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1.0  Background 

Researchers suspect that some proportion of their survey respondents are responding 
randomly, and they use several methods to try to identify these respondents.  Survey 
researchers can measure survey length to identify speeders, they can look at response patterns 
to identify straightliners, they can build consistency traps into their surveys to catch careless 
respondents, etc.  Survey-based choice experiments feature sometimes-difficult repeated 
questions that use the same format over and over, which may be even more subject to 
respondent inattention than simpler, more direct, questions.  Surely it’s less cognitively 
challenging for a respondent to report her nationality than it is for her to answer a battery of 
dozen or more questions, in each of which she identifies her favorite among three product 
profiles that change from question to question on each of several dimensions.   

Some standard procedures can catch respondents who use patterned responses to complete 
their surveys quickly, for example in an unlabeled CBC where a respondent who always chooses 
the 3rd alternative in all 10 choice questions, something that we would expect to happen for 
fewer than two in 100,000 conscientious and truthful respondents.  Other standard measures 
don’t work as well, however:  is someone who spent only two seconds per question a speeder 
who should be deleted, or is he someone who cares only about a single attribute and who can 
express his honest preferences rapidly, without processing the entire list of attributes?      

We want to restrict our focus to random responders, and to three methods that have been 
proposed to identify them in stated choice experiments like choice-based conjoint and 
maximum difference (MaxDiff) scaling.  We seek to compare these three methods to see which 
one performs best in identifying random responders.  

2.0  Three Methods for Identifying Random Respondents in Choice Experiments 

Orme (2019) recommends creating a large number, say 1,000, artificial respondents, 
programmed to answer the choice experiment’s questions randomly.  Hierarchical Bayesian 
(HB) multinomial logit (MNL) of this response data will produce a random set of utilities, and, 
more interestingly, a fit statistic called root-likelihood, or RLH.  RLH is higher for respondents 
whose utility model fits their observed choices well and lower for respondents whose utility 
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model fits their choices poorly.  Random responders will have models that tend to fit their 
(random, unpredictable) choices poorly, so from this set of random responders, we can identify 
a cutoff RLH below which we expect some percentage (e.g. 95%) of random responders to fall.  
We can then apply this cutoff to our survey data to identify likely random responders.   

Two methods employ latent class (LC) MNL to identify segments of random choosers.  In the 
first of these, Hoogerbrugge and de Jong (2019) devise a clever method that again uses artificial 
random respondents.  Again, we generate a large number of random respondents, e.g., about a 
sixth as many artificial random responders as there are survey respondents.  We combine the 
response data from these random responders with our survey response data and we run a LC-
MNL with a large number of classes, say 20.  We then look for classes comprised mostly of our 
artificial random respondents and we classify the survey respondents in those classes as 
random responders.   

The other LC method is a little easier in that it doesn’t involve the creation of any artificial 
random responders.  A method called scale-adjusted latent class, or SALC (Magidson and 
Vermunt 2007) can estimate both (a) latent “preference” classes or segments (i.e. segments 
with different tastes and preferences about the attribute levels) and (b) latent “scale” classes 
(i.e. segments of respondents with different amounts of response error, reflected in the logit 
scale parameter).  Constraining one of the scale classes to have scale equal to zero will identify 
respondents whose utilities imply random choosing, so respondents in the scale=0 class we 
count as random responders.  

3.0  Evaluating Diagnostic Models 

The classic tool for gauging the success of a diagnostic measure is the receiver operating 
characteristic (ROC) curve and an associated summary metric called AUC - the area under the 
curve.  The ROC curve plots the true positive rate of a diagnostic measure against the false 
positive rate for different scores on a diagnostic measure.  An ideal test will have a 100% true 
positive rate (in our case it will identify random responders) and a 0% false positive rate (in our 
case it will not mis-identify valid respondents as random responders), as represented by the 
upper left intersection formed by the blue lines on this ROC curve diagram: 
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The area under the blue lines is the entire square, so the blue curve’s AUC is 1.00 (100%).  

The orange line represents a perfectly worthless ROC curve – it has no diagnostic value because 
it represents the true positive rate always equal to the false positive rate (if the curve fell below 
the line, it would again have diagnostic value, because we could simply flip the scale so that a 
negative test score predicts a positive outcome).  The orange line divides the area of the square 
exactly in half, so its AUC is 0.50.   

In practice ROC curves fall between these extremes.  For example, on this curve, while we can’t 
get perfect prediction, it’s possible to select a cutoff or threshold where we get a high true 
positive rate and a low false positive rate, because many of the points are close to the upper 
left corner that represents perfect prediction: 

 

4.0  Two Artificial Data Studies 

We base our analyses on two empirical studies, one CBC and one MaxDiff.  The CBC experiment 
featured 6 attributes with 3-5 levels each (specifically it was a 53 x 42 x 3 experiment) measured 
via choices in a dozen sets of triples.  The MaxDiff had 36 items measured in 27 sets of quads.  
Each study had 2,400 human respondents.  Unfortunately, we do not know which human 
respondents answered the survey questions diligently and which did so randomly.   

We can, however, do this work with artificial respondents.  First, we can program a set of 2,400 
robotic respondents to make choices that conform to Random Utility Theory (RUM) using the 
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utilities we observed from our 2,400 human respondents.  We know our 2,400 robotic 
respondents are valid, non-random respondents, because we program them to behave 
according to random utility theory, upon which the multinomial logit mathematical model and 
the applied choice modeling it supports both depend.  So for each the CBC and the MaxDiff 
study we have 2,400 RUM-choosing robots whose utilities we know to be valid reflections of 
considered, theoretically appropriate choice behavior.  Let’s call these our Valid RUM 
respondents. 

We can also program some number of artificial respondents to be random responders to the 
CBC questions.  Let’s call these our Latent Random responders, because we’re going to mix 
them in with our Valid RUM responders and then see how well we can distinguish the two 
groups.  We can then see how well each of our diagnostic methods in section 2.0 above 
performs with respect to identifying true positives (Latent Random responders) and false 
positives (RUM responders falsely accused of being random).   

Finally, we can also program the extra random respondents needed for the RLH and LC 
methods above.  For clarity we might call these our Diagnostic Randoms (because we generate 
them for diagnostic purposes only, as described in section 2.0 above). 

As part of our experiment we created three versions of the CBC and three versions of the 
MaxDiff, to reflect different levels of sparseness:  for the CBC treatments, we built experiments 
with 5, 10 and 15 CBC questions (i.e. wherein each respondent sees each level at least 3, 6 or 9 
times, respectively) and for MaxDiff we built experiments with 9, 18 and 27 questions (i.e. 
wherein each respondents sees each item once, twice or three times, respectively).  We also 
tested four different levels of Latent Random respondent incidence, 5%, 10%, 15%, and 25%.   

5.0  Results 

5.1  Preliminary findings 

Early on in our analyses we learned some things about two of the diagnostic methods in section 
2.0.  First, in the LC method, we found instances where no class contained a majority of 
Diagnostic Randoms, giving us a 0% true positive rate.  To prevent this from happening, we 
modified the method so that we classified as randoms (a) the Valid RUM or Latent Random 
respondents who were in classes where a majority of the respondents were Diagnostic 
Randoms, or (b) the Valid RUM or Latent Random respondents who were in classes where the 
largest proportion of respondents were Diagnostic Randoms 

The other early learning concerned the RLH method.  We found that the RLHs of Latent 
Random respondents are higher when their utilities are estimated together with the utilities of 
Valid RUM respondents than when they were estimated separately, as with the Diagnostic 
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Random responders.  Thus, a cutoff value that identifies 95% of Diagnostic Random 
respondents only identifies about 80% of Latent Randoms (whose utilities are estimated 
together with the utilities of Valid RUM respondents).   

We also learned early on that the incidence of Latent Random respondents didn’t have a lot of 
impact on our ability to identify them, so we were able to simplify our analyses by collapsing 
our results across the four levels of Latent Random incidence. 

5.2 Substantive findings 

For CBC, the richest design (15 questions), has an AUC of 0.988 for the RLH diagnostic:   

 

The RLH method is scalable and can be adjusted to allow for the potential different harms that 
come from including Latent Random respondents or from excluding Valid RUM respondents.  
Appendix 1 shows how many Latent Randoms and how many RUMS are misidentified at various 
cutoffs for our CBC experiment while Appendix 2 shows these results for our MaxDiff 
experiment.  For example, at an RLH cutoff that eliminates 95% of Diagnostic Random 
responders (based on our sample of 1,000 Diagnostic Random respondents where the cutoff 
would be 0.482) we can eliminate 80% of the Latent Randoms at a cost of only 1.5% of the Valid 
RUM respondents.     

For the LC method of identifying Latent Randoms, the AUC is a little worse, at 0.920: 
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Note that only one point on the curve can be used to discriminate RUM from random 
respondents, versus the continuum of points available with the RLH method, so we don’t have 
the flexibility to look at different cutoff points.   

AUC is worse still (0.866) for the SALC method and suffers from the same single point limitation 
as the LC method: 

 

As you’d imagine, when we have sparser data, for example 10 CBC questions, the AUCs 
decrease (because we have fewer observations with which to do the discriminating):  0.957 for 
the RLH method, 0.871 for the LC method and 0.799 for SALC.  By the time we get to the sparse 
condition where we ask only 5 CBC questions, we have AUCs of 0.856 for the RLH cutoff 
method, 0.716 for the LC method and 0.760 for the SALC method.   

Results are similar for MaxDiff (we didn’t run the SALC analysis for MaxDiff because we’d 
already found it to be inadequate for CBC): 

• For the rich data condition (each item seen 3x per respondent), AUC is 0.991 for the RLH 
method and 0.744 for the LC method.   

• For moderate sparseness (each item seen twice per respondent) AUCs are 0.977 for the 
RLH method and 0.668 for the LC method.   

• And again, both fair much worse with sparse data (each item seen once per 
respondent):  AUC of 0.809 for the RLH method and 0.561 for LC.   

6.0  Summary/Recommendation 

The RLH method dominates both of the methods based on latent class MNL.  We find no reason 
to use the LC methods (except that the SALC method does not require that we create any 
artificial Diagnostic Randoms, which removes a step from the process, a simplification that 
harms our ability to distinguish valid from random respondents).   

Using a 90% or 95% cutoff based on 1,000 Diagnostic Randoms, we can expect to be able to 
eliminate 75% or more of Random respondents while discarding in error potentially only 1-2% 
of valid RUM responders (though more of them as our design gets more sparse). 
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Appendix 1:  CBC 

 

  
Each level seen 
9x/respondent  

Each level seen 
6x/respondent  

Each level seen 
3x/respondent 

Diagnostic 
Randoms 
Cutoff (%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%) 
75  60 <1  57 2  51 9 
80  64 <1  62 2  55 10 
85  69 1  68 3  63 13 
90  76 1  74 4  67 15 
95  80 2  80 6  73 18 
99  89 3  91 13  87 35 

 

 

This table shows true positives (Random respondents identified) and false negatives (RUM 
respondents rejected as random). 
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Appendix 2:  MaxDiff 

 

  
3 item 

views/respondent  
2 item 

views/respondent  
1 item 

view/respondent 
Diagnostic 
Randoms 
Cutoff (%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%)  

Randoms 
Identified 

(%) 

RUMs 
Rejected 

(%) 
75  47 <1  46 <1  6 <1 
80  54 <1  50 <1  9 <1 
85  58 <1  55 1  12 <1 
90  66 <1  62 2  19 2 
95  76 1  72 3  33 3 
99  90 2  88 6  53 7 

 

This table shows true positives (Random respondents identified) and false negatives (RUM 
respondents rejected as random). 
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