Comparability 

 Segment 1 Segment 2 Segment 3 
 (N = 80) (N = 160)  (N = 240) 

Brand 1      60     -30     -30 
Brand 2     -30          60     -30 
Brand 3     -30         -30      60 

Pack 1      -30         -30      -30 
Pack 2      -30         -30      60 
Pack 3 60 60 -30 

Price - -     60          60      60 
Price -      30          30           30 
Avg. Price    0           0            0 
Price +     -30         -30          -30 
Price ++    -60         -60          -60 

In conjoint analysis we sometimes summarize the relative importance of an attribute by 
expressing its range in utility to the sum of the ranges for all the attributes.  We do that here, 
finding that for every segment, Brand and Pack each has importances of 30%, and Price has an 
importance of 40%. 

             Attribute Importances 
 Segment 1 Segment 2 Segment 3 

Brand 30      30      30 
Pack 30      30      30 
Price 40      40      40 

 

A Sample Computation: 

 Latent Class Analysis for 3 Groups 
 
 Iteration  Log-likelihood    Gain              Segment Size 

      0     -13308.43 

      1     -8087.70          5220.73           50.0  48.7   1.3 

      2     -5225.99          2861.71           50.0  33.5  16.5 

      3     -3896.64          1329.35           50.0  33.3  16.7 

      4     -3736.11           160.53           50.0  33.3  16.7 

      5     -3726.19             9.92           50.0  33.3  16.7 

      6     -3726.02             0.17           50.0  33.3  16.7 

      7     -3726.02             0.00           50.0  33.3  16.7 

 

Percent Certainty                =    72.00 

Consistent Akaike Info Criterion =  7746.96 

Chi Square                       = 19164.81 

Relative Chi Square              =   660.86 

 

We start with estimates of respondent utilities that are just random numbers, and improve them, 
step by step, until the final solution fits the data acceptably well.  The latent class algorithm uses a 
maximum likelihood criterion.  Given its estimates of segment utilities and group sizes at each 
stage, the algorithm computes the probability that each respondent should have selected the 
alternative he or she did.  The log likelihood is obtained by summing the logs of those 
probabilities, over all respondents and questions.    

In this questionnaire there are 480 respondents, each of whom answered 20 questions, each of 
which had 3 product alternatives and a “none” option.  Under the “null” condition of utilities of 
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zero, any answer would have a probability of .25.  The log of .25 is -1.38629.  Multiplying that by 
the number of respondents (480) and the number of questions (20) gives the “null” log likelihood 
listed at iteration 0. 

If we were able to predict every respondent’s answers perfectly, all the probabilities would be 
unity, and their logs would be zero.   Therefore, the most favorable possible log likelihood is 
zero.  This computational procedure starts with a random solution which is modified iteratively, 
with each successive solution having a higher likelihood.  For each iteration we print the resulting 
likelihood as well as the gain as compared to the previous iteration.  The gains are large in initial 
iterations, and then become successively smaller in later iterations.   

If you accept the built-in default values, the process is halted when a maximum of 100 iterations 
is reached, or when the gain is less than 0.01.  Those are both arbitrary values, and if we had 
chosen a less rigorous limit of, say, 1.0, the process would have been complete after 6 iterations. 

To the right of the “gain” column are three columns of values that add to approximately 100.  
These are the estimates made during each iteration of the relative sizes of the segments.  Recall 
that we constructed our synthetic data to contain three groups of size 80, 160, and 240 
respondents. The segmentation algorithm has reproduced those relative sizes accurately (although 
in a different order) and, indeed, had done so by the third iteration.  Below the iteration history is 
a line of statistics that characterize the goodness of fit of the solution to the data. 

“Percent certainty” indicates how much better the solution is than the null solution, when 
compared to an “ideal” solution.  It is also known as McFadden’s Rho-squared.  It is equal to the 
difference between the final log likelihood and the null log likelihood, divided by the negative of 
the null log likelihood, in this case approximately (-3,726  + 13,308) / 13,308, or 72.00  This 
measure was used in an application similar to ours by Ogawa (1987).  Although “Percent 
certainty” is useful for providing an idea of the extent to which a solution fits the data, it is not 
very useful for deciding how many segments to accept because it generally increases as more 
segments are included. 

“Consistent Akaike Information Criterion,” (CAIC) is among the most widely used measures for 
deciding how many segments to accept.   CAIC was proposed by Bozdogan (1987), and an 
application similar to ours is described in Ramaswamy et al. (1993).   Like all measures we report 
here, CAIC is closely related to the log likelihood.  Our implementation of CAIC is given by the 
formula: 

 CAIC = -2 Log Likelihood + (nk + k - 1) * (ln N +1) 

where k is the number of groups, n is the number of independent parameters estimated per group, 
and N is the total number of choice tasks in the data set. 

Unlike our other measures, smaller values of CAIC are preferred.  CAIC is decreased by larger 
log likelihoods and is increased by larger sample sizes and larger numbers of parameters being 
estimated.  CAIC is not very useful for assessing the absolute level of fit of a particular solution, 
but it is sometimes useful when looking across alternative solutions with different numbers of 
groups. 

Chi Square is twice the log likelihood for the solution, minus twice the log likelihood for the null 
solution.   It can be used to test whether a solution fits significantly better than the null solution, 
although that is almost always true.  Chi Square is not very useful for choosing the number of 
segments because it tends to increase as the number of solutions increases. 
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“Relative Chi Square” is just Chi Square divided by the number of parameters estimated (nk + k - 
1).  We know of no theoretical basis for this statistic, but Monte Carlo analyses of many data sets 
has led us to believe that it may be useful for choosing the number of segments.  Bigger is better.   

Additional measures of fit described in the literature and online are also provided: AIC (Akaike 
Information Criterion), BIC (Bayesian Information Criterion), ABIC (Akaike Bayesian 
Information Criterion).  For all these, lower values indicate better fit.  There is no consensus 
regarding which measure is consistently more reliable and based on user requests we have added 
these measures of fit to the reporting. 

Formulas for these other measures are as follows: 

AIC = -2 * Log Likelihood + 2.0 * (nk + k - 1) 

BIC = -2 * Log Likelihood + (nk + k - 1) * ln N 

ABIC = -2 * Log Likelihood + (nk + k - 1) * ln (N + 2) 

Following the measures of fit, we print estimated utilities for each group.  These are “raw” 
utilities, which may have been stretched or shrunk by different amounts for each group.   
Although the three segments are of the correct relative sizes, they are not shown in the same order 
as for the table of “true” utilities above. 

     Utilities 

Segment Size            50.0%    33.3%    16.7% 

 

Part Worth Utilities 

 

Brand 1                 -1.36    -1.99     4.98 

Brand 2                 -1.40     4.74    -4.36 

Brand 3                  2.76    -2.75    -0.62 

 

Pack A                  -1.93    -2.97    -2.50 

Pack B                   2.95    -1.68    -1.84 

Pack C                  -1.02     4.65     4.34 

 

Price 1                  2.55     4.58     5.83 

Price 2                  2.14     3.92     1.36 

Price 3                 -0.60    -1.32     1.36 

Price 4                 -1.99    -3.59    -4.28 

Price 5                 -2.10    -3.59    -4.28 

 

NONE                     0.25     0.68     0.85 

 

Notice that the values for the left-hand column are scaled somewhat smaller than for the other 
two columns.  Those differences make it harder to compare values in adjacent columns, a 
difficulty which is removed in the table below, in which each column has been re-scaled to “zero-
centered diffs” so that its average range within attributes is 100. 

Utilities Re-scaled For Comparability (Zero-Centered Diffs) 

Brand 1                -29.86   -25.69    56.83 

Brand 2                -30.63    61.10   -49.73 

Brand 3                 60.49   -35.41    -7.10 

 

Pack A                 -42.29   -38.32   -28.52 

Pack B                  64.60   -21.60   -21.03 

Pack C                 -22.31    59.93    49.55 
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Price 1                 56.02    59.01    66.54 

Price 2                 46.84    50.47    15.56 

Price 3                -13.15   -17.01    15.56 

Price 4                -43.75   -46.24   -48.83 

Price 5                -45.96   -46.24   -48.83 

 

NONE                     5.46     8.76     9.68 

 

The true values have not been recovered perfectly, due to the random error introduced when 
constructing our artificial data.  However, the patterns of high and low values are nearly correct, 
certainly close enough to characterize each group’s preferences.  

The re-scaled utilities immediately above are an option that you may request in the output.  You 
can also request a table of attribute importances like the following:  

    Attribute Importances 

Brand                   30.37    32.17    35.52 

Pack                    35.63    32.75    26.02 

Price                   33.99    35.08    38.46 

 

We have not very accurately recovered the true importances of 30% for Brand and Pack and 40% 
for price for each group, but we are dealing with small sample sizes and fairly noisy data.  

One indication that the solution fits the data well is that the average respondent is assigned to a 
group with probability 1.00.   This is much higher than you will see with real data, and is only 
possible because we started with an artificial data set in which each individual was clearly in one 
group or another and have a relatively large number of choice tasks.  Finally, if we examine 
which group each individual was assigned to, the recovery is perfect.  We constructed a data set 
in which the first 80 respondents were from one group, the next 160 from another, and the last 
240 from the third.  All are classified properly by this solution. 

Results were saved for 480 respondents 

Average maximum membership probability = 1.00 

Some parameters were constrained 

Significance tests and standard errors may not be accurate 

 

We are also given a notice that since some parameters were constrained (prices) the optional 
significance tests and standard errors may not be accurate. 

 

Choosing the Number of Segments: 

Next, we examine what happens when comparing solutions with different numbers of classes.   
We re-ran this computation five times, each time estimating solutions for from 2 to 5 segments 
from different starting points (and for comparison, we ran a constrained solution using a 1-group 
run using v2 of the Latent Class software).  For each number of segments we retained only the 
solution with highest Chi Square, and those solutions are summarized below: 

           PctCert CAIC  Chi Square RelChiSq 
1 Group  26.1 19771.1 6937.2 770.81 
2 Groups 57.8 11430.1 15380.0 809.47 
3 Groups 72.1 7713.4 19198.4    662.01 
4 Groups 73.3 7502.3 19511.2    500.29 
5 Groups 75.3 7061.3 20053.8    409.26 
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Notice that the PctCert statistic and Chi Square both increase as we increase the number of 
groups, but don’t increase much after the 3-group solution.  This follows expectations, since in 
theory larger numbers of groups should produce higher values.  Also note that using a different 
starting point, we got a slightly higher fit than for the previous run we reported for the 3-group 
solution. 

CAIC has a minimum for five groups, indicating that it did not work at detecting the correct 
number of groups.  Perhaps more significant is the fact that CAIC decreases dramatically until 3 
groups, and then becomes nearly flat for larger numbers of groups.  Such an inflection point is 
probably a better indicator of the right number of groups than its absolute magnitude.  Relative 
Chi Square is maximized for two groups, a disappointment.   

We have found that when analyzing real data from human respondents, these statistics are likely 
to repeat such a pattern, not providing obvious information about the best choice of number of 
groups.  It seems that rather than choosing the solution which provides the highest absolute level 
of any statistic, it is more useful to look at differences.  For example, for Chi Square and Pct Cert 
we find large increases going from one group to two, and large differences again going from two 
groups to three.  However, beyond that the differences are minimal, suggesting that three might 
be the right number of groups.   Likewise, CAIC drops sharply as we go from one to two and 
from two to three groups, but then stays fairly constant for solutions with more groups.   

When choosing among solutions, one also has access to other information, such as their patterns 
of utilities and estimated group sizes.  Here are the relative group sizes estimated for the five 
solutions above: 

2 Groups 0.500 0.500 
3 Groups 0.167 0.333 0.500 
4 Groups 0.167 0.333 0.035 0.465 
5 Groups 0.154 0.035 0.167 0.465 0.179 

Both the four-group and five-group solutions contain tiny groups, emphasized in bold, so they 
would probably be disqualified on that basis.  

You will probably pay close attention to the estimated utilities provided by each solution.  Also, 
each individual can be classified into the group for which he or she has highest probability, and 
solutions can be further investigated by tabulating them with one another as well as with other 
variables.  You are automatically provided with tabulations of solutions with one another.  For 
example, here is the way respondents were classified by adjacent two-group and three-group 
solutions in one of the runs. 

Tabulation of 2 Group vs. 3 Group Solutions 

  1 2 3 Total 

 1 0 0 240 240 
 2 80 160 0 240 

Total   80 160 240 | 480 

Every solution that you consider interpreting should be tested by rerunning from several different 
starting points and seeing how similar those solutions are to one another.   

If the goal of the latent class MNL is managerial relevancy of the segmentation solution, probably 
the most important aspects to consider when choosing a solution for segmentation purposes are its 
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interpretability and stability (reproducibility).  One should repeat the analysis from different 
starting points (or by randomly splitting the sample into two halves and running the analysis 
separately on each group) to observe whether similar segments and segment sizes emerge.  But if 
the primary goal for using Latent Class MNL is to create an accurate share simulator, then the 
accuracy of share predictions should take precedence over segment interpretability and stability.  
It is often the case that a latent class solution with a larger number of groups can perform better in 
terms of predictive accuracy than a lower-dimension run that may have clearer interpretability.  
And, share prediction accuracy may occur with solutions that have more groups than the 
previously discussed statistical criteria might justify.  Some Latent Class users save one run for 
the purposes of simulations, but use another run for interpretable segment classification.  The 
interpretable segment classification may be used as a banner point (e.g. filter), and the more 
accurate latent class utility run may be used for estimating shares and reporting utilities. 

 

Practical Problems in Latent Class Analysis: 

We have used a sample data set for which the latent class MNL algorithm is comparatively well 
behaved.  However, we want to avoid giving the impression that latent class analysis is simple, or 
that its interpretation is straightforward.  It does present several difficulties.  To illustrate some of 
these, we reran the sample problem five more times.   

Optimality:  In the example described above, we used the default convergence limit of 0.01.  For 
the two-group solutions, Latent Class MNL got the same solution every time in the sense that it 
always classified respondents the same way. 

For the three-group solutions, Latent Class MNL got the solution reported above three times.  
However, the other three times it got a different solution similar to the 2-group solution but with a 
tiny splinter group.  The correct solution had dramatically higher likelihood than the incorrect 
one, so there is no question about which is superior.    

One of the most severe problems with latent class MNL is vulnerability to local maxima. The 
only way to avoid this problem is to compute several solutions from different starting points.   
Latent Class will choose different starting points for each run automatically.  

For four and five groups, different solutions were found every time—this particular data set does 
not naturally support stable four- or five-group solutions.  As it was, they classified respondents 
similarly about 80% of the time.  However, nearly all of them would be rejected for containing 
tiny groups.  

You may find that the iterative process converges rapidly.  However, depending on your data or 
an unfortunate random starting point, you may also encounter either of the following: 

Convergence may be slow.  You may reach the limit on number of iterations before your 
successive gains are smaller than the convergence limit.  If that happens, you receive a warning 
message both on screen and in your printed output.  In that case, it is possible that no clear 
segmentation involving that number of groups exists for those data, and further exploration with 
that number of groups may not be worthwhile.  However, we suggest that you try again, with 
different starting points and a higher iteration limit. 

The system may become “ill-conditioned.” This means that there is not enough information to 
estimate all the parameters independently of one another.  This message is a symptom of too 
many segments, too many parameters, a faulty experimental design, or too little data.  (It may 
also indicate an unacceptable pattern of prohibitions in your questionnaire.)  This message is 
often an indication that at least one group has become tiny.  If you receive this message, try again 
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from a different starting point.  If you receive it repeatedly, but only for large numbers of 
segments, you may have to be satisfied with fewer segments.  If you receive it with a small 
number of segments, it may be necessary to alter your effects file so as to estimate fewer 
parameters.  

These difficulties may tempt you to abandon latent class analysis.  Although we think it is 
important to describe the difficulties presented by Latent Class, we think it is the best way 
currently available to find market segments with CBC-generated choice data.  In the next section 
we describe how we came to that point of view. 
 

Typing Tools for Latent Class Segments for MaxDiff Data 
 

Latent Class MNL applied to MaxDiff (best-worst scaling) data has proven to be a very effective 
method for market segmentation.  Some researchers have been reluctant to use latent class MNL 
for this purpose, due to the common need to provide a typing tool.  Typing tools feature a limited 
number of questions that can accurately classify new respondents into a previous segmentation 
solution that often was based on many more questions.   

Orme and Johnson (2009) described an approach consistent with Latent Class MNL for assigning 
new respondents to existing segments using a limited set of MaxDiff questions (Orme and 
Johnson, 2009).  Sawtooth Software currently has an unpolished (though documented) software 
tool for finding near-optimal abbreviated MaxDiff questionnaires and assigning respondents who 
complete the typing tool questionnaire to a pre-existing market segmentation solution.  Contact 
Sawtooth Software for more details. 

 

HB MNL vs. Latent Class MNL 

As mentioned in the introduction to this documentation, hierarchical Bayes (HB) MNL is used 
more often today to analyze CBC data.  Still, Latent Class MNL offers unique benefits, and it has 
a strong following.   

Latent class may be particularly beneficial in the following circumstances: 

• Often one of the goals of a CBC project is to learn more about the natural market 
segments that might exist in a population.  A marketing manager might benefit from 
knowing about the different preferences across segments, especially if these segments 
have targetable differences beyond just preferences.  Although it is possible to run 
cluster analysis on the results of HB analysis, we expect that analysts can achieve 
slightly better results if using the one-step latent class procedure. 

• If respondents are really segmented into quite compact and differentiated groups in terms 
of preference, the discrete assumption of heterogeneity used in latent class can more 
accurately model individuals than HB. 

HB has the following strengths: 

• If respondents seem to be distributed in a more continuous rather than discrete fashion in 
terms of their multidimensional preferences, then HB can more accurately reflect 
individuals’ preferences.  We would argue that most datasets usually involve a relatively 
continuous distribution of heterogeneity, which is more in harmony with HB's 
assumptions.  HB is also quite robust even when there are violations of the underlying 
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assumptions.  It is not surprising, therefore, that hit rates (individual-level prediction 
accuracy of holdout tasks) from HB almost always exceed those for Latent Class for 
typical CBC data sets.  (An exception was demonstrated for Latent Class ensembles, 
Lattery 2015). 

• Market simulations using the individual-level part worths resulting from HB estimation 
are usually a bit more effective than Latent Class in reducing IIA problems. 

We know of at least two studies in which individual-level estimates from HB did not improve 
predictive fit over aggregate logit or latent class solutions.  The first study (Pinnell, Fridley 2001) 
demonstrated better hit rates of holdout tasks for aggregate logit than HB for some commercial 
partial-profile CBC data sets (HB was also superior for some partial-profile CBC data sets).  In 
another recent study (Andrews, Ainslie, Currim 2002), better household-level prediction was 
achieved with latent class and logit than HB for simulated scanner choice data when the number 
of simulated purchases was only three per household and seven parameters were fit (with more 
data available at the household level, HB performed as well as latent class, with better internal 
fit).  In both cases where HB seemed to perform worse than aggregate methods, the data were 
exceptionally sparse at the individual level and HB was subject to overfitting.  We speculate that 
the narrow margin of victory for aggregate methods over HB in both cases may have been due to 
sub-optimal specification of the priors (prior covariance, and degrees of freedom for the prior 
covariance matrix).  We have re-analyzed two of the data sets reported by Pinnell and Fridley, 
and after adjusting HB priors (assuming lower heterogeneity and a greater weight for the prior) 
found that HB’s hit rates slightly exceeded that of aggregate logit.   We haven’t examined the 
simulated household data of Andrews, Ainslie and Currim, so we can only speculate that 
modified HB priors may have affected their conclusions. 

We'll conclude with two more observations: 

• If the principal goal of the research is to develop an accurate group-level market 
simulator, then latent class MNL has been shown to offer simulation accuracy that 
approaches (and has been reported by some authors to occasionally exceed) the accuracy 
of HB MNL. 

• Some researchers have learned to leverage the strengths of both techniques within their 
CBC analysis.  They use latent class to detect segments and use the segment membership 
information as “banner points” (filters) applied to simulations using underlying HB utility 
runs. 
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