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The CVA/HB Module is a component within SMRT (SMRT stands for Sawtooth 
Software Market Research Tools) that uses hierarchical Bayes (HB) to estimate part 
worths for ratings-based full-profile conjoint analysis (CVA) studies.  HB considers each 
individual to be a sample from a population of similar individuals, and “borrows” 
information from the population in estimating part worths for each respondent.  With HB, 
CVA users can often achieve equivalent results (relative to OLS) using fewer tasks per 
person and/or fewer total respondents.  Precisely how much improvement HB estimation 
offers over the standard estimation techniques depends on the project.   
 
HB estimation takes considerably longer than OLS or Monotone regression.  
Computation time will usually vary from about 5 minutes to an hour for most CVA data 
sets.   
 
Although the CVA/HB module will produce results for very small sample sizes, we 
caution against using it in those instances.  CVA/HB will produce results even with data 
from a single respondent, but with very small sample sizes it will have difficulty 
distinguishing between heterogeneity and error. How many respondents are required for 
robust HB estimation depends on the study design and the nature of the sample.  We have 
seen HB perform well with samples as small as 80 respondents for ratings-based conjoint 
studies.  HB may perform consistently well with even smaller sample sizes, though we 
know of no series of studies to substantiate that claim. 
 
In any case, we suggest not using HB blindly.  It is prudent to design holdout choices 
within your CVA questionnaires so that you can assess the performance of alternative 
part worth estimation methods. 
 
 
Background 
 
The first traditional conjoint analysis applications in the early- to mid-1970s used non-
metric estimation or OLS to derive part worths.  These techniques served the industry 
well over the first few decades of conjoint analysis practice.  Even so, conjoint 
researchers have always faced a degrees of freedom problem.  We usually find ourselves 
estimating many parameters (part worths) at the individual level from relatively few 
observations (conjoint questions).  It is often challenging to get respondents to complete 
many conjoint tasks, so researchers may sacrifice precision in the part worth estimates by 
reducing the number of conjoint profiles.  It is precisely in those cases that HB can be 
most useful. 
 
HB became available in about the mid 1990s to marketing researchers.  HB significantly 
improves part worth estimates and produces robust results when there are very few or 



even no degrees of freedom.  Several recent articles (see for example Lenk, et al. 1996 
and Allenby, et al.1998) have shown that hierarchical Bayes can do a creditable job of 
estimating individual parameters even when there are more parameters than observations 
per individual.   
 
It is possible using CVA/HB to estimate useful part worths for an individual even though 
that respondent has answered fewer tasks than parameters to estimate.  This can occur if 
respondents quit the survey early.  However, the researcher may choose this approach by 
design.  The researcher might (using CVA’s paper-and-pencil mode) randomly assign 
respondents a subset of a larger CVA design, so that across all respondents each task has 
roughly equal representation. 
 
The CVA/HB Module estimates a hierarchical random coefficients model using a Monte 
Carlo Markov Chain algorithm.  In the material that follows we describe the hierarchical 
model and the Bayesian estimation process.  It is not necessary to understand the 
statistics of HB estimation to use this module effectively.  The defaults we have provided 
make it simple for researchers who may not understand the statistics behind HB to run 
the module with consistently good results. 
 
We at Sawtooth Software are not experts in Bayesian data analysis.  In producing this 
software we have been helped by several sources listed in the References.  We have 
benefited particularly from the materials provided by Professor Greg Allenby in 
connection with his tutorials at the American Marketing Association’s Advanced 
Research Techniques Forum.  
 
 
The Basic Idea behind HB 
 
CVA/HB uses Bayes methods to estimate the parameters of a randomized coefficients 
regression model.  In this section we provide a non-technical description of the 
underlying model and the algorithm used for estimation.   
 
The model underlying CVA/HB is called “hierarchical” because it has two levels.  At the 
upper level, respondents are considered as members of a population of similar 
individuals.  Their part worths are assumed to have a multivariate normal distribution 
described by a vector of means and a matrix of variances and covariances. 
 
At the lower level, each individual’s part worths are assumed to be related to his ratings 
of the overall product profiles within the conjoint survey by a linear regression model.  
That is to say, when deciding on his preference for a product profile, he is assumed to 
consider the various attribute levels that compose that product, and add the value of each 
level to come up with an overall rating for the product concept.  Discrepancies between 
actual and predicted ratings are assumed to be distributed normally and independently of 
one another. 
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Suppose there are N individuals, each of whom has rated conjoint profiles on n attribute 
levels.  If we were to do ordinary regression analysis separately for each respondent, we 
would be estimating N*n part worths.  With the hierarchical model we estimate those 
same N*n part worths, and we further estimate n mean part worths for the population as 
well as an n x n matrix of variances and covariances for the distribution of individuals’ 
part worths.  Because the hierarchical model requires that we estimate a larger number of 
parameters, one might expect it would work less well than ordinary regression analysis.  
However, because each individual is assumed to be drawn from a population of similar 
individuals, information can be “borrowed” from other individuals in estimating 
parameters for each one, with the result that estimation is usually enhanced.   
 
 
The Hierarchical Model 
 
To recapitulate, the HB model is called “hierarchical” because it has two levels.   
 
At the higher level, we assume that individuals’ part worths are described by a 
multivariate normal distribution.   Such a distribution is characterized by a vector of 
means and a matrix of covariances.  To make this explicit, we assume individual part 
worths have the multivariate normal distribution,  
 

βi ~ Normal(α, D) 
where: 
 

β i  = a vector of part worths for the ith individual 
 
α = a vector of means of the distribution of individuals’ part worths 
 
D = a matrix of variances and covariances of the distribution of part worths across 
individuals 

 
 At the lower level we assume that, given an individual’s part worths, values of the 
dependent variable (responses to the conjoint questions) are described by the model: 
 

yij = xij’ βi  +  eij 
 

where: 
 
yij = the dependent variable for observation j by respondent i 
 
xij’ = a row vector of values of dummy-coded independent variables for the jth 
observation for respondent i 
 
eij  =  random error term, distributed normally with mean of zero and variance σ2. 
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This model says that individuals have vectors of part worths βi drawn from a multivariate 
normal distribution with mean vector α and covariance matrix D.  Individual i’s rating of 
the conjoint profile for the jth task yij is normally distributed, with mean equal to the sum 
of that respondent’s part worths characterizing that profile, which is equal to the vector 
product xij’ βi with variance equal to some value σ2. 

 
The parameters to be estimated are the vectors βi  of part worths for each individual, the 
vector α of means of the distribution of part worths, the matrix D of the variances and 
covariances of that distribution, and the scalar σ2. 
 
 
Iterative Estimation of the Parameters 
 
The part worth parameters are estimated using an iterative process that is quite robust.  
Depending on the random seed you use, you will achieve slightly different part worths 
from subsequent runs.  However, the differences should converge toward zero as the 
number of iterations increases. 
 
As initial estimates of each parameter we use values of zero or unity.  We use zeros as 
initial estimates of the betas (part worths), alpha, and the covariances, and we use unity as 
initial estimates of the variances and of sigma.  Given those initial values, each iteration 
consists of these steps: 
 

Using present estimates of the betas, D, and sigma generate a new estimate of α.  
We assume α is distributed normally with mean equal to the average of the betas 
and covariance matrix equal to D divided by the number of respondents.  A new 
estimate of α is drawn randomly from that distribution. 
  
Using present estimates of the betas, α, and sigma draw a new estimate of D from 
the inverse Wishart distribution. 
 
Using present estimates of α, D, and  σ, generate new estimates of the betas.  We 
obtain a new estimate of beta for each individual using a Metropolis Hastings 
algorithm.   
  
Using present estimates of α, D, and the betas, generate a new estimate of σ.  For 
this purpose we again use the inverse Wishart distribution. 
 

In each of these steps we re-estimate one set of parameters conditionally, given current 
values for the other three.  This technique is known as “Gibbs sampling,” and eventually 
converges to the correct distributions for each set of parameters.  Another name for this 
procedure is a “Monte Carlo Markov Chain,” deriving from the fact that the estimates in 
each iteration are determined from those of the previous iteration by a constant set of 
probabilistic transition rules.  This Markov property assures that the iterative process 
converges. 
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This process is continued for a large number of “burn-in” iterations, typically 2,000 or 
more.  During the burn-in process, the values will vary and trend for a while until 
convergence is reached, after which the estimates oscillate randomly without 
demonstrating any remaining trend.  During estimation, the software provides a graph of 
the history of the part worth estimates across iterations.  This provides an intuitive visual 
indication to help the researcher assess convergence.   
 
For many data sets, convergence is achieved within the first 2,000 burn-in iterations.  
Because some data sets may take longer to converge, we have provided a conservative 
default of 10,000 iterations prior to assuming convergence.  However, there is no 
guarantee that convergence will occur within the first 10,000 iterations for every data set. 
 
After we are confident of convergence, the process is continued for many further 
iterations, and numerous “draws” of beta for each individual are used (averaged) to 
provide point estimates of the part worths.  The default is to average 1,000 separate draws 
of the part worths for each individual.  By default, we use only every 10th draw, so 10,000 
additional iterations are performed once convergence is assumed. 
 
 
Monitoring the Computation 
 
While the computation is in progress, information summarizing its current status and 
history is provided on the screen, like the example below: 
 

 
 
This run uses 10,000 initial iterations (the grey background area in the chart), followed by 
10,000 further iterations during which each tenth iteration is to be used.   
 
Near the bottom of the screen is an estimate of the total time of 2 minutes and 58 seconds 
left to complete this computation.   The total time for this run is just over 3 minutes.  
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Note that this is a small problem, with only 80 respondents and 22 conjoint tasks per 
respondent.  Very large problems may require upwards of an hour or more. 
  
The graph of part worths by iteration is the most colorful and prominent aspect of the 
reporting.  This graphic provides insight into whether the part worth values have roughly 
stabilized and achieved convergence.  The horizontal axis charts the iterations, and the 
vertical axis reflects the part worth estimates.  The dummy-coded estimates of average 
betas for the respondent sample are plotted, with the first level of each attribute omitted.  
The gray area reflects the burn-in iterations.  The final iterations are those after assumed 
convergence in which we use the draws to develop point estimates of respondents’ part 
worths. 
 
When the plot of part worths portrays a series of essentially horizontal lines with no 
remaining trend, this indicates convergence.  With large sample sizes, the part worth 
history appears tighter with relatively little variation in the part worths from iteration to 
iteration.  But with small sample sizes, the part worth history appears to have much more 
noise.  With small sample sizes, convergence may have occurred even though there may 
appear to be quite a bit of noise between successive iterations.  Again, the critical aspect 
is whether there is any remaining trend in the successive part worth estimates. 
 
HB is probably slower than most other iterative processes with which you may be 
familiar, and when using different random seeds won't get exactly the same answer every 
time.  But it would achieve the same result if a very large number of iterations were used, 
to as much precision as desired.  However, in practice, HB users elect to use fewer 
iterations than would be required to get the same answer each time. 
 
When the computation ends, a text report of the diagnostics after every 1,000th iteration is 
shown.  These diagnostics are described in the next section. 
 
 
CVA/HB Diagnostics 
 
We now describe each of the statistics displayed at the left half of the screen.  There are 
two columns for each.  In the first column is the actual value for the previous iteration.  
The second column contains an exponential moving average for each statistic. At each 
iteration the moving average is updated with the formula: 
 

new average = .01*(new value) + .99*(old average) 
 
The moving average is affected by all iterations of the current session, but the most recent 
iterations are weighted more heavily.  The most recent 100 iterations have about 60% 
influence on the moving averages, and the most recent 500 iteration have about 99% 
influence.   Because the values in the first column tend to jump around quite a lot, the 
average values are more useful. 
 
The first statistic displayed on the screen during computation is Average r-squared 
which is short for the average squared correlation between each respondent’s predicted 
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and actual data for (in this case) the 22 observations of the dependent variable.   The 
average r-square will be zero initially and improve throughout the early part of the 
computation.  Actually, the present value of 0.806 is about as high as it will get in 20,000 
iterations, suggesting that this process may already have converged. 
 
Note that the average r-square from CVA/HB will always be less than the average r-
square from OLS estimation.  The goal in CVA/HB is not to maximize the r-squared for 
each individual, but to strike an effective balance between fitting the individual’s data 
and tempering those estimates by population parameters.  To the degree that an 
individual’s data are internally consistent with his answers, relatively less information is 
borrowed from the population parameters.  For respondents whose data are internally 
inconsistent, relatively more information is borrowed from the population parameters.  It 
usually turns out that the additional information provided from the population parameters 
actually improves the estimate of the individual’s preferences, as evidenced by 
predictability of holdout observations. 
 
The next statistic is RMS heterogeneity which is short for “root mean square 
heterogeneity.”  Recall that we estimate the variances and covariances for the part worths 
among respondents.  RMS heterogeneity is just the square root of the average of those 
variances.   
 
The next statistic is RMS error which is a measure of the average error in predicting 
each respondent’s response to the conjoint question from his/her part worths.  This is 
nearly the same thing as the sigma parameter that we estimate, except that this value is 
computed directly from the data, whereas sigma is estimated by making a normal draw 
from an estimated distribution.   
 
As iterations progress, all of these statistics change systematically for a while: Average r-
square and heterogeneity increase at first, while RMS error decreases at first.  Eventually 
they level off, thereafter oscillating randomly around their final values.   Lack of trend 
may be taken as evidence of convergence.  However, studying the pattern of part worths 
that is graphed may provide the best visual clue as to convergence.  The part worths in 
the chart presented earlier seem to be leveling off with little trend, suggesting that 
convergence may have occurred. 
 
 
Using Constraints 
 
Conjoint studies frequently include product attributes for which almost everyone would 
be expected to prefer one level to another.  However, estimated part worths sometimes 
turn out not to have those expected orders.  This can be a problem, since part worths with 
the wrong relationships (especially if observed at the summarized group level) are likely 
to yield nonsense results and can undermine users’ confidence. 
 
CVA/HB provides the capability of enforcing constraints on orders of part worths within 
attributes.  The same constraints are applied for all respondents, so constraints should 
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only be used for attributes that have unambiguous a priori preference orders, such as 
quality, speed, price, etc. 
 
Evidence to date suggests that constraints can be useful when the researcher is primarily 
interested in individual-level classification or the prediction of individual choices, as 
measured by hit rates for holdout choice tasks.  However, constraints appear to be less 
useful, and indeed can be harmful, if the researcher is primarily interested in 
making aggregate predictions, such as predictions of shares of preference.  Most 
research is principally concerned with the latter.  Another concern is that constraints can 
bias the apparent importances of constrained attributes in market simulations, relative to 
unconstrained attributes. 
 
CVA/HB employs a technique called Simultaneous Tying.  In a paper available on the 
Sawtooth Software Web site (Johnson, 2000), the author explored different ways of 
enforcing constraints in the HB context.  He found the method of simultaneous tying to 
perform best among the techniques investigated. 
 
Simultaneous tying features a change of variables between the “upper” and “lower” parts 
of the HB model.  For the upper model, we assume that each individual has a vector of 
(unconstrained) part worths, with distribution: 
 

βi ~ Normal(α, D) 
 
where:  
 

βi  = unconstrained part worths for the ith individual 
α = means of the distribution of unconstrained part worths 
D = variances and covariances of the distribution of unconstrained part worths 

 
For the lower model, we assume each individual has a set of constrained part worths, bi 
where bi is obtained by recursively tying each pair of elements of βi that violate the 
specified order constraints. 
 
With this model, we consider two sets of part worths for each respondent: unconstrained 
and constrained.  The unconstrained part worths are assumed to be distributed normally 
in the population, and are used in the upper model.  However, the constrained part worths 
are used in the lower model to evaluate likelihoods. 
 
We speak of “recursively tying” because, if there are several levels within an attribute, 
tying two values to satisfy one constraint may lead to the violation of another.  The 
algorithm cycles through the constraints repeatedly until they are all satisfied.  
 
When constraints are in force, the estimates of population means and covariances are 
based on the unconstrained part worths.  However, since the constrained part worths are 
of primary interest, we plot the constrained part worths to the screen.  Only the 
constrained part worths are saved to the utility run for use in the market simulator. 
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When constraints are in place, measures of fit (average r-squared) are decreased.  
Constraints always decrease the goodness-of-fit for the sample in which estimation is 
done.  This is accepted in the hope that the constrained solution will work better for 
predictions in new choice situations.  Measures of scale (Avg. Variance and Parameter 
RMS), which are based on unconstrained part worths, will be increased. 
  
 
How Good Are the Results? 
 
Before showing the results of a study demonstrating the benefit of HB, we should point 
out that CVA/HB is the fifth in a series of Sawtooth Software’s products that use HB to 
estimate individual coefficients.  Previous products are CBC/HB and HB-Sum for use in 
estimating individual part worths in choice studies using a multinomial logit formulation, 
ACA/HB for estimating individual part worths from ACA data using a linear regression 
formulation, and HB-Reg for generalized regression problems.   
 
For CBC/HB, ACA/HB, and HB-Reg we have done a performance review, finding HB 
estimation to be as good as or better than the alternative in every case.  That evidence is 
available in three technical papers that can be downloaded from the 
sawtoothsoftware.com Web site (Sawtooth Software 1998, 1999a, 1999b). 
 
We now present an example from a real conjoint data set to demonstrate CVA/HB’s 
usefulness.  This example is but one of many data sets that have demonstrated HB’s 
superiority relative to traditional methods such as OLS.  The margin of superiority 
reported here is quite typical of other data sets we’ve seen and those reported in the 
literature.  
 
This example is from a study reported by Orme et al. (1997).  Respondents were 80 MBA 
students from three universities.  The subject of the study was personal computers, and 
nine attributes were studied, each with two or three levels.  Each respondent did a full-
profile card-sort in which 22 hard-copy cards were sorted into four piles based on 
preference, and then rated using a 100 point scale.  A logit recode method was used for 
the dependent variable, both for ordinary least squares regression and also by CVA/HB.   
 
In addition, each respondent saw five full-profile holdout choice sets, each containing 
three product concepts.  These choice sets were constructed randomly and uniquely for 
each respondent.  Respondents rank-ordered the concepts in each set, but the results we 
report here were based only on first choices.  (Hit rates in the original paper are based on 
implied paired comparisons, whereas those reported here are based on triples, and are 
therefore lower.)  We have computed hit rates for predicting holdout choices: 
 

Ordinary Least Squares                  72.00% 
CVA/HB    74.50% 
CVA/HB with Constraints  75.75% 
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We see that using HB improves results relative to OLS.  Since we have not imposed 
constraints on the first two sets of part worths, this is a fair comparison, and CVA/HB has 
a 2.5% margin of superiority*.  Constraining utilities to conform to rational preference 
orders further improves the hit rate.  The constrained CVA/HB reflects a 3.75% margin 
of superiority relative to the OLS solution.   
 
(* Note: In the HB-Reg manual, we report that unconstrained HB-Reg yields a 73.50% 
hit rate for this data set.  CVA/HB and HB-Reg use the same procedure, and the 
difference seen here is due to the random starting point and/or the number of iterations 
used.) 
 
It is not a given that researchers should impose utility constraints.  Whereas hit rates are 
usually improved by imposing utility constraints, share prediction accuracy is often not 
improved and sometimes even damaged by constraints.  Please see an article (Johnson, 
2000) listed in the References that follow for further evidence regarding constraints. 
 
 
Details of Estimation 

 
Above we attempted to provide an intuitive understanding of the HB estimation process, 
and to avoid complexity we omitted some details that are provided here. 
 
Gibbs Sampling 
 
The model we wish to estimate has many parameters: an alpha vector of population 
means, a beta vector for each individual, a D matrix of population variances and 
covariances, and a scalar sigma squared of error variances.  Estimating a model with so 
many parameters is made possible by our ability to decompose the problem into a 
collection of simpler problems. 
 
As a simple illustration, suppose we have two random variables, x and y for which we 
want to simulate the joint distribution.  We can do so as long as we are able to simulate 
the distribution of either variable conditionally, given knowledge of the other.  The 
procedure is as follows: 
 
 (1) Draw a random value of x 
 (2) Draw a random value of y, given that value of x 
 (3) Draw a random value of x, given that value of y 
 (4) Repeat steps 2 and 3 many times 
 
The paired values of x and y provide a simulation of the joint distribution of x and y.  
This approximation of the joint distribution by a series of simpler conditional simulations 
is known as Gibbs Sampling. 
 
With our model we are interested in the joint distribution of alpha, the betas, D, and 
sigma, so our task is more complicated, but in principle it is like the two-variable 
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example.  We start with arbitrary estimates for each parameter.  Then we estimate each of 
the four types of parameters in turn, conditional on the others.   
 
We do this for a very large number of iterations.   Eventually the observed distribution of 
each parameter converges to its true distribution (assuming the model is stated correctly). 
Then by continuing the process and saving subsequent draws we can capture the 
distribution of each parameter.  Since our model involves normal distributions, the point 
estimate for each parameter is simply the mean of those random draws. 
 
It remains to specify how the conditional draws are made in each iteration.  For α, D, and 
sigma, conventional techniques involving normal distributions are used.  For the betas, 
we use a Metropolis Hastings algorithm. 
 
Random Draw from a Multivariate Normal Distribution 
 
Many times in the iterative process we must draw random vectors from multivariate 
normal distributions with specified means and covariances.  We first describe a procedure 
for doing this. 
 
Let α be a vector of means of the distribution and D be its covariance matrix.  D can 
always be expressed as the product T T’ where T is a square, lower-triangular matrix.  
This is frequently referred to as the Cholesky decomposition of D.   
 
Consider two column vectors, u and  v = T u.   Suppose the elements of u are normal and 
independently distributed with means of zero and variances of unity.  Since for large n, 
1/n Σnu u’  approaches the identity, 1/n Σnvv’ approaches D as shown below:   
 

1/n Σnvv’ = 1/n Σn Tu u’T’ = T (1/n Σn u u’)T’ => T T’ = D 
 

where the symbol => means “approaches.” 
 

Thus, to draw a vector from a multivariate distribution with mean α and covariance 
matrix D, we perform a Cholesky decomposition of D to get T, and then multiply T by a 
vector of u of independent normal deviates.  The vector α + T u is normally distributed 
with mean α and covariance matrix D. 
 
Estimation of Alpha 
 
If there are n individuals who are distributed with covariance matrix D, then their mean, 
α, is distributed with covariance matrix 1/n  D.  Using the above procedure, we draw a 
random vector from the distribution with mean equal to the mean of the current betas, and 
with covariance matrix 1/n  D.   
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Estimation of D 
 
Let p be the number of parameters estimated for each of n individuals, and let N = n + p.  
Our prior estimate of D is the identity matrix I of order p.  We compute a matrix H which 
combines the prior information with current estimates of α and βi    
 

H = pI + Σn (α - βi  ) (α - βi  )’ 
 

We next compute H–1 and the Cholesky decomposition  
 
H–1 = T T’ 
 
Next we generate N vectors of independent random values with mean of zero and unit 
variance, ui, multiply each by T, and accumulate the products: 
 

S = ΣN (T ui) (T ui)' 
 

Finally, our estimate of D is equal to S–1.   
 

Estimation of Sigma 
 
We draw a value of σ2 from the inverse Wishart distribution in a way similar to the way 
we draw D, except that σ2 is a scalar instead of a matrix.   
 
Let M be the total number of observations fitted by the model, aggregating over 
individuals and questions within individual.   Let Q be the total sum of squared 
differences between actual and predicted answers for all respondents.   Let the scalar c = 
p + Q, analogous to H above.  We draw M + p random normal values, each with mean of 
zero and standard deviation of unity, multiply each by 1/sqrt(c), and accumulate their 
sum of squares, analogous to S above.  Our estimate of σ2 is the reciprocal of that sum of 
squares. 
 
Estimation of Betas Using a Metropolis Hastings Algorithm 
 
We now describe the procedure used to draw each new set of betas, done for each 
respondent in turn.  We use the symbol βo (for “beta old”) to indicate the previous 
iteration’s estimation of an individual’s part worths.  We generate a trial value for the 
new estimate, which we shall indicate as βn (for “beta new”), and then test whether it 
represents an improvement.  If so, we accept it as our next estimate.  If not, we accept or 
reject it with probability depending on how much worse it is than the previous estimate. 
 
To get βn we draw a random vector d of “differences” from a distribution with mean of 
zero and covariance matrix proportional to D, and let βn  =  βo+ d.   We regard βn as a 
candidate to replace βo if it has sufficiently high posterior probability.  We evaluate each 
posterior probability as the product of its density (the prior) and its likelihood. 
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We first calculate the relative probability of the data, or “likelihood,” given each 
candidate, βo  and βn.  We do not calculate the actual probabilities, but rather simpler 
values that are proportional to those probabilities.  We first compute the sum of squared 
differences between the actual answers and our predictions of them, given each set of 
betas.  The two likelihoods are proportional to the respective quantities for βo  and βn: 
 

exp[-1/2 (sum of squared differences)/ σ2]. 
 
Call the resulting values po and pn, respectively.   
 
We also calculate the relative density of the distribution of the betas corresponding to βo 

and βn, given current estimates of parameters α, D, and σ .   Again, we do not compute 
actual probabilities, but rather simpler values that are proportional to the desired 
probabilities.  This is done by evaluating the following expression for each candidate: 
 

  exp[-1/2*(β - α)’ D-1
 (β - α)] 

 
Call the resulting values do and dn, respectively.  Finally we then calculate the ratio:  
 

r  = pn  dn  / po  do  
 
From Bayes’ theorem, the posterior probabilities are proportional to the product of the 
likelihoods times the priors.  The values pn  and po are proportional to the likelihoods of 
the data given parameter estimates respectively.  The values dn  and do  are proportional to 
the probabilities of drawing those values of βn and βo, respectively, from the distribution 
of betas, and play the role of priors.  Therefore, r is the ratio of posterior probabilities of  
βn  and  βo, given current estimates of α , D, and σ, as well as information from the data.  
 
If r is greater than or equal to unity, βn  has posterior probability greater than or equal to 
that of  βo, and we accept βn  as our next estimate of beta for that individual.  If r is less 
than unity, then βn  has posterior probability less than that of  βo.   In that case we use a 
random process to decide whether to accept βn  or retain βo for at least one more iteration.  
We accept  βn  with probability equal to r.  
 
As can be seen, two influences are at work in deciding whether to accept the new 
estimate of beta.  If it fits the data better than the old estimate, then pn  will be larger than 
po, which will tend to produce a larger ratio.  However, the relative densities of the two 
candidates also enter into the computation, and if one of them has a higher density with 
respect to the current estimates of  α and D, and σ, then that candidate has an advantage. 
 
If the densities were not considered, then betas would be chosen solely to maximize 
likelihoods.  This would be similar to estimating for each individual separately, and 
eventually the betas for each individual would converge to a distribution that fits his/her 
data, without respect to any higher-level distribution.  However, since densities are 
considered, and estimates of the higher-level distribution change with each iteration, 
there is considerable variation from iteration to iteration.  Even after the process has 
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converged, successive estimations of the betas are still quite different from one another.  
Those differences contain information about the amount of random variation in each 
individual’s betas that best characterizes them. 
 
We mentioned that the vector d of differences is drawn from a distribution with mean of 
zero and covariance matrix proportional to D, but we did not specify the proportionality 
factor.  In the literature the distribution from which d is chosen is called the “jumping 
distribution,” because it determines the size of the random jump from βo to βn.  This scale 
factor must be chosen well because the speed of convergence depends on it.  Jumps that 
are too large are unlikely to be accepted, and those that are too small will cause slow  
convergence. 
 
Gelman, Carlin, Stern, and Rubin (p 335) state:  “A Metropolis algorithm can also be 
characterized by the proportion of jumps that are accepted.  For the multivariate normal 
distribution, the optimal jumping rule has acceptance rate around 0.44 in one dimension, 
declining to about 0.23 in high dimensions …  This result suggests an adaptive 
simulation algorithm.” 

 
We employ an adaptive algorithm to adjust the average jump size, attempting to keep the 
acceptance rate near 0.30.  The proportionality factor is arbitrarily set at 0.1 initially.  For 
each iteration we count the proportion of respondents for whom βn is accepted.  If that 
proportion is less than 0.3, we reduce the average jump size by a tenth of one percent.  If 
that proportion is greater than 0.3, we increase the average jump size by a tenth of one 
percent.  As a result, the average acceptance rate is kept close to the target of 0.30. 
 
Readers with solid statistical background who are interested in further information about 
the Metropolis Hastings Algorithm may find the article by Chib and Greenberg (1995) 
useful. 
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