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FOREWORD 

These proceedings are a written report of the nineteenth Sawtooth Software Conference, held 

in Park City, Utah, September 27–30, 2016. One-hundred fifty attendees participated. 

The focus of the Sawtooth Software Conference continues to be quantitative methods in 

marketing research. The authors were charged with delivering presentations of value to both the 

most sophisticated and least sophisticated attendees. Topics included optimizing the design and 

craft of choice/conjoint analysis, surveying on mobile platforms, MaxDiff, market segmentation 

and classification, use of covariates in HB, and advances in market simulations. 

The papers and discussant comments are in the words of the authors and very little 

copyediting was performed. At the end of each of the papers are photographs of the authors and 

co-authors. We appreciate their cooperation for these photos! It lends a personal touch and makes 

it easier for readers to recognize and greet them at the next conference. 

We are grateful to these authors for continuing to make this conference such a valuable event. 

We feel that the Sawtooth Software conference fulfills a multi-part mission: 

a) It advances our collective knowledge and skills, 

b) Independent authors regularly challenge the existing assumptions, research methods, and 

our software, 

c) It provides an opportunity for the group to renew friendships and network. 

We are also especially grateful to the efforts of our steering committee who for many years 

have helped this conference be such a success: Christopher Chapman, Keith Chrzan, Ken Deal, 

Joel Huber, and David Lyon. 
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SUMMARY OF FINDINGS 

The nineteenth Sawtooth Software Conference was held in Park City, Utah, September 28–

30, 2016. The summaries below capture some of the main points of the presentations and provide 

a quick overview of the articles available within the 2016 Sawtooth Software Conference 

Proceedings. 

* The Effects of Incentive Alignment, Realistic Images, Video Instructions, and Ceteris 

Paribus Instructions on Willingness to Pay and Price Equilibria (Felix Eggers, University of 

Groningen, John R. Hauser, MIT, and Matthew Selove, Chapman University): The authors 

described how the decisions we make as researchers to craft our conjoint analysis surveys (with 

realistic images, video, incentive alignment, and appeals to the respondent to assume that the 

features are held constant if the attribute is not being shown) can affect price sensitivity, 

willingness to pay (WTP), and managerial decisions derived from the research. They conducted 

an experiment involving choice of smartwatches where respondents were assigned to different 

treatment cells that varied the elements of the CBC survey design. The use of high quality 

images affected the relative importances and increased the WTP for aesthetic elements of the 

smartwatch. The incentive alignment increased precision of the part-worths but interestingly 

enough also increased the derived WTP. The use of the video did not have much impact on the 

results other than to add time to the total survey length and perhaps increase respondent fatigue. 

However, it was pointed out that the aesthetic aspects of smartwatches perhaps did not need such 

an elaborate video to explain the features to respondents. The authors concluded by urging the 

audience to pay more attention and put more effort into the craft of conjoint surveys, particularly 

if conjoint analysis is used to simulate a market-based price. 

* Honorable mention based on audience voting. 

* How Many Options? Behavioral Responses to Two versus Five Alternatives per 

Choice (Martin Meissner, University of Southern Denmark/Monash University, Harmen 

Oppewal, Monash University, and Joel Huber, Duke University): Using eye-tracking technology, 

Martin and his co-authors conducted a detailed comparison of how respondents process pairs (2 

concepts at a time) vs. quints (5 concepts at a time) for CBC studies. They found that 

respondents viewing pairs tended to pay attention to more attributes (out of the six attributes they 

studied) than the respondents viewing quints. The derived importances were more uniform for 

pairs compared to quints. Respondents viewing pairs tended to move their eyes from left to right 

across attribute rows between the concept pairs, whereas respondents evaluating quints more 

tended to move their eyes up and down within concepts. Respondents evaluating quints tended 

toward greater simplification (quickly discarding losing concepts) as key attributes were 

identified. Two somewhat unexpected findings from this research were that respondents rated the 

pairs as more difficult to complete than quints. Also, despite the lower statistical efficiency of 

pairs, utilities from pairs outperformed those from quints in predicting holdout triples. The 

authors stated that many consumer decisions (such as in FMCG) are better mimicked by showing 

a great deal of alternatives on the screen, but that there are many instances where conjoint pairs 

can be a good choice for reflecting the decision process and degree of attention to attributes 

commensurate with real world choices. 

*Honorable mention based on audience voting. 
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Findings of the 2016 Sawtooth Software CBC Modeling Prize Competition (Bryan Orme, 

Sawtooth Software): Recently, Sawtooth Software held an open CBC modeling competition, 

attracting 15 teams to compete for a $5,000 prize. Naji Nassar of Marketing Intelligence and 

Research Services won the grand prize and the opportunity to present his model at this 

conference. Many different software systems, models, and model specifications were attempted, 

though there was a strong inclination to use HB models. The best model submitted by any one 

team gave a 5% reduction in error (RMSE of out-of-sample choices) compared to the standard 

default approach using Sawtooth Software’s CBC/HB for utility estimation with randomized first 

choice (RFC) for choice simulation. This suggests that Sawtooth Software’s default approach 

tends to work very well for this kind of CBC problem involving six attributes and vacation cruise 

choices. Interestingly enough, ensembles (via simple averaging of predictions) across the teams 

performed better than the best solution submitted by any one team. This held true for either in-

sample hit rates or out-of-sample share predictions. Simulations on the level of the beta draws 

produced nearly identical results (though directionally slightly higher) than simulations using 

RFC on the point estimates. Although the use of ensembles could mean the difference between 

winning and losing a predictive modeling competition like this, Bryan wondered regarding the 

practicality of using ensembles in consulting practice to achieve the modest gains. There is a 

great deal of effort involved in generating the number of both diverse and high quality models 

needed for successful ensembles. Unless that could somehow be automated, it may be too much 

to undertake for typical client work. 

The Winning Choice Model: A Semi-Compensatory One (Naji Nassar, MIReS): Naji 

described the approach he took to build his winning model for the 2016 Sawtooth Software CBC 

Modeling prize. First, he examined the means and distributions of choices using counting 

analysis. Using GAUSS, he developed an HB model that employed a Fuzzy Consideration Set 

approach—a semi-compensatory choice model that reduces IIA problems. Naji hypothesized that 

respondents might form consideration sets based on the cruise destination attribute and the 

overall cost (the budget) for the cruise vacation. He wrote a custom likelihood function to 

multiply the probability of selecting the destination x budget x the probability of selecting the 

alternative according to the logit rule based on all six attributes. Naji also employed logical 

utility constraints for some of the attributes. 

Using Bayes’ Theorem to Adjust Simulated Preference Shares to Market Reality (David 

Bakken, Foreseeable Futures Group): Conjoint researchers often find themselves looking to 

external effect adjustments to bring simulated shares of preference better in line with real market 

shares. David described previous efforts, including methods for accounting for product 

distribution and awareness. He then proposed an approach based on Bayes theorem that applies 

the known market share (or shares of preference from previous related conjoint research) as a 

prior. If applying market share as a prior, David’s approach offers another way to leverage 

revealed and stated choice data. He demonstrated the result of the adjustments for real case 

studies involving home improvement/building products and health insurance. Via a series of 

market simulation results, he demonstrated that the Bayesian adjustment to shares has stable 

properties and face validity. David recommends the use of the Bayesian adjustment to shares if 

information about distribution and awareness or sales force effectiveness is unknown—and if 

you have solid information to apply as a prior, such as market share or shares of preference from 

multiple previous related studies. 
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Mobile MaxDiff: What Are the Optimal Number of Attributes, Screens, and Level of 

Information Complexity? (Michael Patterson, Radius Global Market Research, and Michael 

Smith, MFour): The authors revisited the question of how many items per set and number of sets 

for MaxDiff can be done effectively, but within the contemporary context of mobile 

interviewing. Mobile surveys often make up around 20% to 30% of completed surveys in 

developed countries. But, mobile is also associated with smaller screens and lower attention 

spans. Previous research at this conference has suggested that 4 or 5 items per screen is optimal 

and that interviewing on mobile is a viable option to fixed platform interviewing for MaxDiff. 

The authors devised a split-sample experiment to test if using 4 to 5 items per screen continues to 

be good advice for mobile MaxDiff surveys (sample drawn from Mfour’s mobile panel which 

involved both smartphone and tablet users). They also manipulated the overall length of the 

MaxDiff survey and tested whether the length of the item descriptions (short or somewhat long) 

affected the quality of the results. They found that showing 7 instead of either 3 or 5 items per 

task resulted in greater abandonment rates and lower internal validity. Overall, the results were 

quite robust to the different treatments. Still, their research tends to confirm that showing 3 to 5 

items works a bit better than 7 items per set. Not surprisingly, shorter questionnaires are 

associated with lower abandonment rates. 

Choice-Based Conjoint in a Mobile World—How Far Can We Go? (Chris Moore and 

Christian Neuerburg, GfK): Given that completion of CBC surveys on mobile devices is now 

quite common, Chris and Christian conducted an ambitious split-sample experiment to test 

different ways of programming and setting up CBC surveys on mobile and to compare 

degradation in responses (if any) to CBC implementations on mobile devices. They programmed 

the surveys using different software platforms to test whether layouts that were responsive to 

mobile screens and orientation (respondents rotating their hand-held devices for portrait vs. 

landscape display) could affect the quality of the results. One of the surprises to the sponsors of 

the research was that mobile respondents tended to take surveys in quite a similar environment as 

for laptop/desktop responders: the vast majority at home and in a quiet/relaxed environment. 

However, the composition of mobile-completed surveys tended to skew younger and more 

female. Even the most demanding survey designs in the experiment (17 tasks, 10 attributes with 

not overly wordy text) still worked quite well in mobile, with very little self-reported difficulty 

or degradation in the survey experience. Pairs and triples tended to work best across all platforms 

and the authors recommended leaning toward asking more rather than fewer tasks whenever 

possible. 

Can Adaptive MaxDiff Provide Better Results than Standard MaxDiff? (Howard 

Firestone, RTi Research): Adaptive forms of MaxDiff arrange items within sets based on 

respondents’ previous answers. By referring to prior choices, better items can be compared 

against better items and worse items versus worse items in subsequent MaxDiff sets. Such a 

design, Howard argued, not only can be more discriminating at the individual level for 

measuring the items at the best and worst ends of the dimensions, but the interview can be 

shorter for the respondent and the process more compelling for the client. Howard conducted a 

split-sample test where respondents received one of four different versions of MaxDiff 

questionnaires: some non-adaptive standard approaches and some adaptive approaches. The 

adaptive MaxDiff cells led to greater discrimination among the items compared to the non-

adaptive MaxDiff questionnaires. The predictions of holdout questions for the adaptive MaxDiff 

designs were comparable to the standard MaxDiff approach. Howard pointed out that the 
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disadvantages of the adaptive MaxDiff approach include more programming expertise and data 

preparation time. 

Comparing Two Methods to Estimate Missing Maximum Difference Utilities (Kelsey 

White and Paul Johnson, SSI): When working with a great deal of items in MaxDiff, some 

approaches (such as Express MaxDiff) lead to missing data (no information on certain items) for 

subsets of respondents. Paul and Kelsey designed an experiment that purposefully led to many 

missing evaluations of items at the individual level. They implemented a first series of MaxDiff 

questions (not covering all the 200 items) and then asked (in multiple rounds) if respondents 

wanted to continue answering more questions. Regarding analysis, HB estimation for Express 

MaxDiff imputes item scores at the individual level for missing items by taking draws from the 

upper level (the population means and covariances). Paul and Kelsey compared that approach to 

an EM algorithm informed only by the non-missing individual-level HB scores: they threw out 

the HB scores for the imputed items at the respondent level and then used EM to impute new 

scores. The subject of the study was a large MaxDiff study: 200 items representing statements 

that presidential candidate Donald Trump has made. At the aggregate analysis, the scores 

imputed using HB and EM were nearly identical, leading to an aggregate correlation of nearly 

1.0. Segmenting respondents by stated party affiliation and comparing the scores also led to 

extremely similar conclusions, regardless of whether the imputation was done via HB or EM. 

Paul and Kelsey followed up with some of the same respondents a few months later to ask 

additional MaxDiff questions on items not seen by these respondents in the first wave of 

interviewing. They compared the imputed scores with the follow-up MaxDiff scores on the 

previously missing items. Hit rates at the individual level were essentially the same for HB and 

EM. 

The Researcher’s Paradox: A Further Look at the Impact of Large-Scale Choice 

Exercises (Mike Serpetti, Claire Gilbert, Gongos, and Megan Peitz, Sawtooth Software): 

MaxDiff has become extremely popular for placing multiple items on a common measurement 

scale and achieving enhanced discrimination compared to other item measurement approaches. 

However, clients often demand a great number of items for MaxDiff studies. The authors 

described a split-sample experiment in which respondents received one of six different large 

MaxDiff tasks. They compared Sparse MaxDiff, Express MaxDiff, and versions that included 

anchor questions or not. Some respondents saw as many as 60 MaxDiff screens (sets) whereas 

other respondents saw 30 or 18 sets. Sparse MaxDiff approaches tended to do a bit better than 

Express MaxDiff in predicting holdout respondents’ choices. They found that for respondents 

receiving 60 sets, the first 30 sets performed nearly as well as using all 60 sets. This 

demonstrates sharply diminishing returns for asking respondents extremely long MaxDiff 

questionnaires. The authors also reported that showing respondents their scores in real time at the 

end of the survey tended to increase respondent satisfaction with the survey. 

*Naïve Bayes Classifiers, or How to Classify via MaxDiff without Doing MaxDiff (David 

Lyon, Aurora Market Modeling): Although the word naïve often connotes overly simplistic or 

bad, David pointed out that in statistics and for classification problems, naïve Bayes classifiers 

are very easy to implement and that they can work surprisingly well. As a first step, David 

showed how using simple cross-tab data on categorical survey questions and by applying 

Bayesian logic one can assign new respondents into any existing segment scheme. In doing so, 

the researcher assumes independence of the predictor variables and multiplies the likelihoods of 

observing the categories of the predictor variable given segment membership by the expected 
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segment size (which serves as a Bayesian prior) to find the posterior likelihood of belonging to 

each group. Entirely aside from MaxDiff, naïve Bayes can be a general-purpose typing tool. 

Upon that logical foundation, David described how to incorporate MaxDiff questions into a 

typing tool as well. If the original segmentation scheme was based on MaxDiff, adding MaxDiff 

tasks to the typing tool helps accuracy considerably. With MaxDiff tasks, one extends the naïve 

Bayes classifiers by continuing to multiply across the likelihood that we would see respondents 

within each segment answer the MaxDiff questions in the manner that the new respondent taking 

the typing tool questionnaire did. David then described analytical and search approaches to find 

MaxDiff typing questionnaires that employ relatively few MaxDiff questions. He demonstrated 

using real case studies how successful MaxDiff typing tool questions (with many or few 

questions) can be for assigning new respondents to an existing segmentation scheme. 

*Best paper award based on audience voting. 

Typing Tools in the Context of Choice Experiments (Lech Komendant, IQS): Lech 

described different typing tool strategies for classifying new respondents based on an existing 

segmentation scheme (where that segmentation scheme could have been developed from 

MaxDiff, CBC, ACBC, or another preference measurement technique). He focused on three 

main strategies: 1) pairwise classifiers, 2) full rankings classifiers (multinomial regression based 

on ranks), 3) naïve Bayes tailored for MaxDiff, and 4) naïve Bayes tailored for MaxDiff plus an 

adaptive questioning component to potentially boost classification success. Lech used simulated 

respondent data (based on segments developed from real data and individual-level HB 

parameters) to test the different approaches. He concluded that all four approaches can be useful, 

but naïve Bayes and the rankings classifier were the best. Holding the number of typing tool 

tasks constant, including more items or profiles per task improves the results (but at the cost of 

longer completion time). The adaptive approach was not especially successful: it required a great 

deal more programming effort and led to only modest gains. 

Full-Flavoured HB: BYO Data in the Upper Model (Jane Tang, Rosanna Mau, 

MARU/Matchbox, and Mona Foss, Bootstrap Analytics): Jane and her co-authors pointed out 

that BYO (build-your-own configurator) questions are somewhat common in product 

development research and are even a standard question type within Sawtooth Software’s ACBC 

tool. Previous research on BYO questions has found that they can be useful as a 

training/education tool prior to conjoint questions, they encourage respondents to focus on each 

attribute, and they can potentially impact derived price sensitivity in the subsequent conjoint 

exercise. Rather than throw the BYO data away or encode the responses into the choice data, the 

authors included the BYO responses as covariates in the upper-level HB model. Covariates are 

most useful if they relate to attribute preferences and BYO questions on the conjoint attributes 

would seem by definition to fit that requirement. Jane and her co-authors showed how BYO 

questions as covariates affected the results for three real studies: one MaxDiff and two CBC 

studies. They found that the use of BYO as covariates adds nuanced, subtle, yet meaningful 

variation to the respondents’ part-worth utilities—it captured greater heterogeneity and in their 

words brought out the “full flavour” of HB. Regarding whether using BYO questions as 

covariates improves the predictive validity of the models, they found only modest evidence of 

this and suggested it depends on the amount of heterogeneity in the data (disagreement across 

respondents). The more disagreement, the more opportunity there is for predictive gain by 

employing BYO questions as covariates. The use of BYO questions in the upper-level HB model 

provides a ready-made solution for generalization to future samples. The BYO questions 
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themselves become the “golden” questions that can be quickly administered to the new 

respondents—allowing researchers to apply the HB model to the new sample without the 

conjoint exercise. 

Simulating from HB Upper Level Model (Peter Kurz, TNS Infratest and Stefan Binner, 

BMS Marketing Research + Strategy): Over the last few years, a few leading researchers and 

academics have suggested that some conjoint analysis situations are better served by conducting 

market simulations using only the upper-level HB parameters (influenced by high quality 

covariates) and by actually ignoring the lower-level individual-level data. Peter and Stefan 

described how simulating from the upper level involves generating respondent agents whose 

characteristics are drawn from the respondents. They analyzed six CBC studies and compared 

the results of simulating based on a) respondent-level point estimates, b) the respondent-level 

draws, and c) simulating from the upper-level model (based on the population means and 

covariances). They reported mixed results regarding whether simulating from the upper level or 

the lower level provided better predictions of holdouts (either in-sample or out-of-sample). But, 

for projects involving product configuration (where the authors hypothesize that there is more 

uncertainty due to the large number of attributes and levels) the upper-level model performed 

better for out-of-sample holdout predictions. The authors concluded that when the conjoint study 

is complex and the sample size is relatively small, investment in obtaining good covariates for 

use in upper-level model simulations could be a valuable path. 

Mapping Attribute Non-Attendance (Keith Chrzan, Sawtooth Software and Joseph White, 

MaritzCX): Respondents to conjoint surveys do not always pay attention to all the attributes, 

Keith and Joseph explained. They also pointed out that buyers in the real world also may not pay 

attention to all attributes. Numerous approaches have been proposed for measuring attribute non-

attendance (the act of ignoring certain attributes), including stated measures, derived measures, 

and eye-tracking. Keith and Joseph used a threshold of importance approach (via a coefficient of 

variation hurdle) based on individual-level parameter estimation to infer the degree of non-

attendance and then examined a number of commercial conjoint data sets regarding that measure. 

They found that attribute non-attendance was more prevalent in full-profile CBC and less 

prevalent in ACBC, best-worst conjoint (BW Case II), and partial-profile CBC. Keith and Joseph 

experimented with non-attendance indicators as covariates in HB, but saw little to no 

improvement in terms of model fit. Why worry about attribute non-attendance? The authors 

suggested that certain deliverables such as willingness to pay can be strongly affected by non-

attendance. Also, researchers should think carefully regarding how much attribute non-

attendance exists in the real-world buying decision and to choose a conjoint analysis approach 

that closely mimics and encourages similar choice behavior. 

Using Discrete Choice to Help Individualize Customer Lifetime Value (Michael Smith, 

Michael Remington, and Michael Drago, The Modellers): Following recent papers and tutorials 

by academics such as Peter Fader, clients often prefer market segmentations that will help them 

focus their energy and advertising dollars on buyers who represent higher potential lifetime 

value. Michael and his co-authors explained that despite the appeal of these approaches, they 

typically focus on aggregate level models and information. They proposed a way to use CBC to 

compute customer lifetime value at the individual level. To illustrate their approach, the authors 

described a case study involving a professional sports team who wanted to incorporate customer 

lifetime value into a segmentation study. The discrete choice study explored respondent reactions 

to different motivations for their spending behavior (ticket prices, promotions, strength of 
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schedule, preferred days of the week to attend games, etc.), allowing the researchers to forecast 

future spending behavior. The CBC task mimicked the look of a website where a person chooses 

a seat in a stadium and purchases a certain volume of tickets. The authors included other key 

pieces of information for targeting respondents in the survey to make the segmentation on 

lifetime value more actionable to the marketing department. Mike and his co-authors used the 

results to score a database of existing customers into the different segments. They also developed 

a typing tool for assigning new additions to the database into the segments. 

MTurk Survey Deception: Sources, Risks, and Remedies (Kathryn Sharpe Wessling, 

Wharton School, Joel Huber, Duke University, and Oded Netzer, Columbia University): Kathryn 

and her co-authors related how common it is for academics to use Amazon’s Mechanical Turk 

(MTurk), an online crowdsourcing labor market used for (among other tasks) completing social 

and market research surveys. Although the demographics of MTurk respondents are loosely 

representative of the general population, the age skews a bit younger. Even if an MTurk sample 

isn’t perfectly representative, Kathryn explained that it provides a much cheaper, faster, and 

easier way for researchers to collect data compared to a professional panel company. But, 

cheating and deception can be a concern within MTurk, particularly when it comes to selecting 

subpopulations from the MTurk community. With multiple online communities providing tips for 

fellow “Turkers” to qualify for the highest paying surveys and hints for how to lie in order to get 

through the screener questions, and pass consistency traps Turkers can easily impersonate to 

maximize their payout. Kathryn and her co-authors developed a series of questionnaires to 

quantify the degree of deception and found some concerning results. Rather than deceivers just 

increasing the noise in survey responses, the authors showed that they systematically bias the 

responses to survey questions, including conjoint analysis. Moreover, deceivers over-report 

ownership or interest in any category that they think the researcher is screening for. They also 

tend to under-use the None category in CBC questions. Kathryn and her co-authors 

recommended that researchers who want to use MTurk develop their own panel of “Turkers,” 

that they conduct their screening questions outside the primary survey, and that they monitor 

MTurk online communities during data collection to be on the lookout for collaborative cheating 

behavior. Kathryn recommended that professional panel companies, who may be losing survey 

business to the advent and popularity of MTurk, have the opportunity to innovate, by automating 

the panel quote process, reducing the speed to completion, and simplifying the backend payment 

process in order to compete with the MTurk platform. Given the issues with MTurk deception, 

professional panel companies can justify charging a premium, although the prices of professional 

panel companies are still relatively too high to compete with a MTurk sample. 

Process Tracing: A New Tool for Modeling Physician Treatment Algorithms (Stephen 

Bell and Douglas Willson, A+A Bell Falla): Many research studies aim to understand how 

physicians make treatment decisions for specific patients facing certain health circumstances. 

Although conjoint analysis has been used for this purpose, Stephen and Douglas described a 

related but staged approach called process tracing (versions of which have been available to 

researchers since the 1970s, e.g., information boards). With process tracing, doctors are asked to 

make a decision regarding how to treat a patient once they feel they’ve been given enough 

information. Rather than give all the information upfront about the patient (and/or the treatment 

characteristics) they are shown a number of attributes that are initially blank (as if they were 

information cards that had been flipped over). The attributes are labeled (such as “age of 

patient,” “patient prior history,” etc.) but the level corresponding to that patient is only seen if the 

doctor clicks on the attribute to “turn the card over.” After the doctor has turned over enough 
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cards to gain enough information such that they are confident making a decision, the choice is 

made and the next task is shown. An ordered sequence of diagnostic steps (often following a 

tree-based hierarchy decision process) is common to doctors and encouraged in their medical 

training. Stephen and Douglas explained that this heuristic process seems quite natural for 

doctors to follow and is therefore realistic for understanding their decision making. Prior to 

constructing a process tracing survey, upfront qualitative work is usually required to understand 

the key attributes involved and the language the doctors use. Regarding the analysis of the 

process tracing survey data, multinomial logit (estimated via HB) may be used to model the 

heuristic decision process and build choice simulators similar to conjoint analysis. The 

importance scores tend to be quite similar between CBC and a simple reverse-ranking score for 

attributes chosen (uncovered) by the physician respondents. 

Let’s Take None Seriously (Ula Jones, Tomer J. Ozari, and Peter Kurz, TNS): Ula and her 

co-authors reviewed the various ways that have been proposed to elicit the None response, 

including standard, dual-response None (2-point and 5-point variations), and follow-up purchase 

intent questions. Although many researchers have begun to favor the dual-response None, the 

authors point out that this approach is not without its problems, one of which is that they argue 

that it just feels unnatural to respondents. Ula and her co-authors created a split-sample study to 

test four different ways of asking the None alternative: traditional, dual-response, reversed dual-

response, and traditional None with follow-up product selection. With the reversed dual 

response, respondents are shown a CBC task with multiple product concepts and are first asked if 

they would purchase any of the products (yes/no). No matter whether they say yes or no, they are 

then asked which of the products they would be most likely to purchase. The traditional None 

with follow-up product selection only triggers a follow-up question if respondents pick the None 

alternative. In that case, they are shown the product concepts they just had seen and asked which 

of these they would be most likely to purchase. The authors found that respondents tended to like 

the traditional None a bit more than the other approaches (result not significant) and that the 

reversed dual response was preferred a bit more compared to the dual response None. The use of 

the None was highest in the reversed dual-response None format and least in the traditional None 

with follow-up. 

* The Art and Science of Nested Logit: Case Studies from Modeling Many SKUs (Kevin 

Lattery, SKIM Group): Especially in FMCG studies involving many SKUs on the shelf, there are 

competitive (differential sourcing) effects that may not be captured well with logit models 

operating under the IIA (independence from irrelevant alternatives) assumption. Often the same 

brand with multiple SKUs will see its new (or improved) new offerings compete more heavily 

with its existing offerings. Oftentimes competition is enhanced among SKUs within the same 

package size. Although individual-level models under HB helps alleviate some of these concerns, 

the larger the models (the more parameters) and the more sparse the data, the greater the 

problems that remain with proper substitution and sourcing of volume. Kevin described how 

nested logit provides a framework for allowing the researcher to specify that certain groups of 

product alternatives (nests) compete more heavily within the nests than between the nests. 

Furthermore, nested logit provides a way to estimate that degree of competition (correlation) 

among alternatives within the nests. How to choose the nests is a challenge and Kevin 

demonstrated a counting approach (computing the overlap between pairs of SKUs) followed by a 

hierarchical clustering to help the researcher develop hypotheses regarding appropriate nesting 

structures. Kevin recommended testing different nesting structures with an aggregate nested logit 

model, then pruning nests that don’t seem to be justified. For final modeling, Kevin recommends 
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using nested forms of latent class or HB (he suggested R packages for this), though there are 

challenges involved in model specification, convergence, and time to run the models. 

* Honorable mention based on audience voting. 

Mining and Organizing User-Generated Content to Identify Attributes and Attribute 

Levels (Artem Timoshenko and John R. Hauser, MIT Sloan School of Management): Although 

conjoint analysis has been successful in many applications, the challenge always facing the 

researcher is how to select the right attributes and levels for the study. Artem and John reviewed 

common approaches, including expert opinion, competitive research on the internet, reviewing 

user-generated content (UGC) in the form of customer reviews, or needs-based approaches 

which translate customer needs into attributes. The hurdle with UGC is the shear amount of 

information which can sometimes involve gigabytes of typed language. To identify customer 

needs from UGC, the authors designed a machine learning approach based on Convolutional 

Neural Networks (CNN) and dense sentence representations to identify informative content and 

sample a diverse and extremely reduced subset of the content for humans to then review. The 

authors compared how many unique customer needs could be identified if humans randomly 

sampled sentences to process and code manually as opposed to letting machine learning methods 

screen down the phrases for further human review. They found that the machine learning-aided 

process was substantially more efficient and consistently led to discovery of more unique 

customer needs. The authors concluded by suggesting that future improvements may involve 

completely automating all aspects of the machine-learning algorithm so that no human 

intervention is needed. 

What a Difference Design Makes (Karen Buros, Radius GMR, and Jeremy Christman, 

Procter & Gamble): Karen and Jeremy described the challenges and successes they encountered 

when using a menu-based choice approach to understand how buyers purchase products within a 

personal care category. The product category involved three compatible product types (cleansing, 

finishing, and remedial) which consumers regularly use on all or single occasions, three major 

brands, and many overlapping benefits. Respondents were shown a subset (22) of the 86 

different products in each of 12 choice tasks and could multi-select as many or as few as they 

wanted to choose within each task. The authors initially built 86 separate binary-logit HB models 

with ASCs and all significant cross-effects, but faced some challenges getting predictions from 

the resulting market simulator that could reasonably match raw count data. Cleaning the data of 

respondents who answered in clearly illogical ways, pruning the model to only involve the most 

significant cross-effects, and constraining the signs of those cross effects all seemed to help. But, 

the biggest breakthrough in bringing the market simulator in line with the raw counts data was to 

recognize how much extrapolation was involved if building a simulator that assumed that all 86 

items were being shown at once, when the data generation process involved respondents only 

ever seeing 22 items at a time. Subsequent refinements involved collapsing the design space 

from 86 total items into smaller factors to test the specific hypotheses of the research. Karen and 

Jeremy emphasized the importance of taking enough time to undertake the necessary steps to do 

the job right for complex MBC studies like these. 

Explaining Preference Heterogeneity with Mixed Membership Modeling (Marc R. 

Dotson, Brigham Young University, Joachim Büschken, Catholic University of Eichstatt-

Ingolstadt, and Greg M. Allenby, Ohio State University): Marc and his co-authors acknowledged 

that finding covariates that are predictive of part-worths is challenging, but evidenced that more 

could be done to include more covariates in HB modeling of choice data via dimension reduction 
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in the covariates by accounting for co-occurrences. They described a dataset where respondents 

had completed a pick any/j questions regarding the benefits that respondents believe robotic 

vacuums could bring them, followed by a standard CBC questionnaire on robotic vacuums. 

Rather than use all 18 benefit items as binary covariates in the model, they utilized a grade of 

membership model (GoM). The GoM allows data reduction into various latent factors and the 

computation of a membership vector (loadings on the latent dimensions) for each respondent. 

What makes the data GoM reduction technique different from other approaches is that it 

uncovers extreme preference profiles (similar to archetype analysis) rather than summary 

profiles more representative of the means of latent dimensions. Marc and his co-authors found 

that the use of the GoM membership vector as covariates in HB estimation could improve the in-

sample fit of the data as well as the out-of-sample hit rate for holdouts. 
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ABSTRACT 

We describe how craft in conjoint analysis surveys (realistic images, incentive alignment, 

training videos, and ceteris paribus instructions) affects both accuracy (relative part-worths) and 

precision (scale of the part-worths). Accuracy and precision, in turn, affect estimations of 

willingness to pay (WTP) and predictions of market-equilibrium prices and profits for various 

“what-if” scenarios. Managerial recommendations, which attribute levels to include in a product 

and how to price a product, vary dramatically depending upon the craft of the study. When used 

in litigation, craft also affects the estimated value of copyrights and patents. To demonstrate the 

effect of craft, we conducted an experiment (smartwatch application) in which we systematically 

varied different drivers of craft. The use of realistic images increased accuracy and precision. 

Incentive alignment increased precision, but not accuracy. Neither training videos, nor ceteris 

paribus instructions had a positive effect. In fact, training videos reduced precision substantially 

because the wear-out effect (for our data) overwhelmed the training effect. The effect of craft on 

accuracy and precision had dramatic effects on estimations of WTP and equilibrium prices and 

profits. Managerial recommendations depended critically on craft as well as whether precision 

was based on the estimation data or adjusted for external validity. Craft matters! Defaults are not 

sufficient and could lead to incorrect recommendations and valuations. 

This paper summarizes results from Eggers, Hauser and Selove (2016). All copyrights remain 

with the original paper, which provides much greater detail. Non-exclusive permission is given to 

Sawtooth Software to publish this paper. 

MOTIVATION 

Modern conjoint analysis has been successful in the sense that it is now relatively easy to 

implement a conjoint analysis study. For example, students using Sawtooth Software’s Discover 

package can create conjoint analysis designs and questionnaires within minutes with simple-to-

understand point-and-click methods. Although pictures and animations are feasible, the default in 

most software packages is that profiles are described using plain text. Furthermore, advanced 
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methods such as incentive alignment and instructional videos are difficult and expensive to 

implement. Not surprisingly, many conjoint studies rely on defaults. But does it matter? Does 

“craft” matter? 

Every day, both academics and practitioners make cost vs. benefits decisions about how to 

implement a conjoint analysis study. Higher craft, e.g., more realistic pictures or animations, are 

often expensive and time-consuming. We would like to know whether the additional cost is 

justified. For example, are managerial recommendations sensitive to craft decisions such as the 

selection of images for products and attributes, the use of incentive alignment, the use of video 

instructions, enhanced instructions that “all else is equal,” the use of dual-response formats, the 

number of alternatives in a choice set, the number of choice sets, the inclusion of attributes that 

describe the product in question but are not of managerial interest, etc.? 

The question of craft is extremely important. Not only are there roughly 14,000 conjoint 

analysis applications per year (Orme 2009, p. 127), but conjoint analysis is now being used to 

value copyrights and patents, often resulting in judgments in the hundreds of millions of dollars 

(Cameron, Cragg, and McFadden 2013). Through theory and empirical examples, we 

demonstrate that craft does matter. Craft affects pricing decisions, strategic decisions on which 

attributes to include in a new product, predictions of market response, predictions of profits due 

to managerial actions, and the valuations attached to copyrights and patents. 

CRAFT AFFECTS BOTH ACCURACY AND PRECISION 

For the purposes of this paper, we distinguish two aspects of a conjoint analysis study that 

might be affected by craft: accuracy and precision. We call a conjoint analysis study accurate if 

it estimates the correct relative part-worths. We call a conjoint analysis study precise if it 

estimates the correct scale, that is, the correct absolute magnitudes of the part-worths. Precision 

measures the signal-to-noise ratio, because it compares that which is explained by the attributes 

in the conjoint design to that which remains noise (the error term). 

To define accuracy and precision mathematically, consider the standard logit model that is 

used in most choice-based conjoint analyses. For ease of exposition, we write the equation for 

binary attributes and for dummy-variable coding. The concepts apply to effects coding and to 

multi-level attributes. Indeed, our empirical example includes a multi-level attribute. 

Let     be consumer  ’s utility for product profile  . Let     be a binary indicator for the     

attribute such that       if attribute   is at its “higher” level for profile   and       if 

attribute   is at its “lower” level for profile  . Although we say “higher” and “lower,” we do not 

require that the higher level be preferred to the lower level, or that the ordering of levels is the 

same across consumers. For example, the “higher” level might be a silver-colored product and 

the “lower” level might be a gold-colored product. Let    be the price associated with the     

product profile. 

To fully specify the utility function, we define    
  as consumer  ’s (raw) part-worth for 

attribute   (“higher” vs. “lower” level),    as the weight for price, and     as an i.i.d. Gumbel-

distributed error term. Assume there are   attributes. Utility for the     product profile is 

specified as: 
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(1)            
 

 

   

          

The logit model predicts the probability,    , that consumer   chooses the     product profile 

for a choice set consisting of   product profiles. In this equation, we let    
  denote the utility of 

the no-choice option. 

(2)     
     

 
      

        

         
  

        
 
        

  

Following McFadden (2014), we rescale utility to include a scale factor,   , such that the 

relative weight on price is    . In this formulation, as interpreted by McFadden (2014), the    ’s 

are the amounts that respondent   is willing to pay (WTP) for moving attribute   from its 

“lower” level to its “higher” level. (If the lower level is preferred, the WTP is negative.) Note 

that the WTP does not depend upon   . 

(3)     
           

 
         

            
 
        

          

 

We call    the precision (for consumer  ). In the conjoint analysis literature,    is sometimes 

called the “scale factor.” The basic concept is that if    is large, then the standard deviation of the 

error term is small compared to the magnitude of the part-worths. A small relative error term 

means that the CBC logit model predicts more precisely the consumer’s choices. (We say 

“relative” because, in most logit specifications, there are   parameters for   part-worths. Thus 

the standard deviation of the error term is not identified independently of the part-worths—only 

the relative magnitude of the error term is identified.) 

We illustrate accuracy and precision with Table 1. Consider a conjoint design with three 

binary attributes and price. Suppose that the true raw part-worths represent how consumers 

actually behave in the marketplace when making choices among products described by these 

three attributes and price. (The error term includes all unmodeled effects including attributes that 

are not accounted for and any inherent uncertainty in consumer choice.) These part-worths are 

shown in the first column of data in Table 1. 

Table 1. Illustration of Precision and Accuracy 

 

True (raw) 

part-worths 

Lower 

accuracy 

Lower 

precision 

Higher 

precision 

Attribute 1 1.0 2.0 0.50 2.0 

Attribute 2 2.0 1.0 1.00 4.0 

Attribute 3 0.5 0.5 0.25 1.0 

Price  1.0 1.0 0.50 2.0 
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Suppose that we estimate a model that has roughly the same magnitude of part-worths, but it 

switches the importances of attributes 1 and 2. We say that such a model has lower accuracy (2
nd

 

column of data). Suppose we estimate a model that gets all relative part-worths correct, but has a 

lower scale. We say that such a model is accurate but less precise (3
rd

 column of data). Finally, 

the last column of data illustrates a model that is accurate but appears (to the analyst) more 

precise than truth. 

Equation 3 is a useful theoretical definition of precision, but, in a population of consumers 

we might prefer a definition of precision that takes into account the fact that both the relative 

part-worths (   ’s) and the precisions (  ’s) vary over respondents. The ability to model such 

variation is an important advantage of advanced models such as hierarchical Bayes or empirical 

Bayes. When part-worths vary or when accuracy differs between studies, a better empirical 

measure of the precision is the average of the respondents’ sum of absolute attribute importances 

(Arora and Huber 2001). We use that measure in our empirical comparisons throughout this 

paper. 

Having defined accuracy (relative part-worths) and precision (scale factor), we now 

hypothesize that craft affects both and we hypothesize that both accuracy and precision affect 

managerial recommendations. We illustrate these hypotheses in Figure 1. 

Figure 1. Hypotheses: Craft Affects Managerial Recommendations 

 

PRECISION AFFECTS PRICE SENSITIVITY, WHICH, IN TURN, AFFECTS PREDICTED MARKET-

EQUILIBRIUM PRICES AND THE STRATEGIC SELECTION OF ATTRIBUTES FOR PRODUCTS 

When true precision is higher, consumer choices are more sensitive to changes in attributes 

or prices. We illustrate this phenomena in Figure 2 where we use Excel to plot the logit 

probabilities,    , as a function of prices (    for lower precision (      ) and for higher 

precision (       ). When precision is lower, as in the solid line in Figure 2, choice probabilities 

change more slowly as price changes. The curve is much flatter, almost a straight line. However, 

when precision is higher, as in the dotted line in Figure 2, choice probabilities change more 

quickly as price changes. The curve is much steeper. For sufficiently high precision (    ), 

the logit model acts like a first-choice model (a step function). 

Craft
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Figure 2. Higher Precision Means Greater Price Sensitivity 

 

Willingness to Pay 

WTP clearly depends upon accuracy. This is clear in McFadden’s (2014) formulation because 

consumer  ’s WTP for attribute   is the relative part-worth (   ). If the    ’s are incorrect, then 

the estimate of WTP will be incorrect. While WTP is not market price (Orme 2009, p. 87), WTP 

is valuable in its own right. For example, when Polaroid launched the iZone camera it was able 

to determine that consumers would pay, on average, close to $10 for interchangeable camera 

covers—a feature that cost but pennies to produce. On the other hand, it learned that consumers 

were unwilling, on average, to pay anywhere near the cost necessary for the iZone camera to 

produce higher-resolution photographs. (The iZone camera was targeted to kids and produced 

postage-stamp-sized instant pictures.) Polaroid included interchangeable camera covers, but not 

higher-resolution capability (McArdle 2000). Similarly, when valuing patents, the marketing 

expert is often asked to provide WTP estimates to “damages” experts who combine secondary 

data with WTP to arrive at valuations (McFadden 2014; Mintz 2012). 

Market Equilibrium-Price 

After a conjoint analysis model is estimated, the relative part-worths and precisions can be 

used in a choice simulator. Choice simulators predict how aggregates of consumers (the market 

and/or market segments) react to changes in attributes or price. Allenby et al. (2014) propose that 

conjoint analysis market simulations be used to compute Nash equilibrium prices. They further 

propose that the courts rely on the marketing expert to be both a marketing expert and a damages 

expert by estimating the change in Nash equilibrium prices due to a patent. They propose that the 

output of the conjoint analysis simulator for a product with the patented feature be compared to 

the output of the conjoint analysis simulator for a product without the patented feature. 

The same methods, as those proposed by Allenby et al., can be used to predict how the 

market will react to the introduction of a new product or to a change in a product’s attribute 

levels. If costs are known, the simulator can predict profits for the new product or for a change in 

a product’s attribute levels. The analysis could be extended to situations where competitors are 

hypothesized to respond to a new product by changing their attribute levels. For example, if 

BMW introduces adaptive cruise control, we might expect Audi, Mercedes, and Lexus to 
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respond by introducing their own versions of adaptive cruise control. (By the way, this has 

already happened.) 

As illustrated in Figure 2 (for price), predictions of consumer price response depend upon 

precision. This sensitivity to precision is particularly critical if the simulator is used to predict 

equilibrium prices. For example, Hauser, Eggers, and Selove (2016) illustrate the sensitivity of 

equilibrium prices to precision with a simple two-segment model in which the relative part-

worths and precisions are homogeneous within segment (but not between segments). They then 

vary precision and compute the Nash equilibrium prices. These prices are shown in Table 2. 

Notice that equilibrium prices vary dramatically over the range of precisions that we might 

expect in empirical conjoint analysis studies. 

Table 2. Precision Affects Equilibrium Prices 

Precision (   
Predicted Equilibrium Price in 

Differentiated Market 
(in currency units) 

0.5 2.59 

1.0 1.42 

2.0 0.92 

3.0 0.82 

4.0 0.79 

5.0 0.78 

In Table 2, the equilibrium prices vary from under 1.0 currency unit to over 2.5 currency 

units. This could have a dramatic effect on whether or not a product is launched or in the 

valuation of a copyright or patent. In a typical patent case, such a difference in equilibrium prices 

(with and without a patented feature) could mean a difference in valuation in the hundreds of 

millions, or even billions, of dollars. For example, Apple has sold over 800 million iPhones. If 

the difference in price due to a patented feature swung from $10 to $25 due to precision, that 

would imply a difference in valuation of $12 billion. (These prices are the equilibrium prices, not 

the differences in equilibrium prices. Estimating differences requires additional simulations, but 

the point is made. Prices depend dramatically on precision.) 

If craft affects precision, then clearly craft matters for predicting price and profits, whether it 

be for a newly designed product, a change in a product’s attribute levels, or due to a patented or 

copyrighted feature. It is, of course, obvious that accuracy affects WTP and hence also affects 

predicted equilibrium prices and profits. 

Strategic Recommendations for the Attribute Levels of a Product 

Suppose that more consumers prefer a silver-colored watch to a gold-colored watch than vice 

versa. An innovator of smartwatches, facing no competition (and limited to one color) might 

introduce a silver-colored smartwatch. Even if the innovator is anticipating a competitor, the 

innovator might try to preempt competition and “position” its product as a silver-colored 

smartwatch. In practice, such strategic positioning decisions are usually made on product 

“positions” that are difficult to match. For example, Brita filters preempted competition by 

positioning themselves as the best-tasting water filters. It’s competitor, P&G’s PUR water filter, 
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differentiated the market by positioning itself as healthy. The market was also differentiated on 

attributes, with Brita dominating pitcher filters and PUR dominating faucet filters. 

A follower now has a choice. If the follower ignores the fact that the innovator is marketing a 

silver-colored smartwatch, the follower might be tempted to introduce a silver-colored 

smartwatch. For example, the follower might use a conjoint analysis simulator without taking 

into account that the innovator will respond to the follower’s launch. For example, the innovator 

might lower its price to combat the market entry. A more sophisticated follower might decide to 

differentiate the market and introduce a gold-colored smartwatch. The sophisticated follower 

hopes that it will sell to the gold-color-preference segment leaving the silver-color-preference 

segment to the innovator, thereby reducing price competition. 

The decision depends on the size of the two segments, on the market response to color, and 

on the market response to price. If the market is not very responsive to either price or color, 

differentiation will have little effect on reducing price competition. The follower might be best 

advised to target the largest segment and introduce a silver-colored smartwatch. On the other 

hand, if the market is very responsive to price or color, differentiation will reduce price 

competition. The follower might be best advised to introduce a gold-colored smartwatch. 

Market response to both attributes and price depends upon precision. Hauser, Eggers, and 

Selove (2016) prove formally that lower precision implies an undifferentiated market, while 

higher precision implies a differentiated market. They also demonstrate that the intuition based 

on the formal analysis applies when heterogeneity is continuous as is modeled in standard 

conjoint analysis estimation. (While this result has the flavor of standard analyses of 

differentiation, the effect is due to precision not to heterogeneity in consumer preferences.) 

Put another way, the strategic choice of which level to include in a product depends upon 

precision, even if the relative part-worths are perfectly accurate. Of course, accuracy also affects 

the relative part-worths and, hence, the choice of attribute levels for the firm’s product. Craft 

matters for the strategic choice of product attributes! 

TRUE PRECISION VERSUS THE ESTIMATED PRECISION UPON WHICH THE FIRM RELIES 

Before we examine empirically four elements of craft (drivers of precision), we pause to 

discuss interpretations of precision. Typically, in conjoint analysis applications, analysts estimate 

a logit model and report the part-worths. The absolute part-worths might be used in a simulation, 

as is common in academic studies. Alternatively, the relative part-worths might be used, 

combined with an analyst-chosen error magnitude, as in randomized first-choice simulations. In 

either case, there is a precision (   associated with the simulation. When this precision is based 

on the estimated logit model, that is, the choice sets used to estimate the logit model, we might 

call it estimated precision,            . 

Typically, analysts report fit statistics such as hit rate, the percent of uncertainty explained 

(  ), Kullback-Leibler convergence, root likelihood, AIC, BIC, or DIC. Sophisticated analysts 

also report these statistics for holdout choice sets. Experienced analysts know that the holdout 

statistics are never as good as the fit statistics. The precision reported based on the fit data may 

not be the precision that applies to the holdout data. It is a simple matter to re-estimate precision 

in a one-variable logit model. The dependent variable in this logit model is choices in the holdout 

sets and the explanatory variable is utility as created by the relative part-worths. We might call 
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this data-based precision,                     . We use the word “internally” because holdout 

choice sets are really a test of internal validity. For high-craft studies, we might expect that 

internal validity is a good indicator of external validity, but that is worth testing. For one test, see 

Toubia et al. (2003). 

Although rare, some analysts go a step further and test a form of external validity. For 

example, the analyst might create an incentive-aligned marketplace and ask respondents to make 

choices in that marketplace after a delay of a few weeks. The closer the induced marketplace is 

to the real marketplace, the closer the test is to a test of external validity. We adjust precision for 

external validity with the same type of one-variable logit. The only difference is that the 

dependent variable is now the choice in the induced marketplace. We might call this externally-

adjusted precision,                     . 

We hypothesize that                      and                      depend upon craft. That is, 

we expect that higher craft leads the analyst to estimate models that fit the holdout data better 

and fit any induced marketplace data better. We expect that the precision from the highest craft 

study, adjusted to the induced marketplace may be our best estimate of true precision,      . 

Estimation precision,            , may or may not depend upon craft. If consumers are consistent 

in their answers to lower-craft questions,             might be high even if we cannot predict 

holdout choices or choices in an induced marketplace. 

In this paper, we report            , because this is the most common precision that is 

reported (when precision is reported). We also report                      based on an incentive-

aligned induced marketplace with twelve smartwatches and an outside option that takes place 

three weeks after the estimation (and holdout data) are collected. (One in 500 respondents 

received the smartwatch they chose in the induced market, plus any change from $500.) We take 

on faith that                      is closer to       than is             or                     . 

AN EMPIRICAL STUDY TO TEST DRIVERS OF PRECISION AND ACCURACY 

We chose to test four drivers of precision and accuracy: (1) relative realism of the images 

used to describe attributes and profiles, (2) incentive alignment, (3) videos that train respondents 

about attributes and the choice tasks, and (4) instructions that all attributes, not displayed 

explicitly in the product profiles, are to be considered common to all profiles in the choice set 

(ceteris paribus instructions). These four drivers are cited often in the literature and in challenges 

to the use of CBC to value patents and copyrights. If we can show that any of these elements of 

craft affect managerial recommendations, then we hope to encourage other researchers to 

examine additional elements of craft. 

The context of the empirical test is smartwatches. This category is sufficiently complex to 

make the test relevant, but not so complex as to make an initial test infeasible. We focused on 

just three attributes and price: case color (silver or gold), watch face (round or rectangular), 

watch band (black leather, brown leather, or matching metal color), and price ($299 to $449). 

Naturally, any missing features affect the error term, and hence precision, thus,       remains 

finite. The effect of non-modeled attributes should be constant across all but the ceteris paribus 

manipulation. In the ceteris paribus instructions, we inform consumers that brand, operating 

system, and technical features remain constant across all profiles. (Consumers are asked about 

their brand choice and all profiles are about that brand.) Because brand (and operating system) 
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are important features of smartwatches, we hypothesized that ceteris paribus instructions (versus 

lack thereof) would affect precision. Holding brand and operating system constant means the 

ceteris paribus manipulation provides a strong test for the effect of non-modeled attributes in the 

smartwatch category. 

We wanted to maintain high quality on all aspects of the study that were not experimentally 

varied. Such recommendations are made in Allenby et al. (2014). We recruited a US sample from 

a professional panel. The panel, Peanut Labs, maintains 15 million prescreened respondents. 

Peanut Labs is a member of the ARF, CASRO, ESOMAR, and the MRA and has won many 

awards for high quality. We targeted respondents who expressed interest in the category, were 

aged 20–69, and agreed to informed consent as required by our internal review boards. 

We followed standard survey design principles (Schaeffer and Presser 2003). All questions, 

attributes, and choice tasks were pretested carefully (66 respondents using the same sampling 

criteria). We tested for and found no demand artifacts. We used hierarchical Bayes logit-based 

estimation (Sawtooth Software 2009). We used sixteen choice sets for estimation (and two for 

holdout validation) with three profiles per choice set. (Three profiles is, by far, the most common 

in applications [Meissner, Oppewal, and Huber 2016].) We used a dual-response format for the 

outside option (Brazell et al. 2006; Wlömert and Eggers 2016). 

We varied the four elements of craft in an orthogonal half replicate of a    design. 

Respondents were assigned randomly to each experimental cell of the half replicate, with 

roughly an equal number of respondents in each cell. Three weeks after the conjoint analysis 

studies were completed, we recontacted respondents and asked them to choose a smartwatch 

from a (full factorial) market of twelve smartwatches in a dual-response format. We assigned 

prices to the twelve smartwatches randomly and confirmed, based on the pretest data, that none 

of the options was dominating or dominated. The choice was incentive-aligned and presented the 

most realistic images of smartwatches. 

The four elements of craft were: 

Realism of the Stimuli 

For the (hypothesized) higher level of craft we used realistic images of smartwatches in 

which the attributes were embedded in the images and listed in easy-to-read text below the 

images. The images included animations that allowed the respondents to see multiple views of 

the watches. For the (hypothesized) lower level of craft, we used a format similar to that which is 

the default in most conjoint analysis software. The lower-craft profiles are primarily text-based, 

although we did use simple graphics. Figure 3 gives examples of the stimuli (but not the 

animations). 
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Figure 3. Varying the Craft of the Images (from Eggers, Hauser, and Selove 2016) 

(lower craft shown first, then higher craft) 

 

 

Incentive-Alignment 

We told the incentive-aligned respondents that 1 in 500 respondents would receive the 

smartwatch that he or she chose in a randomly-selected choice task as well as any difference 

between the displayed price and $500 (Ding 2007; Ding, Grewal, and Liechty 2005). 

Respondents who chose the outside option would receive $500 in cash. Incentive-aligned 

respondents watched a one-minute video describing the incentives 

(https://youtu.be/DBLPfRJo2Ho). To avoid confusing respondents, we used, for each 

experimental condition, a video that was consistent with that experimental condition. For 

example, if respondents were in the low-realism manipulation, the example choice sets shown in 

the video used lower-realism text-based images. In this way we measure the incremental impact 

of incentive alignment. Respondents who were not incentive-aligned were told that 1 in 500 

would receive a cash bonus of $500. The $500 was not tied to their choices. 

Training Video 

Respondents assigned to the training video were required to watch a two-minute animated 

video describing the smartwatch category, the smartwatch attributes, and the choice tasks 

(https://youtu.be/oji_bw_oxTU). We matched the videos to the experimental cells. We chose not 

to force an equivalent two-minute delay for respondents who were not assigned to the training 

video, because such a delay does not represent common practice and might introduce a demand 

artifact. Our goal was to determine whether or not a training video is higher craft or lower craft. 

It might be higher craft because well-instructed respondents might understand the task better; it 
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might be lower craft if the additional instructions do not overcome the potential for respondent 

wear-out. 

Ceteris Paribus Instructions 

CBC formats assume that all product attributes that are not varied in the choice tasks are held 

constant in the choice tasks (Green and Srinivasan 1990). If respondents do not understand that 

such attributes are to be held constant, they might infer unobserved characteristics to be 

correlated with the attributes that are varied. For example, without ceteris paribus instructions, 

respondents might be more likely to infer that quality changes if prices change. We used the 

following instructions for respondents assigned to the (hypothesized) higher level of craft. 

Respondents in the (hypothesized) lower level of craft received no reminders to hold all other 

attributes constant. 

Please assume that all watches are from your preferred brand 
[adjusted to consumer’s brand preference] and are compatible with 
your smartphone so that they can show incoming messages or 
calls. Assume that all of these watches have a battery that lasts a 
day or more, a heart rate monitor, Bluetooth, high definition color 
LED touchscreen, 1.2 GHz processor, 4 GB storage, and 512 MB 
RAM. 

THE EMPIRICAL EFFECT OF CRAFT ON ACCURACY AND PRECISION 

The final sample of respondents who completed both waves of the study was 1,044 

respondents split roughly equally among the experimental conditions in the orthogonal half 

replicate of the    design. (109 respondents always chose the outside option and were eliminated 

as not interested in smartwatches, at least not interested in the smartwatches in the conjoint 

design. The elimination of respondents was not correlated with any experimental manipulation.) 

Roughly 500 respondents were assigned to each condition, e.g., realistic images vs. text-

based images. Respondents took approximately 200 seconds to answer the choice tasks and this 

did not vary among experimental manipulations. The total survey took approximately 400–500 

seconds to complete. Those respondents who were assigned to incentive alignment took 

approximately 69 seconds longer. Those respondents who were assigned to the training video 

took approximately 142 seconds longer. The longer duration corresponds to the length of the 

mandatory videos in these conditions. In approximately 25% of the choice tasks, respondents 

chose the no-choice outside option. This was slightly higher (3–5%) for more-realistic images, 

for those who saw the training video, and for those who were incentive aligned. 

Impact of Craft on Accuracy 

Neither incentive alignment, the training video, nor ceteris paribus instructions affected the 

relative part-worths substantially. For example, on average, differences in relative attribute 

importances between manipulations varied by but a few percentage points, usually by no more 

than one percentage point. On the other hand, realistic images mattered. Those respondents who 

were shown more realistic images were more likely to value differences in the watch band (40% 

vs. 27% relative importance of watch band) and less likely to value differences in color (17% vs. 
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22% relative importance of watch-face color). They were also relatively less price sensitive (21% 

relative importance of price vs. 28% relative importance of price). Thus, it appears that only the 

realism of the images affects accuracy in our data. 

Accuracy (the relative part-worths) affects WTP, where WTP is interpreted as consumer 

surplus—the demand curve. Although, in McFadden’s (2014) formulation, the relative part-

worths are the WTPs, there are issues with this interpretation when hierarchical Bayes or 

empirical Bayes analysis is used. First, the part-worths are heterogeneous. This heterogeneity is 

inherent whether we sample from the hyper-distribution, from the full distribution of respondent-

level part-worths, or if we use the mean part-worths for each respondent. Second, the conjoint 

study only collects data within certain price ranges. For example, our prices varied from $299 to 

$449. Samples from the hyper-distribution, samples within the full distribution, or even the mean 

part-worths might imply WTPs outside this range. It would violate sound scientific principles to 

extrapolate beyond the price range that was used in the survey. Thus, we need a robust summary 

that does not violate these scientific principles. One method is to use robust statistics, such as 

medians. Another procedure that is commonly applied is to use a two-product simulator in which 

one product has the attribute level of interest and the other has the lower level of the attribute. 

The price that equalizes the predicted shares of both products can then be interpreted as WTP. 

We adopt this common practice for estimating the market’s WTP. 

Because only the realism of the images affects accuracy, only the realism of the images 

affects WTP substantially. As shown in Table 3, this impact can be dramatic suggesting that 

researchers should pay close attention to the realism of the images. The default of text-based 

formats may underestimate the willingness to pay for a product attribute. 

Table 3. The Realism of Images in Conjoint Analysis Affects Estimated WTP 

Calculated vis the Simulation 

Method 
More Realistic Images Text-Based Images 

Round to Rectangular Face $103 $39 

Gold to silver color $65 $59 

Brown to black band $130 $42 

Metal to black band $132 $4 

Impact of Craft on Estimation Precision (           ) 

The realism of the images and incentive alignment do not impact the precision that we 

estimate from the estimation data,            . This is intuitive,             summarizes the 

internal consistency of the estimated logit model. When respondents are asked to choose among 

text-based descriptions, they might be extremely consistent in reporting their preferences for 

text-based descriptions. This does not necessarily mean that the reported preferences for text-

based stimuli describe how respondents would react in the marketplace. 
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Two aspects of craft affect estimation precision negatively. Estimation precision is 

significantly lower for respondents who saw the training video and those who were provided 

with the ceteris paribus instructions. The training video effect is intuitive. The extra time 

necessary to watch the training video may have been burdensome. It appears the time to watch 

the video was sufficiently burdensome so that respondents were less internally consistent in their 

choices in the estimation choice sets. The ceteris paribus instructions had a small, but statistically 

significant, negative impact on precision. 

Impact of Craft on External Validity Precision (                    ) 

When adjusted for external validity, precision was significantly better for more realistic 

images (vs. text-based images) and for incentive alignment (vs. no incentive alignment). For our 

data, these results imply that higher craft means using enhanced image realism and incentive 

alignment. Providing a training video or ceteris paribus instructions did not affect the adjustment 

based on external validation. However, overall the externally-adjusted precision in the training 

video condition is lower due to the lower estimation precision. Although significant, the effect is 

rather low in magnitude. Overall, there is no effect of ceteris paribus instructions; either they 

have little effect in general or respondents instinctively held all other attributes constant when 

making choices among the product profiles in our research setting. 

The training video lowered the externally adjusted precision. For our data, it appears that the 

negative wear-out effect was larger than the (hypothesized positive) training effect. While our 

training video was professional quality, it was long relative to the total time of the questionnaire 

(142 incremental seconds out of approximately 500 seconds). We hypothesize that more concise 

training videos might have a more positive impact. Training videos might also be valuable for 

product categories that are harder for consumers to grasp. At minimum, our results caution 

conjoint analysis analysts that training videos must be crafted and pretested carefully. 

CRAFT AFFECTS MANAGERIAL RECOMMENDATIONS BECAUSE CRAFT 

AFFECTS PRECISION 

We have already seen that craft in the realism of images affects accuracy and, by implication, 

estimated WTP. Craft also affects precision. We focus on craft in incentive alignment because 

craft in incentive alignment has a substantial effect on precision but not accuracy. By focusing on 

incentive alignment, we can illustrate a precision effect that is not confounded with an accuracy 

effect. (We return to realism in the images, and other aspects of craft, later in this paper. Image 

realism illustrates nicely the joint effect of precision and accuracy. No interactions among 

different aspects of craft were observed.) 

Impact on Predicted Equilibrium Prices and Profits 

Table 4 compares estimated equilibrium prices and profits (shares*price). The results are 

based on part-worths that are externally adjusted. The market is a two-product market in which 

the products vary on only the color of the watch face. The estimated equilibrium prices and 

profits are for the products with the corresponding color. 

In Table 4, improved craft predicts lower (and presumably more-correct) prices and profits. 

Lower craft (no incentive alignment) appears to overstate prices by about 3% and profits by 
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about 5%. We obtain comparable effects for the shape of the smartwatch face and the type of 

smartwatch band. Externally adjusting the part-worths tends to harmonize the results. These 

differences due to craft are substantially larger when relying on estimation precision only, which 

is addressed next. 

Table 4. The Effect of Craft (Precision) on Equilibrium Prices and Profits 

 Equilibrium Prices  Equilibrium Profits 

 Incentive 

Alignment 

No Incentive 

Alignment 
 

Incentive 

Alignment 

No Incentive 

Alignment 

Gold-colored Smartwatch $311 $328  $99 $106 

Silver-colored Smartwatch $343 $347  $124 $129 

External vs. Internal Precision Matters When Calculating Predicted Equilibrium 

Prices and Profits 

Recall that craft in the realism of images had a two-fold effect; lower craft lowered both 

accuracy and precision. Table 3 illustrated that less-realistic images lowered predicted WTP for 

all smartwatch attribute-level differences—mostly because lower craft increased the estimated 

relative importance of price. For example, lower craft lowered the estimated WTP for gold vs. 

silver-colored smartwatches from $65 to $59—about 9%. In contrast, a lower (externally-

adjusted) precision suggests lower price sensitivity and higher equilibrium prices (e.g., see Table 

2). The effects of accuracy (WTP) and precision (price sensitivity) might counteract one another. 

We put together the joint effect of accuracy and precision and compare the differences in 

predicted equilibrium prices. For estimation precision, we expect the effect on accuracy to 

dominate. This is shown in Table 5a. Predicted equilibrium prices are roughly 25% lower for 

text-based images versus realistic images. Predicted equilibrium profits are 14% lower. 

For externally-adjusted precision, text-based images lowered precision significantly, an effect 

that might counteract the effect of the lower accuracy (i.e., higher price sensitivity). This joint 

effect of accuracy and precision is shown in Table 5b. Predicted equilibrium prices and profits 

are, on average, higher for text-based images, but only by 6% and 11% respectively. (Note that 

predicted equilibrium prices and predicted equilibrium profits are higher in both conditions when 

based on externally adjusted precision vs. estimation precision. They increase by 47% and 26%, 

respectively.) 

In our data, lower accuracy and lower precision counteract one another for craft based on the 

realism of the images. But that will not always be the case. If lower craft were to lower the 

relative importance of price, then the two effects would reinforce one another. Lower craft would 

have an even bigger effect on managerial recommendations and on patent or copyright 

valuations. The key message in Table 5 is that researchers should pay attention to craft and to 

external-validity adjustments to precision. 
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Table 5. Adjustments to Reflect External Validity Matter Managerially 

(Example Where Decreased Accuracy and Decreased Precision Counteract) 

Table 5a Equilibrium Prices  Equilibrium Profits 

Results for Estimation 

Precision 

More 

Realistic 

Images 

Text-Based 

Images 
 

More Realistic 

Images 

Text-Based 

Images 

Round Smartwatch Face $233 $194  $79 $78 

Rectangular Smartwatch Face $317 $219  $124 $96 

 

Table 5b Equilibrium Prices  Equilibrium Profits 

Results for Externally-

Adjusted Precision 

More 

Realistic 

Images 

Text-Based 

Images 
 

More Realistic 

Images 

Text-Based 

Images 

Round Smartwatch Face $298 $350  $92 $117 

Rectangular Smartwatch Face $386 $377  $134 $134 

Impact on the Strategic Recommendations for the Attribute Levels of a Product 

The description of the equilibrium in attributes and prices is beyond the scope of this paper. 

For more details on the theory, see Hauser, Eggers, and Selove (2016). They show for the 

magnitudes of precision that we find in our empirical data, the innovator would be advised to 

launch the more preferred silver-colored smartwatch. The follower’s actions depend upon the 

precision that the follower estimates for the market. In particular, a follower would be advised to 

launch a: 

 Gold-colored smartwatch if the true precision were higher 

 Silver-colored smartwatch if the true precision were lower 

We get similar effects for the watch face and the watch band. 

INCREASED SAMPLE SIZE DOES NOT COMPENSATE FOR LOWER CRAFT 

It is tempting to equate precision, as defined in this paper, with precision of the part-worth 

estimates. This is an incorrect interpretation. Precision (scale of the part-worths) is a different 

concept than the standard errors of the estimates of the part-worths, or the related concepts in 

Bayesian analysis. 

To illustrate that they are different concepts, we re-estimated all of our models using a 

randomly selected 50% sample. On average, the standard errors of the estimates of             

and                     were 32% lower for the full sample compared to the random half sample, 
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but the magnitudes of the estimates were comparable. Averaged over all conditions, the 

estimation precisions were within less than 1%, and the externally-adjusted precisions within 

3%, when we compare estimates based on the full sample to estimates based on a random half of 

the sample. 

Sample size does not overcome lower craft! 

DISCUSSION AND SUMMARY 

Theory 

Accuracy matters, but its effect has been well-studied. Accurate relative part-worths are 

important for deciding which attribute levels to include in products and for calculating 

willingness-to-pay (WTP) as input to other managerial recommendations (and in litigation, as 

input to damages experts). However, precision (scale) matters as well. Precision directly affects 

predictions of equilibrium prices and profits and, as a result, recommendations on the strategic 

selection of attribute levels for products. The market reacts according to true precision (     ), 

but analysts make recommendations based on estimated precision. Recommendations vary 

dramatically depending upon whether the recommendations are based on estimation precision 

(           ) or externally-adjusted precision (                    ). 

Craft 

Craft affects both accuracy and precision. For the situation we examined empirically, we 

found: 

 More realistic images increased both accuracy and precision. 

 Incentive alignment increased precision, but had little effect on accuracy. 

 Training videos had no effect on accuracy, but appear to decrease both estimation 

precision and externally-adjusted precision. 

o In our data, the training videos were time-consuming for consumers to watch and may 

have led to respondent wear-out. The wear-out effect might have been stronger than 

the training effect. 

o Well-designed training videos might enhance precision. One must craft and pretest 

such videos carefully. 

 Ceteris paribus instructions had no substantial effect on either accuracy or precision. This 

result might be due to the fact that we used instructions that mimicked the status quo on 

the market, which consumers might have assumed implicitly even without instructions. 

 Increased sample size does not compensate for lower craft. 

Managerial Recommendations 

Craft affects managerial recommendations. For the situations we examined empirically, we 

found: 

 The realism of the images changed the relative importance of the attributes and decreased 

the relative importance of price. WTPs were higher for more realistic images. 

 Predicted equilibrium prices and profits depend upon craft and whether or not the part-

worths are adjusted for external validity. 
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 Managerial recommendations may change if they are made using precisions as estimated 

from the conjoint analysis data or if they are made using precisions adjusted for external 

validity. 

o In some cases, the effect of craft on accuracy and precision counteract one another. In 

other cases, the effects of craft on accuracy and precision reinforce one another. 

o Because the directional impact cannot be predicted ahead of time, higher craft is 

advised. 

 The correct strategic selection of attribute levels for products depends upon accuracy and 

precision, and, hence, craft. 

Summary 

Craft matters! High craft avoids making the wrong (or costly) managerial recommendations. 

High craft avoids estimating incorrect valuations for copyrights and patents. 

 

   
 Felix Eggers John R. Hauser Matthew Selove 
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ABSTRACT 

What is an appropriate number of alternatives per choice task? Why are two or five 

alternatives so rarely used? We characterize the contexts where Choice-Based Conjoint (CBC) on 

pairs makes sense when projecting to real decisions and use eye-tracking to study how 

respondents search for information when answering choice tasks with either two or five 

alternatives. 

INTRODUCTION 

While there has been substantial work asking how many choice tasks are needed in a CBC 

study, less attention has been paid to determining the appropriate number of alternatives per 

choice task. The typical answer to the question of how many alternatives to include revolves 

around the tradeoff between greater statistical efficiency and increased task difficulty for the 

respondent. From the perspective of statistical efficiency (as tested using computer simulations) 

paired comparison choice tasks produce less efficient designs (Bunch, Louviere and Anderson 

1996; Louviere and Woodworth 1983). Increasing the number of alternatives in each task 

provides greater statistical efficiency, because multinomial logit models in fact assume that each 

final choice is based on a comparison of the selected alternative to all of the available options. 

However, answering more complex choice questions also makes the choice task more difficult 

for the respondents and makes it more likely that respondents use simplifying decision heuristics 

(Bettman, Johnson and Payne 1991; Todd 2007). 

As a starting point for our research, we investigated how frequently practitioners who 

published in the past four Sawtooth Software Proceedings used two, three, four or five 

alternatives in their CBC studies. We found about 20 studies in each of the four Proceedings. We 

were surprised by a trend in the last few years which suggests substantial changes in practice. 

Examining Proceedings in 2010, 65% of the studies mentioned had 5 or more alternatives per 

choice while 35% had 3 or 4. By 2015 that proportion had reversed, with 10% choosing 5 or 

more, and almost 90% choosing 3 or 4. Across time, the proportion of studies using two 

alternatives has consistently stayed under 10%. 

The paper by Pinnell and Englert (1997) may be one reason why pairs rarely appear in the 

recent Sawtooth Software Proceedings. The authors varied the number of alternatives in three 

experiments and concluded that respondents are capable of accurately answering choice tasks 

with up to seven options. Compared with two alternatives the authors found that it took about 

33% more time for respondents to evaluate four alternatives and about 60% more time to 
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evaluate seven alternatives. The authors concluded that it is advisable to use more than two 

options in a choice task because in their studies pairs had lower predictive validity, were less 

stable and did not save much time relative to choice tasks with more alternatives. 

We propose that the performance of pairs should be reevaluated in light of respondents’ 

behavioral responses and that responses to choice tasks depend on how respondents search for 

information when making their choices. We use eye-tracking to investigate how respondents 

allocate their attention in CBC choice tasks with two (pairs) or five alternatives (quints). We 

focus on pairs and quints, because from a practical perspective they reflect the range in the 

number of alternatives reported in recent Sawtooth Software Proceedings. 

We investigate task differences from three different perspectives: First, we examine the ways 

respondents search for decision-relevant information in pairs and quints, focusing on processing 

patterns and ways that respondents learn to more efficiently complete their task. Second, we 

assess to what extent respondents perceive the task as difficult. Third, we compare pairs versus 

quints in terms of internal consistency and their ability to predict holdout choices from triples. 

BEHAVIORAL RESPONSES TO CHOICE COMPLEXITY 

Results from previous studies which have investigated information processing suggest that in 

choice tasks including only two alternatives respondents use compensatory decision strategies, 

such as the additive difference strategy (ADD, see e.g., Payne 1976). In line with this research, 

we expect that in pairs respondents process almost all attribute information that is available 

(Payne et al. 1992) and compare the two alternatives in a step-by-step, attribute-wise and top-to-

bottom manner (Russo and Dosher 1983). Using a systematic and complete search process, 

respondents focus fairly evenly across all attributes, including the less important ones. 

In contrast, in more complex choice tasks, respondents have been shown to simplify their 

choice (Bettman, Johnson and Payne 1991; Ford et al. 1989; Payne et al. 1992). Compared to a 

task consisting of pairs, in a task with larger numbers of decision alternatives, respondents can be 

expected to display greater cognitive effort, but at the same time also show a greater degree of 

simplification. Respondents can, for example, simplify their search by eliminating alternatives 

from further consideration based on important attributes. Process tracing studies have shown that 

respondents often use heuristics, such as the lexicographic rule, to reduce the number of options 

by excluding those not meeting a minimum level for a particular attribute (Payne et al. 1992). 

We also expect that respondents simplify their search in later tasks because they will learn from 

the earlier choice tasks which attributes matter most to them (Meissner and Decker 2010; 

Orquin, Bagger and Mueller Loose 2013). 

STUDY DESIGN 

Upon arrival in the laboratory, participants received a general instruction and were 

familiarized with the eye-tracker. The main task consisted of a self-guided computer-based 

conjoint survey. It first introduced vacation packages as the product of interest. Next it asked 

respondents about their prior purchase experience, future purchase intention as well as purchase 

familiarity and involvement regarding vacation packages. The following screens then explained 

the attributes and levels of the vacation packages. Respondents then answered eight choice tasks 

that were presented on separate screens. The profiles in each task were randomly generated with 

Sawtooth Software’s complete enumeration algorithm (Orme 2013). The statistical strength of 
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the designs for pairs and for quints was determined based on eight choice tasks, 40 respondents, 

and using Sawtooth Software’s complete enumeration algorithm. The relative D-efficiency ratio 

of the pairs vs. quints design is 174.4/133.6=1.31. This result means that statistically, 31% more 

observations are needed for pairs to achieve the same aggregate logit efficiency as quints. 

After the sequence of eight choice tasks, respondents were asked about their search goals and 

perceived task difficulty, their frustration and the perceived similarity of options for the last of 

their eight choice tasks. Finally, respondents answered two holdout choice tasks consisting of 

three randomly generated alternatives (triples). The survey ended with socio-demographic 

questions. The results of these additional survey questions are beyond the scope of the current 

paper and are not discussed. 

The hypothetical vacation packages were characterized by six attributes, each with three 

levels. As common in CBC studies, the attributes appeared in a fixed display order. Table 1 

describes the attributes and their levels. 

Table 1. Vacation Package Attributes and Levels 

Attributes Attribute levels 

 1 2 3 

Food quality good very good excellent 

Customers recommending 50% 70% 90% 

Distance to CBD 3km 2km 1km 

Sea view no sea view side sea view full sea view 

Price per person $899 $799 $699 

Room category standard superior deluxe 

Separate screens helped respondents become familiar with each of the attributes and their 

levels before respondents answered the choice tasks. Figure 1 gives an example for the attributes 

“sea view” and “room category.” We agree with Eggers, Hauser and Selove (2016, this 

Proceedings) that craft is important in designing a preference measurement study and used 

images and ceteris paribus instructions to enhance precision and accuracy. We did not use 

training videos and did not incentive-align our respondents but do not believe our results 

comparing pairs vs. quints would change if we included those changes. 
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Figure 1. Example Instructions Explaining the Attribute Levels of the Attributes 

“Sea View” (Top) and “Room Category” (Bottom) 

 

 

The eye-tracking study was carried out at Monash University (Australia). A total of 39 

respondents finished the questionnaire with pairs and 38 respondents finished the questionnaire 

with quints. 

INFORMATION PROCESSING AND EYE-TRACKING 

Eye-tracking is one of the most reliable approaches for observing humans’ attentional 

processes.
1
 Modern eye-tracking systems use video images of the eyes to determine the so-called 

“point of regard.” It reveals that human perception is primarily based on two states of the eyes: 

fixations and saccades. A fixation is defined as a state where the eyes are relatively stable and 

“rest on” a certain stimulus. A rapid movement of the eyes between two consecutive fixations is 

called a saccade. Typically a fixation is between 100 and 500 milliseconds (ms) long with an 

average of about 250 ms. The fixation duration largely depends on the viewed stimuli and their 

characteristics (Rayner 1998). A saccade typically lasts between 30 and 50 ms. Studies have 

shown that humans cannot acquire information during a saccade (Rayner 1998) because the brain 

                                                 

 
1 The interested reader is referred to Holmqvist et al. (2011) for a more comprehensive introduction to eye-tracking and for a discussion of 

adequate measures. 
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blocks visual processing during eye movements in a way that neither the motion of the eye nor 

the gap in visual perception is noticeable to the individual. 

A Tobii T120 recorded the eye movements in our study. This system has an accuracy of 0.4° 

of visual angle and a sampling rate of 120 Hz. The infrared sensors are built into a 17" thin-film 

transistor (TFT) monitor with a resolution of 1280 x 1024 pixels. A standard 9-point calibration 

routine was used to calibrate participants’ eye movements (Tobii Software 2016). When placing 

the respondents in front of the eye-tracker, we made sure that the distance indicator provided by 

the Tobii software displayed a value between 50 and 80 cm (ideally 60 cm) as recommended by 

the Tobii handbook. Respondent answers were given solely with a computer mouse. 

The areas of interest were defined as cells in the display matrix; they were all of equal size, 

non-overlapping, and the number ranged between 12 (2 alternatives * 6 attributes) and 30 

(5 alternatives * 6 attributes) cells. Fixations were defined as continuous gazes within each area 

of interest. We used the standard Tobii fixation filter to determine fixations (Tobii Software 

2016). 

Moreover, it is important to emphasize that we used only simple text labels to describe the 

features (see Figures 2 and 3). It is therefore unlikely that the feature stimuli differed regarding 

their saliency, which could have produced differences with respect to the number of fixations to 

features (effects of bottom-up attention). All respondents reported to have normal or corrected to 

normal vision. In order to simplify the analyses, we only used the data of the right eye. However, 

the results do not differ if we use the data for the left eye or the average of the left and the right 

eye as provided by the Tobii software. 

RESULTS 

Observing What Respondents Do 

Before analyzing respondents’ search patterns using known measures of information search, 

we visually inspected the scanpaths of the choice tasks for every respondent. The inspection of 

the videos showed that the search patterns often matched our expectations as outlined above in 

the section “Behavioral Responses to Choice Complexity.” Two example paths of fixations that 

are easily interpreted are depicted in Figure 2 for a pairs task and in Figure 3 for a quints task. 

We encourage the reader to watch the corresponding videos which are available on YouTube in 

fast (https://youtu.be/wmpy7O-dZFY) and slow (https://youtu.be/9YZBVyI9TZM) motion for 

pairs and in fast (https://youtu.be/qXZYIz8eEdc) and in slow (https://youtu.be/he9SjPYVP8Q) 

motion for quints. 

The search process in Figure 2 for pairs follows a typical additive difference model. After 

two initial fixations to the center of the screen, the respondent starts the search by looking at the 

top attribute “food quality.” The search continues by comparing the two options with respect to 

each attribute, moving from the top to the bottom of the screen. In this example all attribute 

levels are fixated at least once. After having fixated the last attribute, the respondent checks three 

attribute levels of option B before then choosing option A. The respondent possibly is reassured 

by the undesired aspects of option B before making the final decision. It is also interesting to see 

that this respondent does not look at the question text, in this case because she has seen other 

choice tasks before. She also looks at the description of the attributes only two times, i.e., when 

comparing the alternatives with respect to “customers recommending” and “distance to CBD.” 

https://youtu.be/wmpy7O-dZFY
https://youtu.be/9YZBVyI9TZM
https://youtu.be/qXZYIz8eEdc
https://youtu.be/he9SjPYVP8Q
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We speculate that she is looking at the attribute labels because the attribute levels are not self-

explanatory, as it is not clear what “70%” means without looking at the attribute label. 

Figure 2. An Example Path of Fixations for Pairs 

 

The example search process for quints shown in Figure 3 is quite different. In this case, the 

respondent starts the task by reading the question text. Next, the respondent looks at the attribute 

“customers recommending” and compares all five alternatives with respect to that attribute. Only 

options A and E have a customer recommending rating of 90% in this choice task. The customer 

rating seems to be most important for the respondent and that is why she probably starts the 

search process by looking at that particular attribute. After identifying options A and E as 

promising the respondent’s search process changes substantially. The respondent evaluates 

option E in detail by looking at all the attribute levels of that alternative. The respondent then 

jumps to option A, which is also evaluated in detail. In what follows, we can see that the 

respondent focuses only on these two options, A and E, by going back and forth between them. 

Options B, C and D are only fixated incidentally, perhaps because they are in the way. Many of 

the levels for the attributes “food quality,” “distance to CBD,” “sea view” and “room category” 

are not fixated at all for these three options. In all, the search process can be best described as a 

staged simplification process. In the first step the respondent uses one attribute to identify 

promising alternatives, in a second step the remaining alternatives are evaluated holistically and 

compared to one another. We can also see that the search process in the second step includes 

more transitions within alternatives compared to the search process for pairs. 
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Figure 3. An Example Path of Fixations for Quints 

 

These examples are chosen because they cleanly illustrate the use of expected decision rules. 

In fact we found that the processes followed many patterns that changed within as well as across 

respondents. Next we show how quints and pairs differed in using five general measures of 

information processing: the number of fixations, percent of information accessed, frequency of 

within vs. between attribute transitions, top-down vs. bottom-up order processing, and average 

duration of each fixation. 

Information Processing 

First, we investigated the number of fixations.  Changing the number of alternatives had a 

substantial impact on the number of fixations required for each choice. As shown in Figure 4, 

respondents in choice tasks comprising five alternatives expend about twice as many fixations 

(M=60.82, SD=39.85) to make a decision than those encountering sets with two alternatives 

(M=32.91, SD=18.40). This difference is highly significant. Further, as respondents become 

more experienced with the task they expend fewer fixations. Respondents in the quints condition 

adapt faster. The number of fixations dropped about 27% from the first to the last choice task for 

pairs. For the quints the drop is about 43%. This result replicates Pinnell and Englert’s (1997) 

finding that respondents accelerate processing more in choice tasks with seven than in choice 

tasks with two alternatives. The result suggests that respondents largely change the way they 

process the information in quints by simplifying more in later choice tasks. For pairs, there is 

minimal simplification in later choice tasks. The observed reduction in the number of fixations is 

also in line with findings by Meissner, Musalem and Huber (2016) who used eye-tracking to 

show that respondents become more efficient; that is, they need fewer fixations and become 

more consistent as they progress in a decision sequence of multi-attribute choice tasks. Stüttgen, 
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Boatwright and Monroe (2012) found a similar decrease in the number of fixations when testing 

choice from simulated product shelves. 

Figure 4. Number of Fixations on Attribute Levels 

 

Second, in order to assess the degree of simplification we investigate how many attribute 

levels the respondents fixated on at least once. In line with our expectations, respondents in the 

pairs condition accessed 92% of the information available, compared with 69% for quints. As 

can be seen from Figure 5, pairs access a greater proportion of information and are less likely to 

reduce that coverage with task experience. Our finding is in line with Yang, Toubia and De Jong 

(2015) who investigated a sequence of 20 choice tasks including four alternatives. Yang et al. 

found that respondents across all tasks looked at about 70% of the available information and 

found a similar downward trend with respect to the percent of attribute levels fixated in later 

tasks. 
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Figure 5. Percent of Attribute Levels Accessed by Task Number 

 

Third, we compare the search (or saccade) pattern used in pairs and quints. A frequently used 

measure to describe the search pattern is the strategy measure (Böckenholt and Hynan 1994) 

which quantifies the extent to which information is searched attribute-wise, i.e., comparing 

alternatives within attributes, or alternative-wise, comparing attributes within alternatives. 

Because the strategy measure takes into account that the probability of attribute-wise and 

alternative-wise transitions changes for different numbers of alternatives, the strategy measure is 

the preferred index for assessing how respondents process task-relevant information (Schulte-

Mecklenbeck, Kühberger and Ranyard 2011). A negative value of the strategy measure indicates 

attribute-wise processing whereas positive values indicate alternative-wise processing. 

With respect to the search patterns we find that respondents conducted more within-attribute 

processing for pairs. This result therefore is in line with previous work (Russo and Dosher 1983) 

showing that decision makers process the information primarily attribute-wise on pairs. For 

quints respondents used a mixture of attribute-wise and alternative-wise processing, but in both 

conditions greater task experience resulted in greater alternative-wise processing. That result for 

both quints and pairs is consistent with Meissner and Decker (2010) who observe a progression 

to within-alternative transitions. In our pairs condition, however, the shift towards alternative-

wise processing is small. Across all tasks respondents process the information attribute-wise 

which suggests that respondents continued to emphasize an additive difference strategy 

throughout their eight choices. 
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Figure 6. Search Pattern (Strategy Measure) 

 

Fourth, we test whether respondents searched the information following a systematic pattern 

from the top to the bottom of the screen. Because respondents are found to simplify more in 

quints, they should also be less likely to search information from the top to the bottom of the 

screen. We therefore defined the following measure to quantify systematic top-down search: We 

rank all attribute levels with respect to when they were first fixated in a task. The average rank of 

all levels belonging to an attribute indicates how early the attribute was considered in the search 

process. We then compare the average ranking of the attributes with a top-down ranking and 

calculated the coefficient of concordance between the two sets of ranks. A value close to 1 will 

indicate top-down processing whereas a value close to zero will indicate that attributes are not 

considered in a schematic way from top to bottom. 

As Figure 7 shows, respondents on average processed the information in the choice tasks 

more often from the top to the bottom when the tasks included only two instead of five 

alternatives. This finding is in line with the use of an additive difference strategy in which the 

respondents compared the alternatives attribute-wise, look at almost all features and process the 

information from the top to the bottom of the screen. Figure 7 also shows that in later tasks 

respondents process information less schematically in both the pairs and quints condition. 
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Figure 7. Top-Down Attribute Attention 

 

Fifth, we consider the average fixation duration of all fixations in a choice task. According to 

the literature very short fixations taking less than 200 milliseconds are often used for scanning 

and automatic processes, as for example, to understand the structure of a task when the 

respondent begins processing the information. By contrast, very long fixations might indicate an 

increased level of processing in more difficult tasks (see e.g., Velichkovsky et al. 2002). The 

average fixation duration for pairs is 296 ms and for quints it is 267 ms. This difference between 

pairs and quints is statistically significant (t=5.3, p<.01). We interpret this difference in fixation 

durations as evidence for the use of cognitive processes which involve differencing and adding 

for pairs, a process that is consistent with the idea that comparisons across alternatives are more 

time consuming than those within alternatives. 
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Figure 8. Average Fixation Duration 

 

In summary, the average process measures differ strongly between pairs and quints. Pair 

processing is more thorough, covering proportionately more information, in a more top-down 

manner, and for greater durations. Quints encourage greater simplification initially as well as 

over time and lead to deeper processing within a few selected alternatives. Thus pairs fit a model 

of additive differences while quints reflect a concerted effort to identify a reasonable choice 

without getting confused by multiple items of available information. 

Task Perception 

After the initial set of eight choice tasks and before the holdout choice triples, we asked 

respondents, “How difficult was it for you to choose the vacation package you wanted when last 

making a choice?” using a 7-point rating scale ranging from “not at all difficult” (-3) to 

“extremely difficult” (+3). To our surprise, pairs (M=.6, SE=.2) were perceived to be 

significantly (t=2.9, p<.01) more difficult than quints (M=-.4, SE=.3). Although respondents 

needed fewer seconds to finish pairs (M=15.0, SE=9.4) compared to quints (M=24.2, SE=14.7), 

the pairs seem to be cognitively more demanding. Given that most respondents in the pairs 

condition had to look through most of the information, the tedium of doing that eight times may 

have made it seem more difficult. By contrast, the goal of finding an acceptable beach vacation 

was perceived as easier for our respondents in the quints. These differences are also reflected in 

differences in the patterns of part-worths and predictive accuracy under pairs compared with 

quints. 
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Similarity of the Part-Worths 

The part-worth utilities were computed on the individual level by applying Sawtooth 

Software’s Hierarchical Bayes (HB) multinomial logit (MNL) estimation. As shown in Figure 9, 

the average part-worth utilities are similar, with a correlation of r=.92. Contrary to our 

expectations, visually it appears that pairs demonstrate greater non-linearity in valuations within 

attributes. This result suggests that it is more likely that non-linear cutoff values were used when 

respondents answered the pairs questions. 

Next, we also analyzed attribute importance weights. We calculated attribute importances by 

calculating the ratio of the range of an attribute’s utilities against the sum of the ranges across all 

attributes. The correlation of the average importance weights is also high (r=.86). Importantly, 

pairs elevate unimportant attributes. The mean of the standard deviation of importances across 

respondents is 20% less for pairs than for quints (M(pairs)=.097, M(quints)=.117; t=-3.1, p<.01). 

That finding is consistent with pairs generating a focus on all attributes. The increased attention 

on less important attributes increases the relative importance of these attributes in the decision 

process. 

Figure 9. Comparison of the Part-Worth Utilities in Pairs and Quints 
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Predictive Performance 

To evaluate the predictive performance, we first looked at the internal hit rates and the output 

from Sawtooth Software’s Hierarchical Bayes estimation. The key measures are included in 

Table 2. 

It does not make much sense to directly compare the internal hit rates for pairs and quints, 

because the probability of correctly predicting a pair at random is 50%, but is only 20% for 

quints. The average hit rate is 72% for pairs and therefore is 22% above chance level. For quints, 

the improvement above chance level is 35%, given a hit rate of 55%. 

Because it is hard to correct hit rates for the number of alternatives in the choice set, percent 

certainty, or another likelihood-based statistic, is a more appropriate indicator of model fit. It is 

an information-theoretic measure that compares the information explained by the model to the 

total uncertainty of the system (Hauser 1978). The measures included in Table 2 show that the 

internal model fit is better for pairs than for quints. The percent certainty for pairs is .90 whereas 

it is only .69 for quints. One explanation for this result might be that respondents in the pairs 

condition more consistently applied the same (additive difference) strategy, but in case of quints 

used all kinds of different decision strategies. As a consequence the internal consistency might be 

lowered for quints. 

Table 2: Predictive Performance Measures 

Measure Pairs Quints 

Percent Certainty .90 .69 

RLH: Root Likelihood .93 .60 

Internal hit rate 72% 55% 

Hit rate from cross-validation 75% 53% 

Hit rate predicting holdout triples 76% 57% 

Consistent with the low error as indicated by the Percent Certainty, pairs more consistently 

predicted the holdout triples shown at the end of the survey. The hit rate for pairs is 87% (69%) 

in the first (second) holdout task whereas it is only 56% (58%) for quints. This difference is 

significant for the first holdout task (  =6.4, p=.01), and is directionally consistent for the 

second holdout task (  =1.1, p=.30). There are two possible reasons why pairs predicted the 

holdout choices better than quints. First, pairs are more similar to triples than quints, meaning 

that respondents who have frequently used an additive difference strategy in a sequence of pairs 

might continue to do so in the consecutive triples. Second, the error around pairs to predict 

holdouts may simply be sufficiently smaller for quints enabling pairs to overcome their 30% 

deficit in statistical efficiency. 
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CONCLUSIONS 

Summary of Empirical Findings 

The important lesson is that the decision making process is very different when choosing 

between two versus higher multiples of alternatives. Those processing differences lead to 

different patterns of part-worths and predictive accuracy, and suggest contexts in which either 

task is more appropriate. 

For pairs the pattern of fixations and saccades is consistent with an additive difference 

strategy. That strategy assesses the relative benefit one attribute at a time and sums those 

differences across attributes to identify the most preferred option. This within-attribute 

processing has the advantage of enabling an assessment of each attribute independently from the 

other attributes. We find that an additive difference strategy leads to greater use of available 

information, with 92% of the pair information fixated on compared with 69% of the quint 

information. 

The process with more alternatives is quite different. For quints, the need for simplification 

across 30 pieces of information encourages the use of an important attribute to rule out less 

promising options. The process of finding a good option from many alternatives can best be 

described as a search that over time gets more effective at focusing on less information to 

identify a satisfactory choice. The variability in the search strategy for quints contrasts a 

relatively mechanistic and stable choice process on pairs. 

In terms of efficiency, compared with quints, pairs took 40% less time, were 31% less 

statistically efficient, but generated 33% more accurate predictions of holdout triples and were 

more consistent internally. Our results therefore contradict Pinnell and Englert (1997) who find 

that pairs are no better at predicting holdouts. Perhaps because of the need for accuracy, pairs are 

perceived to be substantially more difficult. We suggest that this difference can be explained with 

the cognitive process in pairs which seems to be more demanding. 

The average part-worths from the pairs and the quints seem similar, with a correlation of .92. 

However, differences in details matter. Pairs provide more discrimination of levels within 

attributes while quints reveal greater discrimination across attributes. In particular, visual 

inspection suggests greater non-linearity within attributes for pairs, e.g., revealing a large 

difference between poor and good food compared with good to excellent. This finding is in line 

with the results by Pinnell and Englert (1997) who observe a “non-linear relationship indicating a 

loss aversion effect” (p. 150) for pairs. By contrast, for quints the relationship between the three 

levels is far more linear. That said, quints reveal 20% greater separation in the relative 

importance of attributes; it appears the complexity of having more attributes reveals respondents’ 

strategy to focus attention on more important attributes. Here, our results contradict the earlier 

findings by Pinnell and Englert (1997) who found that “important attributes are more important 

in pairs” (p. 150). 

How Many Options Should You Use in Your Conjoint Study? 

We suggest that pairs are appropriate if one wants efficient measures of how people use many 

attributes to make choices. Pairs also make sense when the choice is difficult or highly 

emotional. When patients make choices that involve trading off substantial loss of income and 
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hospital time against longer expected life, having just two options makes the decisions less 

overwhelming. 

However, where the goal is to simulate choices where there are many alternatives and 

relatively few attributes, then a multi-alternative CBC is appropriate. A good example would be 

shelf studies that explore consumer ability to find preferred brands in a complex display and 

respond to different promotional efforts. Put differently, if the decision process involves 

substantial simplification to find a reasonable option from a large set, then there are advantages 

to showing a greater number of alternatives per conjoint choice set. 

We remain surprised at finding that fewer than 10% of the studies reported in the past four 

Sawtooth Software Proceedings used pairs. One reason for the lack of use of pairs may stem 

from the well-known finding that having many alternatives improves the technical statistical 

efficiency of the design. A second and more reasonable problem with pairs arises from the 

process revealed by eye-tracking. The additive difference process may be more effective at 

revealing consistent tradeoffs, but may be even farther removed from what happens in the 

marketplace with many attributes and many alternatives. 

That said, we believe that pairs are underutilized. Apart from greater efficiency, pairs are 

appropriate when decisions are sufficiently important that simplification to a few attributes 

makes little normative sense. Furthermore, pairs will be more efficient at assessing consumer 

reaction to changes in all attributes, in cases where decisions are very important thus justifying 

consideration of all attributes. Pairs also are reasonable when the attributes are novel, or where 

when respondents have deep emotional reactions. In the latter situations pairs might help 

respondents because a weighted additive process facilitates the thoughtful integration of all the 

attributes of a decision. 

 

   
 Martin Meissner Harmen Oppewal Joel Huber 
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FINDINGS OF THE 2016 SAWTOOTH SOFTWARE 

CBC MODELING PRIZE COMPETITION 

BRYAN ORME 
SAWTOOTH SOFTWARE 

INTRODUCTION 

CBC (Choice-Based Conjoint) is the most widely used conjoint analysis method today. 

Among Sawtooth Software users, HB estimation for CBC is by far the most common utility 

estimation approach. Most users stick with CBC/HB software’s default settings: main effects 

estimation (considering only the independent effects of each attribute) with the part-worth utility 

function (effects-coding). We have seen a long trail of evidence at Sawtooth Software 

conferences and in the academic literature that these strategies lead to very good models. We 

have long believed that the resulting market simulators do a superb job predicting the shares of 

choice for the variety of choice scenarios our clients might specify. Despite our confidence, we 

don’t want to be complacent. We designed the 2016 Sawtooth Software CBC Modeling Prize to 

bring together a diverse group of teams to test those assertions and to see if other models and 

software might do significantly better. We have always believed that different approaches can be 

very successful and that no one method consistently dominates, so the diversity of the top-

performing submissions in this competition was no surprise to us. 

In designing the 2016 CBC Modeling Prize we were inspired by the $1MM Netflix Prize and 

patterned our approach after it in terms of managing the process and making it a robust test from 

a statistical perspective. The key element was how to keep the winning team from just overfitting 

to the holdouts with spurious or nonsensical parameters. The economic reality was that we 

couldn’t offer a $1MM prize, so we consoled the participants that the opportunity to win and 

present the winning model here at the Sawtooth Software conference was well worth the 

$995,000 prize gap. Fifteen
1
 teams ended up joining the competition. To win the $5,000 prize, 

the best team needed to beat the default approach (HB main effects) as well as a more 

sophisticated ensemble approach (involving a combination of 20 HB and 20 latent class models) 

seeded by Sawtooth Software. 

THE COMPETITION SETUP 

We designed a typical CBC study involving choice of vacation cruise packages on six 

attributes (in a 6x6x5x3x2x5 design, shown in Appendix A). Around 1350 panelists from SSI 

completed a 10-minute questionnaire (inter-quartile range 7–14 minutes) including 21 CBC 

questions along with a few other questions regarding past travel behavior, disposable income for 

travel, and attitudes/preferences about cruise vacations (including BYO questions regarding 

preferred levels of each non-ordered conjoint attribute). After cleaning out the fastest and least 

consistent respondents, we were left with 1200 completed respondent records. When respondents 

                                                 

 
1 It is rather striking that only one of the fifteen teams was led by a US-based researcher. Maybe this says something about the lack of extra time 

researchers in the US have to work on R&D projects like this? Could it be that US teams are more money motivated and $5000 prize money 
just wasn’t enough to capture their interest? It is certainly interesting to think about why only one of the teams was based in the US! 
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entered the survey, we randomly assigned them to one of two buckets: the calibration sample 

(n=600) or the holdout sample (n=600). The questionnaires looked identical, so respondents did 

not know they were in one sample or the other. 

Each respondent completed 21 CBC tasks with four alternatives per screen (Exhibit 1). 

Exhibit 1. Sample Choice Task 

 

The 600 calibration respondents completed 21 CBC tasks that were experimentally designed 

using 300 versions (blocks) of Sawtooth Software’s balanced overlap
2
 design plan. Six of the 21 

tasks were holdouts, interspersed throughout the 21 CBC tasks. The holdouts were for predictive 

validation and not used for utility estimation. 

The 600 holdout respondents saw an identical-looking CBC questionnaire where all 21 tasks 

were fixed across respondents using a single version (block) plan, though we randomized the 

task presentation order. We purposefully made these 21 holdout tasks difficult to predict: two of 

the concepts within each task had a great deal of similarity (were defined using the same levels 

across 3, 4, or 5 of the 6 attributes). Not only were these holdout tasks trickier to predict, but the 

enhanced similarity between concepts made them actually more like competitive offerings one 

sees in the real world. 

Exhibit 2 is a schematic showing the study design along with the three main steps for 

submitting predictions. 

                                                 

 
2 Balanced Overlap plans are near-perfectly level balanced (both one-way and two-way attribute level occurrence) and nearly orthogonal both 

within and across versions (blocks). They also feature a modest amount of level overlap (levels repeated across more than one choice) within 
each task. 
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Exhibit 2 

 

The criterion for winning the competition was the joint predictive validity for the 6 in-sample 

choice tasks (raw first choice hit rate) and the 21 out-of-sample choice tasks (R-squared based on 

the share of preference probabilities). Teams could use different models to predict the in-sample 

and out-of-sample holdouts, though we reserved a special honorable mention category (the “one 

model wonder”) for the single model that did the best job predicting both types of holdouts. 

Interestingly enough, the grand prize winner (Naji Nassar) was also the “one model wonder,” 

though his model didn’t achieve either the absolute best in-sample hit rates or the best out-of-

sample share predictions. 

We invited teams to join the competition through an open call that was published on our 

website, in our LinkedIn group, the Quirk’s Marketing Research Review, and the American 

Marketing Association’s Marketing Insights magazine. Fifteen teams of researchers entered the 

competition. Sawtooth Software also seeded the competition with three submissions. The prize 

for winning the competition was $5,000 plus a free registration to the 2016 Sawtooth Software 

Conference with the opportunity to present the winning model at the conference and publish that 

model within these Sawtooth Software Proceedings. The winners were: 

 1
st
 place: MIReS: Naji Nassar (Marketing Intelligence & Research Services) 

 2
nd

 place: Team Nutcracker: Dmitry Belyakov (Ipsos Comcon) 

 3
rd

 place: SKIM 2 Team: Marco Hoogerbrugge, Kees van der Wagt, Remco Don, and 

Bingqian Gao (all SKIM Group) 

Honorable mentions went to: 

 Best In-Sample Hit Rate: Landsberger Strasse 2 Team: Merlin Müller, Stefan Binner, 

Isabella Geisselhardt, Maximilian Rausch, and Markus Böttger (TNS Infratest and bms 

Marketing Research + Strategy) 

 Best Out-Of-Sample Predictions: SKIM 2 Team: Marco Hoogerbrugge, Kees van der 

Wagt, Remco Don, and Binqian Gao (all SKIM Group) 
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 One-Model Wonder: MIReS: Naji Nassar (Marketing Intelligence & Research Services) 

We will see below that there was actually very little margin separating the top teams. 

Furthermore, a variety of statistical approaches and software were very successful. 

The competition ran from November 1, 2015 to July 29, 2016. Teams could submit 

predictions once per week during that period and once per day over the last two weeks of the 

competition. We leveraged ideas from the Netflix Prize competition to avoid the possibility that 

the teams would just continue to iterate their solutions to overfit the holdouts. For each 

submission, week after week, we scored the predictive models (using an automated script) and 

reported the results on a tracking leaderboard on Sawtooth Software’s website. However, for 

leaderboard tracking we only used a randomly selected half of the holdout tasks (the “quiz” 

holdouts, randomly selected once at the beginning of the competition and held constant 

throughout the competition). This allowed the teams to get a good feel for how well their models 

were doing, but would penalize the teams if they built models that took advantage of variation in 

just the “quiz” half of the holdouts that wouldn’t generalize well to all of the holdouts (the “quiz” 

+ “test” holdouts). At the very end of the competition, the teams were scored based on all the 

holdouts. 

Sawtooth Software seeded the competition with three submissions. The approach and model 

specifications for these were set prior to seeing the data and (unlike the other teams) Sawtooth 

Software was not allowed to iterate and try to improve the fit to the holdouts (other than to adjust 

the scale factor to improve the out-of-sample R-squared to the “quiz” holdouts). These three seed 

approaches were: 

 HB-MNL (using Sawtooth Software’s CBC/HB system) under main effects part-worth 

estimation with default settings (prior variance = 2, degrees of freedom = 5) 

 Same as above, but tuned to the calibration tasks for optimal prior variance and prior 

degrees of freedom
3
 

 An ensemble of 20 different latent class and 20 HB solutions (described in Appendix A) 

The three seed submissions from Sawtooth Software all performed well, with ensemble > 

priors optimized HB > default HB in terms of relative predictive validity. 

A stipulation for winning the $5,000 prize was that the winner had to beat the best of the 

Sawtooth Software seed submissions (the ensemble solution), which the top five teams were all 

able to do. 

INFERENCE VS. PREDICTION 

Market researchers and economists often debate the value of inference versus prediction. For 

conjoint/choice analysis, inference often focuses on interpreting coefficients, such as whether 

one level of an attribute is preferred to another for the population or how much people are 

willing to pay for one feature over another. Prediction, however, deals with such issues as what 

people will choose when given a set of product alternatives defined on multiple attributes. For 

                                                 

 
3 The priors were not tuned to the holdouts. Rather, we used Sawtooth Software’s CBC/HB Model Explorer program to jackknife across 

calibration tasks to find the best combination of priors to fit the data. Orme and Williams demonstrated this method of fine-tuning HB priors at 

the SKIM/Sawtooth Software European Conference in Rome in 2016. Sawtooth Software has released a software tool called the CBC/HB 
Model Explorer for this purpose. 
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this CBC modeling competition, the competitors had to be ready to predict the mind-bogglingly 

vast number of choice scenarios that respondents were never asked to consider. 

THE CHALLENGE OF CBC PREDICTION 

Teams estimated part-worth utilities using the fifteen CBC tasks each respondent answered 

(for the n=600 Cell 1 respondents), where each task involved a choice among four concepts. The 

attribute list makes it possible to construct 6x6x5x3x2x5=5400 unique product concepts. 

Assuming we don’t duplicate concepts within the same choice task (which the design didn’t), 

there are 35 trillion possible choice scenarios, assuming order of concepts does not matter
4
. The 

challenge facing the teams competing in this competition was to build a model that could do a 

creditable job predicting the choices that people could make for any of those 35 trillion possible 

situations. Of course, we couldn’t actually test their ability to predict all 35 trillion potential tasks 

accurately. We selected just 21 of them to be evaluated by the holdout (Cell 2) respondents and 

300 versions x 6 tasks = 1800 holdout tasks for the calibration respondents (Cell 1) to evaluate. 

PREDICTION RESULTS 

Exhibit 3. Final Leaderboard Results 

        Quiz + Test Results (All Holdouts) 

Rank Team Name 

Submission 

Date 

Single  

Utility Model5 

Within-

Sample 

Hit Rate 

Out-of-

Sample  

R-Squared 

Composite 

Score 

1 MIReS 7/29/2016 Yes 0.6844 0.9129 0.6248 

2 Nutcracker 7/29/2016 No 0.6831 0.9123 0.6232 

3 SKIM Team 2 7/29/2016 No 0.6775 0.9130 0.6186 

4 Landsberger Strasse 6/3/2016 Yes 0.6831 0.9048 0.6181 

5 Scooter-QX 6/20/2016 No 0.6825 0.9043 0.6172 

6 

Sawtooth Software3 

(Ensemble 20LC&20HB) 11/1/2015 Yes 0.6814 0.9056 0.6170 

7 

Sawtooth Software2 

(Priors Optimized HB) 11/1/2015 Yes 0.6792 0.9070 0.6160 

8 Illuminas Partners 5/17/2016 Yes 0.6761 0.9099 0.6152 

9 Landsberger Strasse2 7/29/2016 No 0.6850 0.8959 0.6137 

10 Yoda 7/29/2016 No 0.6794 0.9021 0.6129 

11 SKIM Team 1 7/29/2016 No 0.6750 0.9062 0.6117 

12 Displayr 7/26/2016 Yes 0.6789 0.8991 0.6104 

13 Sawtooth Software Fan Club 2/24/2016 Yes 0.6747 0.9016 0.6083 

14 

Sawtooth Software1 (Default HB 

run) 11/1/2015 Yes 0.6725 0.9042 0.6080 

15 Jedi Dragons 7/29/2016 Yes 0.6667 0.9018 0.6012 

16 Prediction Addiction 6/24/2016 Yes 0.6594 0.8981 0.5922 

17 Jigsaw 3/7/2016 Yes 0.6481 0.9013 0.5841 

18 SMAP 7/28/2016 Yes 0.6486 0.8893 0.5768 

                                                 

 
4 Some of the teams submitted predictions that took concept order into account. If we assume that order matters (predicting choice among 

concepts A, B, C, D is different from predicting choice among A, B, D, C, etc.), then there are 24 times more possible scenarios to predict, or 

849 trillion! 
5 Indicates that the team used a single utility model to predict both the in-sample and out-of-sample holdouts. 
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It is interesting to note the parity among the top 14 submissions (where the 14
th

 is the default 

Sawtooth Software submission using CBC/HB software). This baseline submission (Sawtooth 

Software 1 Default HB run) achieved a composite score of 60.8% and the best submission 

(MIReS) achieved 62.5%. This seems pretty close, though it is notoriously hard to move the 

needle much in terms of holdout predictions for conjoint analysis. 

As a point of comparison, the winning team for the $1MM Netflix prize bested Netflix’s 

predictions of movie ratings by 10.06% (measured in terms of reduction in RMSE of movie 

ratings). Team MIReS’ out-of-sample share predictions had an RMSE of 3.22, compared to 3.38 

for the default Sawtooth Software HB run, a reduction of 4.7% in RMSE. One wonders, then, if 

a) the default Sawtooth Software modeling approach is closer to theoretical optimal prediction 

power for CBC than Netflix was with predicting movie ratings of its users, b) Netflix’s 

prediction problem for movie ratings is just harder than CBC predictions, c) we weren’t able to 

attract as deep a pool of world-class modeling talent as Netflix was able to do with its $1MM 

bounty. We think there’s some degree of truth to all three hypotheses, even though we’re quite 

confident that some of the best conjoint modelers in the world entered our CBC modeling 

competition. 

Exhibit 4 gives a very brief summary of the modeling approach used by each of the top ten 

teams. 

Exhibit 4. Approaches Used by Top 10 Teams 

Rank  Team  Methods & Model Specification  

1 MIReS HB (GAUSS implementation), interaction between Stateroom and Ship Amenities, 

utility constraints, budget constraints, fuzzy consideration set model 

2 Nutcracker Sawtooth Software CBC/HB. 16 separate models in an ensemble, varying priors, 

covariates, utility constraints, and attribute codings 

3 SKIM Team 2 Sawtooth Software CBC/HB single model for hit rates with ASC for position effect; 

regression based ensemble of many different HB solutions for share predictions (i.e., 

each single HB prediction was treated as one predictor) 

4 Landsberger 

Strasse 

HB (R bayesm, with a Dirichlet Process Prior) 

5 Scooter-QX Latent Class Analysis (Q Software) ensemble of 20 solutions using a mixture modeling 

approach, distributional assumption: Multivariate Normal – Full Covariance 

6 Sawtooth 

Software 3 

HB and Latent Class (Sawtooth Software) ensemble of 40 utility runs with varying 

starting points for LC and varying covariates for HB, default part-worth coding 

7 Sawtooth 

Software 2 

Sawtooth Software CBC/HB one priors-optimized run, default part-worth coding 

8 Illuminas 

Partners 

Sawtooth Software CBC/HB single run, default priors, with position-specific effects for 

order within a task 

9 Landsberger 

Strasse 2 

Sawtooth Software CBC/HB 4 separate models in an ensemble with different covariates 

for hit rates; shares of preference based on HB models run separately within 5 LC 

segments 

10 Yoda Sawtooth Software CBC/HB, survey questions about preferences for levels of unordered 

attributes coded as augmented tasks, some utility constraints 
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Naji Nassar of team MIReS provides a detailed discussion of his winning model in the next 

paper in these Proceedings. 

Nine of the top 10 submissions used HB estimation, though sometimes with different 

software implementations and sometimes using different distributional assumptions. Five of the 

top 10 submissions used an ensemble of models. Four of the top 10 submissions used HB with 

covariates. We should be careful about drawing too many conclusions from this summary of the 

top performers since they certainly were biased: influenced by the seed Sawtooth Software 

submissions, by Sawtooth Software documentation, and past Sawtooth Software conference 

presentations. There is no doubt a lot of self-selection bias towards HB usage. 

Below is an exhaustive list of all the software and utility estimation algorithms used across 

the 15 teams: 

 Sawtooth Software’s CBC/HB 

 Sawtooth Software’s Latent Class, CCEA 

 Q 

 R (ChoiceModelR, mlogit, bayesm) 

 Nlogit 

 GAUSS 

It’s also quite interesting to look at the models that the different teams specified. The list 

below is not meant to be an exhaustive list of what was attempted, but meant to give an example 

of the wide variety of strategies. 

 Using covariates 

 Estimating price as linear, part-worth, or thermometer coding 

 Constrained vs. unconstrained utilities 

 Using subsets of tasks 

 Using respondent choices to other questions in the survey about the attribute levels (BYO 

questions on certain non-ordered conjoint attributes) 

o As 1) Covariates, 2) Data Augmentation, 3) As individual-level utility constraints 

 Ensembles or single models 

 Estimating separate models within subsets of respondents 

 Modeling alternative number as ASCs (to account for concept order tendencies) 

 Examining interaction effects and alt-spec attributes 

 Accounting for attribute non-attendance 

 Coding budget constraints 

RANDOMIZED FIRST CHOICE VS. DRAWS 

In 1998, prior to the widespread use of HB for conjoint analysis, the author developed a 

market simulation approach to reduce IIA (Independence from Irrelevant Alternatives, also 

known as the red-bus/blue-bus problem). Called Randomized First Choice (“RFC”), it is a highly 

flexible approach since it can be used with part-worth utilities coming from any utility estimation 

approach. But, if you are using HB and are able to use multiple draws per respondent, using HB 

draws is more sophisticated and statistically sound. Randomized First Choice could be described 

as simulating poor man’s draws (independent draws with equal variance across all part-worths). 
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Because of the strength of this dataset for examining the accuracy of market simulations when 

the scenarios include pairs of highly similar alternatives, we decided to look again at a 

comparison of simulating on HB draws (respondent-level draws of beta) vs. Randomized First 

Choice on the point estimates. 

We compared the use of the logit (share of preference) rule with the draws to Randomized 

First Choice operating on the point estimates, tuning the scale factor to best predict the out-of-

sample aggregate share predictions for the 21 holdout scenarios. The results are shown in Exhibit 

5. For simulating on the draws we used 200 draws per respondent across 600 respondents, for a 

total of 120,000 utility vectors. 

Exhibit 5. Randomized First Choice vs. Share of Preference Accuracy 

 Mean Absolute 

Error (MAE) 

R-Squared 

Fit 

Share of Preference (logit) on the draws 2.63 0.9092 

Randomized First Choice on point estimates 2.65 0.9073 

Share of Preference (logit) on the point 

estimates 

2.72 0.9004 

The three simulation methods (all operating on individual-level HB data) perform quite well. 

Randomized First Choice works slightly better than Share of Preference on the point estimates. 

Share of Preference operating on the level of the draws works a tiny bit better—but the results 

are so similar as to be essentially a tie
6
. 

If you want the convenience and speed of using Randomized First Choice within Sawtooth 

Software’s market simulation software, RFC works very well. But, simulating on the draws is a 

more sophisticated and statistically sound way to use HB results. If you can build a market 

simulator that operates on the level of the draws, you will have built a very good market 

simulator indeed that will be more defensible in academic circles. These two approaches yield 

extremely similar results in aggregate: Randomized First Choice shares and aggregated shares 

from the draws have a correlation of 0.9986 for this dataset. 

THE STRENGTH OF ENSEMBLES 

This property—group forecasts beat best individual ones—has 
been found to be true in almost every field in which it has been 
studied. 
—Nate Silver, The Signal and the Noise 

Ensembles (predictions from different models combined) outperformed single models in the 

$1MM Netflix Prize contest which focused on improving individual-level predictions of movie 

ratings based on individuals’ ratings of other movies. At the 2015 Sawtooth Software 

Conference, Kevin Lattery demonstrated that ensembles of high-dimensionality latent class 

solutions could beat the default HB approach in terms of in-sample individual-level hit rates for 

                                                 

 
6 At the request of our reviewer, David Lyon, we also looked at results for applying RFC to the HB draws. The predictive outcome was very good 

(slightly better than share of preference on the draws on one measure of fit and slightly worse on the other, depending on how we tuned the 
scale factor). 
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CBC (Lattery 2015). The author independently confirmed Lattery’s findings regarding latent 

class and also demonstrated that ensembles of different HB solutions (each using different 

covariates) could also beat the default single HB model for CBC in terms of hit rates (Orme 

2015). 

Going into this 2016 Sawtooth Software CBC Modeling Prize competition, we again 

expected that ensembles would outperform individual models in terms of hit rates (individual-

level in-sample holdout predictions). What we didn’t know and we believe has never been tested 

before is whether ensembles could improve out-of-sample accuracy of share predictions for 

holdout scenarios. We were excited to test this possibility for CBC. 

Across the 15 participating teams plus the 3 seed submissions by Sawtooth Software, we had 

access to 178 total predictive submissions. The vast majority of these submissions were of very 

good quality. A few of them involved errors in data processing or model building—they had 

terrible predictive accuracy and obviously were outliers. We sorted the 178 submissions in terms 

of their “quiz” hit rates and discarded the worst submissions (we did not look at the “quiz” plus 

“test” hit rates to prioritize the submissions—that would have given us an unfair advantage over 

the information that the teams had at the time of the competition). Then, we simply averaged 

across the better submissions to create a single prediction for each respondent and each holdout 

task
7
. Could such a simple averaging across the better submissions beat the best prediction that 

any one team had submitted? 

Exhibit 6 shows that averaging across submissions indeed beats the best single submission 

from any one team in terms of in-sample hit rates. This shouldn’t surprise us. Nate Silver said it 

usually happens (and he’s the current media darling when it comes to prediction). Related 

specifically to CBC data, Lattery and Orme also presented evidence of this at the 2015 Sawtooth 

Software Conference. The best single submission among all 178 tries across all teams was a 

68.50% in-sample hit rate achieved by team Landsberger Strasse 2 on 29-July. A very good 

prediction indeed! But, simply averaging across either the top 75% or 95% of all submissions 

achieves a hit rate of 68.86%. Even averaging across the best single submission from each team 

(again in terms of the “quiz” holdouts) improves upon the best single submission from any one 

team. 

  

                                                 

 
7 For example, for a given holdout and a given respondent, if >50% of the models predicted that the respondent would choose concept A instead 

of B, we took that as the consensus ensemble prediction. 
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Exhibit 6. Hit Rates: Best Single Submission Compared to Ensemble 

 

IS Hit Rates 

(Quiz + Test)  

Landsberger Strasse 2 (29-Jul) (Best overall team 

submission, even better than MIReS) 
0.6850 

Top 95% of all submissions ensemble 0.6886 

Top 75% of all submissions ensemble 0.6886 

Top 50% of all submissions ensemble 0.6881 

Top 25% of all submissions ensemble 0.6881 

Top 10% of all submissions ensemble
8
 0.6847 

Best submission from each team ensemble 0.6881 

Now we get to the issue that we were very interested in testing. We believe we are the first to 

demonstrate the superiority of ensembles for out-of-sample share prediction accuracy in CBC 

and moreover we believe that our evidence is very compelling. Referring to Exhibit 7, the best 

single submission among all 178 tries across all teams was a 0.9139 R-Squared achieved by team 

Nutcracker
9
 on 21-July (congratulations!). But, simply averaging across either the top 25% or 

50% of all submissions (again judged only on the random half of the holdouts, the “quiz” 

holdouts) achieves an R-Squared share of preference accuracy 0.9163. Even averaging across the 

best single submission from each team (in terms of the “quiz” holdouts) beats the best single 

submission from any one team. 

  

                                                 

 
8 At first glance it may seem surprising that the ensemble of top 10% of all submissions (18 different models) doesn’t perform as well as broader 

ensembles that include worse individually performing models. However, it is easily explained because these 18 models were mostly 

contributed by the same very active and high-performing team. Thus, they lack diversity. The same issue occurs for Exhibit 7 ensemble 

reporting. 
9 Interestingly enough, team Nutcracker did not realize that this 21-July submission was the best overall submission made by any team. Each 

submission was scored only on the random half of the holdouts (the “Quiz” holdouts) whereas we are in hindsight now judging all 178 

submissions in terms of all the holdouts (the “Quiz” plus “Test” holdouts). Team Nutcracker continued to iterate and submitted what ended up 
being a slightly worse model when scored using all the holdouts for their final submission. 
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Exhibit 7. Share Prediction Accuracy: 

Best Single Submission Compared to Ensemble 

 

OOS R-Squared 

(Quiz + Test)  

Nutcracker (21-July) (Best overall team submission, even 

better than MIReS) 
0.9139 

Top 95% of all submissions ensemble  0.9151 

Top 75% of all submissions ensemble  0.9157 

Top 50% of all submissions ensemble  0.9163 

Top 25% of all submissions ensemble  0.9163 

Top 10% of all submissions ensemble 0.9129 

Best submission from each team ensemble  0.9158 

Ensembles benefit from both diversity and quality. Thus, it’s very helpful if you can combine 

models that have been built in quite different ways. (For example, it isn’t enough to ensemble a 

series of HB runs whose only difference is random starting seed.) If a single researcher cannot 

think creatively enough to develop diverse yet quality solutions, then it can be helpful to use the 

results of multiple independent-thinking researchers. 

One challenge for implementing these findings in the real world is what to do when you 

don’t have such a strong set of out-of-sample holdouts as we had here (which is almost certainly 

the case) to enable you to discard the worst models and avoid including them in the ensemble. 

We have a straightforward suggestion: create ten or so randomly generated choice scenarios each 

with, say, four product concepts. Next, compute shares of preference for these scenarios across 

the sample. This leads to 10 x 4 = 40 share of preference predictions of individual product 

concepts that you can compare across the candidate models you are thinking about including in 

the ensemble. Next, compute a correlation table showing how similar the predictions are between 

all pairs of candidate models. Summarize the average correlation for each model with every 

other model, which allows you to sort the models from most similar predictions to the others to 

least similar. As you examine the rank-order of models in your list, if you detect a sudden and 

dramatic drop-off in terms of average correlation of predictions relative to the other models, the 

remaining models are probably outliers representing poor quality solutions and should be 

discarded from the ensemble. 

SUMMARY OF FINDINGS 

So what did we learn from the 2016 Sawtooth Software Prize Competition? Here are our 

observations: 

 The default Sawtooth Software approach of using CBC/HB with main effect, part-worth 

models works very well (at least for this particular data set). The best models devised by 

15 teams of researchers could improve only slightly upon the default standard. 
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 Tuning HB models in terms of the prior variance and prior degrees of freedom can 

improve both in-sample and out-of-sample holdout predictions (not cheating by tuning to 

the holdouts of course, but by jackknifing across calibration tasks for holdout validation). 

 HB works very well but is not the only way to obtain excellent predictions for CBC. 

Many different software systems, utility estimation algorithms, and modeling 

specifications can be successful. No single approach dominates. 

 Ensembles of models that are diverse and of high quality can beat the best single 

submission made by any one superb researcher. 

 Ensembles of models are helpful for lifting both in-sample hit rates and out-of-sample 

share of preference prediction accuracy for CBC (this latter finding has never been 

demonstrated before). 

 Simulating on HB draws works just as well and potentially a tiny bit better than 

simulating using Randomized First Choice on the point estimates. 

 An enthusiastic group of analysts will commit a great deal of effort toward these kinds of 

competitions, not only because they want to boost our collective knowledge about CBC 

modeling, but also because they think this kind of activity is rewarding—even fun. (Our 

correspondence encompassing hundreds of emails with the teams confirms this). 

 It takes hundreds of hours as the competition organizer to pull off a competition like this! 

But it was certainly rewarding work. 

CLOSING THOUGHTS 

Practitioners work in an environment that usually allows limited time and budget for 

modeling and simulator building. The work involved in building dozens of diverse models and 

ensembling them is not very practical given the realities of the marketplace. One wonders about 

the practical improvements or additional insights clients could gain due to an increase of 1 or 2 

absolute points in predictive validity or a reduction of 5% in RMSE. But, when competing in a 

modeling contest, such gains mean the difference between winning and losing! 

Consider a properly tuned HB model (for prior variance and d.f.) operating on the level of the 

draws versus a more sophisticated ensemble of a dozen or more diverse models. Would a 

manager make a very different decision based on the modest additional lift in predictive validity? 

No doubt a slightly improved model could easily lead to changing a feature or two or slightly 

changing the price, but would the impact on share and profitability be significantly different? 

Given the amount of money and time invested in CBC modeling (by managers, modelers, and 

respondents) it makes sense to do more with the data we already have paid for to get better 

answers—especially when hundreds of thousands or millions of dollars may be on the line in 

terms of potential profits. 

For high-end modelers, ensembles offer a competitive advantage and additional point of 

differentiation. For software developers, certain kinds of ensembles of models could be 

automated, such as the sequential use of a variety of different meaningful covariates across 

replicates for both latent class and HB estimation. 
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 Bryan Orme 

APPENDIX A 

CBC Attribute & Level List 

Attribute 1: Destination 

1. Mexican Riviera (sailing out of Los Angeles, CA) 

2. Eastern Caribbean (sailing out of Fort Lauderdale, FL) 

3. Western Caribbean (sailing out of Tampa, FL) 

4. Alaska (sailing out of Seattle, WA) 

5. Norway and Northern Europe (sailing out of Oslo, Norway) 

6. Mediterranean (sailing out of Barcelona, Spain) 

Attribute 2: Cruise Line 

1. Norwegian 

2. Disney 

3. Royal Caribbean 

4. Princess 

5. Holland America 

6. Carnival 

Attribute 3: Number of Days 

1. 7 days 

2. 8 days 

3. 9 days 

4. 10 days 

5. 11 days 

Attribute 4: Stateroom 

1. Inside stateroom (no windows) 

2. Oceanview stateroom, porthole window 

3. Balcony stateroom, sliding door to private balcony 

Attribute 5: Ship Amenities/Age: 

1. Fewer amenities, older ship 

2. More amenities, newer ship 
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Attribute 6: Price per Person per Day 

1. $100 per person per day 

2. $125 per person per day 

3. $150 per person per day 

4. $175 per person per day 

5. $200 per person per day 

(Note: total price per person was also displayed below the price per person per day, computed 

as total days x price per person per day.) 

APPENDIX B 

Description of Sawtooth Software’s Benchmark Ensemble Solution 

(Inspired by Lattery’s 2015 Sawtooth Software Conference presentation.) An ensemble of 

Latent Class and HB solutions (using simple averaging to obtain consensus), where the ensemble 

contains 40 replicates: 

 20 replicates of Latent Class 24-group solutions, broken out early such that the last 10 

iterations provide about 0.1% total lift in log likelihood. Pseudo individual-level utilities 

for each replicate developed by taking the weighted average of the part-worth utilities, 

where the weights are each respondent’s probability of membership in each group. 

 20 replicates of HB solutions. First, optimal priors (prior DF and prior variance) were 

searched on the training data set using jackknife and bootstrap resampling. These optimal 

priors were used in all HB replicates in the ensemble. Each HB replicate was estimated 

using alternating sets of covariates developed using combinations of survey questions as 

covariates. 

Method of predicting individual-level choices for Sawtooth Software’s Ensemble Solution: 

Shares of preference for each in-sample holdout task to be computed using the logit rule for each 

of the 40 replicates. The individual hit rates were computed by averaging the shares of 

preference across the 40 replicates for each respondent, thus determining for each holdout task 

which concept has the highest share of preference and is the most likely choice for each 

respondent. 

Method of predicting shares of preference for the OOS fixed holdout tasks for Sawtooth 

Software’s Ensemble Solution: Randomized First Choice (stacking the raw individual-level 

utilities for all the replicates in the ensemble, such that the respondent utility run contains nxr 

cases in the conjoint simulator representing n respondents by r replicates), tuned to the Quiz data 

set for optimal scale factor. 
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THE WINNING CHOICE MODEL: A SEMI-COMPENSATORY ONE 

NAJI NASSAR 
MIRES

1
 

 

In this paper, we will present the model developed by MIReS that won the 2016 Sawtooth 

Software CBC Modeling Prize competition
2
. We will describe the general approach to building a 

choice model and then explain the MIReS perspective, based on our experience and marketing 

intelligence strategy. Next we’ll elaborate on the hypotheses we built and how those hypotheses 

led us to create the winning model. The paper will conclude with the discussion of future 

research. 

Our decision to participate in the Sawtooth Software predictive modeling competition was 

two-fold: 

 As a practitioner: at the early stage, we wanted to treat the competition as a real case for 

a marketing manager. This choice meant that we eliminated time consuming approaches, 

like developing ensembles of solutions, or too new statistical techniques. We wanted to 

focus on our approach’s performance factors. 

 As a competitor: From our point of view, it was very likely that a good number of 

competitors would base their approaches on the Multinomial Logit model. It’s the most 

widely used one, and several tools are available to estimate it (Sawtooth Software tools, 

some R packages, Stata, SAS among others). So, we paid special attention at key steps to 

see how we could gain a competitive advantage when building our own model. 

We didn’t develop a holistic approach to test several different models and then deliver the 

best one. We will show how we focused instead on building the most appropriate model for the 

given data. Thus, external validity of our approach is somewhat limited, but it was a successful 

method for creating a winning model. We will demonstrate that building an adequate 

representation of market dynamics can beat widely used models with advanced estimation 

techniques. 

THE GENERAL APPROACH 

This is the criterion that we received: “To win, the team needs to beat the default approach 

(HB main effects) as well as a more sophisticated ensemble approach (involving a combination 

of 20 HB and 20 latent class models) seeded by Sawtooth Software.” The objective of the 

competition was to deliver a model that predicts consumers’ choices, both at the individual level 

(by achieving the best within-sample hit rate), and at the aggregate level (by delivering the best 

out-of-sample share predictions). We followed the two-step approach described by Leeflang et 

al. (2014): 

                                                 

 
1 Marketing Intelligence and Research Services 
2 The design of the competition is detailed in Bryan Orme’s article “Findings of the 2016 Sawtooth Software CBC Modeling Prize Competition,” 

the preceding paper in this volume. 
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STEP 1: CHOICE MODEL 

How does the consumer evaluate the proposed alternatives before choosing the most 

attractive one? What would be the formal model that describes the process of his or her choices? 

Is it a compensatory model? Is there some hierarchy in the differentiating characteristics? Is there 

any aspect that eliminates an alternative from evaluation and consideration? 

A modeler can consider several choice models (MNL, Paired Comparison, Nested MNL, 

constrained MNL, MNP, and all their extensions; see Manrai 1995 and Garrow 2009 for some 

non-exhaustive extensions) and test their performance to represent consumer/respondent choice 

behavior. 

MIReS had an existing baseline model: the compensatory multinomial logit model. We 

decided to investigate whether there is some departure from this widely used model. Several 

competitors used such a model, so we were aware that we would have to build the very best 

choice model possible to differentiate us. 

STEP 2: HETEROGENEITY 

To build a choice model for 600 respondents, we needed a representation of consumer 

heterogeneity over the choice model. Two issues must be considered when describing consumer 

heterogeneity: its scope and nature. 

Exhibit 1. Heterogeneity representation 

 Nature 

Scope Discrete Continuous Mixed+ 

Choice model    

Consideration set    

Attributes’ preferences    

Choice Model Heterogeneity 

After the selection of potential choice models, it can be determined either that: 

 Consumers’ behavior can be represented by one of those choice models (homogeneity), 

or 

 Consumers can be allocated to several classes, and each class has its own formal 

representation of choice behavior (discrete heterogeneity). 

Our approach was the widely used one of assuming consumer homogeneity in the choice 

model, i.e., the same model applies for all respondents. 

Consideration Set Heterogeneity 

There are numerous publications that examine the consideration set (such as Shocker et al. 

1991, Horowitz and Louviere 1995, Andrews and Srinivasan 1995). Some publications have 

treated consumer choice as a two-step process; the first looks at the formation of the 

consideration set, the second step consists of choosing an alternative from the consideration set. 

The authors just cited used the Crisp Set Approach, where an alternative is assumed to be either 

considered or not. Other publications saw operational consideration sets as indicators of 
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preferences, a kind of elimination by cutoff. Other authors used the Fuzzy Set Approach 

(Bronnenberg and Vanhonacker 1996, Wu and Rangaswamy 2003) where each alternative has a 

probability to be considered. 

Despite those differences, all publications agreed that consideration sets can provide 

information about preferences that can increase the efficiency of a choice model. One can 

consider one situation among the following: 

 Respondents are considering all the alternatives present at each choice situation. 

 Each respondent has his own fixed consideration set (when data have been collected for 

such exercise, or when, for example, the modeler decides to eliminate the worst 

alternative from consideration set). 

 During a choice situation, every possible set of proposed alternatives has its own 

probability to be the respondent’s consideration set. 

 Every alternative has its own probability to belong to respondent’s consideration set. 

Attribute Preference Heterogeneity 

Twenty years ago, Carroll and Green (1995) stated, “New developments in conjoint analysis 

are arriving so fast that even specialists find it difficult to keep up. Hierarchical Bayes models, 

latent class choice modeling and individualized hybrid models are only a few of the approaches 

and techniques that are arriving on the research scene.” No doubt this sentence is still accurate. A 

complete review of this issue would require an exhaustive approach that goes beyond the scope 

of this article. However, to represent consumers’ heterogeneity across alternative evaluation and 

attributes perceptions, the modeler can choose among: 

 Discrete representation of consumer heterogeneity: Latent Class approach, 

 Continuous representation of consumer heterogeneity: Hierarchical Bayes approach  

(see Andrews, Ainslie and Currim 2002 or Hess, Ben-Akiva and Gopinath 2011 for a 

comparison between both representations), 

 Mixed approach of previous representations and empirical distribution: Augmented 

Latent Class (Varki and Chintagunta 2004), or Mixture of Distributions (Train 2008, 

Train 2016) and many others. 

Estimation 

Once the choice model has been designed and heterogeneity defined, one can estimate the 

model using various statistical techniques. Three of those techniques have been developed in the 

last decade or two: 

 Advantages Disadvantages 

Hierarchical 

Bayes 
Easy to implement, excellent 

predictive capacity, very fast, by far 

the most common utility estimation 

approach. Most importantly, our 

learning curve in such approach has 

already been climbed 

Only normal distribution (and 

mathematical transformations of it) 

can be practically used to describe 

consumer heterogeneity.  
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Simulated 

Maximum 

Likelihood 

All previous hypotheses (as to choice 

model, heterogeneity presentation, 

etc.) can be estimated 

An optimization procedure that is 

computationally cumbersome 

Expectation 

Maximization 
Easiest one to implement, even for 

Mixture of Distributions 
Limited to normal distributions, time 

consuming computations 

 

These steps are interactive: 

 Coherence must be achieved between the choice model and the heterogeneity 

representation. 

 Statistical estimation must be able to handle the models and heterogeneity assumptions 

made by the modeler. If not, (s)he must change either the model or the estimation 

technique. 

PRIOR BELIEFS AND CHOICES 

We describe the general approach we follow to build a decision model at the individual level. 

For the Sawtooth Software competition, we wanted to replicate real case conditions in terms of 

delays and time expended. We did not experiment with all the modeling opportunities just 

mentioned, but took some important decisions up-front in our approach: 

 We decided to build a unique model that would describe the marketing phenomena of the 

marketplace. In our mind, the aggregate market was the aggregation of individual 

behavior and we felt it was most important to deliver one, and only one, accurate 

description of market dynamics to the marketing manager. So, we did not use separate 

models for in-sample and out-of-sample prediction. 

 Respondents’ decisions would be captured by one choice model, with the starting point 

being the MNL model where an alternative’s utility is explained by the 7 attributes 

detailed in Appendix A (6 attributes of the design of experiments, plus total price per 

person). 

            
                          

                                                            

 Consumer heterogeneity in terms of attributes’ part-worths was considered to be 

continuous and able to be captured by normal distribution. 

 Hierarchical Bayes estimation was the appropriate statistical approach given our 

objectives (easy to implement, established predictive validity). 

We chose to focus our modeling efforts on: 

 Choice model formulation: relationship between the 7 attributes and alternatives’ utilities, 

and 

 Consideration set model: which attributes had an impact on consideration set formation, 

and how to interact the consideration model with the choice model. 



57 

OUR CHOICE MODEL 

We had no prior information on the consumer process, which was how (s)he chose to take a 

cruise. To overcome this, we conducted some qualitative interviews to investigate how 

consumers choose a cruise. We also ran some counting and quantitative analyses. We structured 

those around the relevant attributes, and used them to generate the structure of our choice model. 

Destination 

Some destinations seemed to be eliminated from consideration sets. For example, “I’ll never 

buy a cruise with Alaska as the destination; it’s too cold” was a typical qualitative comment. 

However, the underlying reason was unobserved from other attributes or survey data. 

 

We determined that destinations can 

have some physical/perceived aspects which 

eliminate the associated cruises from 

consideration set, no matter the levels of 

other attributes of the cruise. 

Counting analysis confirmed to us that the normal distribution doesn’t seem to be the most 

accurate distribution to represent respondents’ heterogeneity in terms of destination preferences. 

With the data having been collected using Sawtooth Software’s Balanced Overlap design plan, 

all destinations are more or less equally proposed to each respondent (   between 9 and 11 times 

each over the 15 choice situations). We counted the number of times the respondent chose each 

destination (    then made the following hypothesis: 

 At the individual level, the number of times a destination was chosen (    follows a 

binomial distribution with parameter the number of exposures (    and choice 

probability (   .
3
                    . 

 The choice probability    can follow, across respondents, either: 

Beta distribution Inverse logit of Normal distribution 

              
              

                  

LogLikelihood: -2575.8 LogLikelihood: -2595.9 

The Beta distribution appeared to represent consumer preferences across destination 

preferences better than the Normal distribution. We then investigated the discrepancies between 

both distributions. 

                                                 

 
3 We will use Winbugs notation as we used this software for this analysis. 

Temperature (Median) 

Mexican Riviera 

Alaska 
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When we compared the distributions of 

(transformed) Normal draws and Beta 

draws, we saw that the Normal distribution 

is underestimating the frequency of low 

values. For example, with the Mexican 

Riviera destination, 25% of the population is 

impacted, so it’s quite important. If we want 

to correct such a discrepancy, we must add a 

type of penalty for destination preference 

(based on Normal distribution). 

Conclusion: We will suppose that each destination has a probability to be considered: 

                                  4 

By incorporating a consideration probability, we can model the large number of low-utility 

destination values while keeping a normal prior in the choice model itself, making estimation 

simpler. 

State Room & Ship Amenities 

Counting analysis highlighted an interaction between those two attributes at the aggregate 

level. 

Choice probability (counting) 

 

 

We tested such interaction by 

considering it in the preference model. We 

introduced some logical constraints on this 

interaction part-worth: 

 More Amenities should have higher 

preferences, 

 Oceanview stateroom and Balcony 

stateroom should be preferred to 

Inside stateroom. 

 

The cruise utility for the MNL model incorporated this interaction into a single term, 

becoming: 

                                                                              

                  

                                                 

 
4            
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We kept some logical constraints for the part-worth of each level’s utility in this interaction 

term (arrows go from one level to another that must have a higher utility than the starting one) 

StateRoom Ship Amenities: Fewer More 

Inside stateroom (no windows) 
 

 

Ocean view stateroom porthole window 
 

 

Balcony stateroom sliding door to private balcony  
 

 

Price Per Day 

Choice probability (counting) 

 

For the price attribute, we introduced some 

logical constraints for decreasing part-

worth: 

                         

                
5 

 

Budget Per Person6 

We assumed that if the cost of a cruise exceeds the respondent’s budget, that cruise won’t be 

considered, no matter the levels of other attributes. (“Budget” in the formula below refers to the 

total cost per person per day of a cruise.) 

                                                                 

Consideration must be decreasing with budget, so we imposed a constraint:              

                                                 

 
5 Setting the $100 part-worth to zero allows us to generate positive part-worths for all other levels of the attribute. 
6 Computed as the product of number of days and price per person per day, this attribute had more than 20 distinct values. It was treated as a 

continuous attribute. 
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Choice probability (counting) 

 

As one can notice, the shape of the 

relationship between budget and aggregate 

choice probability is non-linear. So we 

introduced a second term for budget 

attribute: its natural logarithm. And we 

constrained both parameters, one for budget, 

and one for its logarithm, to be negative at 

the individual level. 

            

                

The final form of cruise’s utility for the MNL model became: 

                                                                              

                                                

and we determined that consideration of a cruise is based upon its destination and budget: 

                                   

                                             

Both conditions must be satisfied for consideration. 

In our earlier discussion of general approaches, we cited two ways to treat the consideration 

set: 

 Crisp Set Approach: Here an alternative is assumed to be either considered or not. One 

has to estimate the probability of each possible consideration set. The respondent has to 

make a choice; the consideration set can’t be empty, so in our case, 15 =        

consideration sets are possible. The probability for each consideration set can be written 

as
7
: 

     
     

                        
  

                        
    

 

                             

   

   
  

 

This approach supposes that consideration of each cruise is independent from the 3 others 

in the choice situation. But cruises can share the same destination (this occurred in about 

10% of the choice tasks in this design). Further, if a cruise satisfies the budget condition, 

all cruises that have a lower budget must satisfy it as well. So, independence can’t be 

assumed in our case. One would have to build a specific approach for each possible 

consideration set. So, we ruled out the crisp set approach. 

                                                 

 
7 In this formula, yi is 1 if alternative i is present in possible consideration set    

  ; 0 otherwise. The products are over the 4 alternatives in each 
consideration set. 
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 Fuzzy Set Approach: In this approach, an alternative has a probability to be considered 

One needs only the marginal distributions of consideration, one for each alternative 

included in the universal set. We used this approach in our final model: 

             
                                     

                                 
 

This leads us to a semi-compensatory choice model, as the compensatory term (MNL) is 

counterbalanced by a non-compensatory term (consideration model). 

ESTIMATION & SIMULATIONS 

We used the Hierarchical Bayes algorithm to estimate attributes’ part-worths and the 

parameters that figured in our formal model. We followed, point-by-point, every step Kenneth 

Train (2003) described in his section 12.6, “Hierarchical Bayes for Mixed Logit.” We used: 

 Starting values: Negative uniform for individual draws (10x), and large covariance matrix 

(10x the covariance matrix of the uniform draws) 

 For the first 10,000 draws, we kept draws showing better likelihoods 

 500,000 draws for convergence 

 We retained afterwards 2,500 draws, skipping 100 between two retained draws (so 

systematically sampled from a series of 250,000 draws) 

 We didn’t use tying techniques for constrained parameters, instead we transformed 

normal draws (see Appendix B for more detail). 

Since our model reduced the IIA problems, we directly used simulations based on 2,500 HB 

draws. We then took for each respondent the mean of alternative probabilities over all those 

draws. The first choice gave us the most likely choice the respondent will make for the 6 in-

sample choice tasks (hit rate). The means over respondents of the individual alternatives’ 

probabilities gave us the performance of each alternative for the 21 out-of-sample choice tasks 

(R-squared based on the share of preference probabilities). 

We focused all of our attention on building the choice model itself so we didn’t investigate 

all the avenues of research we mentioned in the general approach. With one model, we were able 

to establish an adequate description of market dynamics. Our description offers the marketing 

manager some significant advantages: 

 the predictive capacity of the model, 

 the non-compensatory role of destination and budget in the choice model, which can have 

a significant impact on pricing cues, 

 market competition as a consideration model defined the most competing alternative, and 

reduced the IIA problem. 

LIMITATIONS AND FUTURE RESEARCH 

Several hypotheses led us to our model based on our experience and descriptive analysis. But 

we are aware that other hypotheses can’t be rejected regarding the consideration model, and our 

prior beliefs may have biased us when we developed the model. 
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First of all, we had no information about consideration set formation, even from the survey. 

We developed our formation from the 15 choices made by respondents. One can’t use 

consideration set formation apart from this choice model. We don’t have the in-depth information 

that consideration formation could provide for the marketing manager: given the destination and 

budget, the marketing manager might be able to define the addressed market and the main 

competitors. The main drivers of consideration formation could also be helpful for cruise 

promotion. 

Second, the consideration set can’t be empty at any purchase occasion, whatever the 

characteristics of the proposed alternatives. This can lead to overestimation of the consideration 

model parameters. 

For destination consideration, we mustn’t forget that departure from Normal distribution, as 

the consumers’ heterogeneity representation, had been also highlighted. Consideration set 

parameters can be seen as a “correction” for this departure. We did not have the information for 

the previous destinations for the respondents who had taken cruises before (47% of the 

respondents). Variety-seeking buying behavior can also have an impact on the consideration set 

for this last set of respondents. So, precautions must be taken for destination consideration. 

For budget consideration, this factor varied from $700 to $2200 and indicated more than 20 

levels. That’s quite a wide range and budget was the attribute with the widest variation (more 

than 50% of the choice tasks showed a budget range
8
 higher than $500). There is extensive 

literature on the impact of an attribute’s number of levels and range on attribute importance. 

Such bias could explain a part of the non-compensatory effect of budget. 

The consideration model allowed us to build a semi-compensatory model that captured 

marketplace dynamics and showed (as we now know) high predictive validity. With the 

limitations we described above, one can’t separate the two parts of our modeling approach. 

We referenced some ideas in the general approach that we would like to test further: 

 Choice Model: MNL, Nested MNL over destination (limited by the modest overlap), 

MNP as one can suspect that destinations can show unobserved similarities (weather, for 

example) 

 Consideration Model: Crisp Set approach versus Fuzzy Set approach 

 Heterogeneity: Normal versus Dirichlet/Gamma distribution (as extensions of Beta 

distributions) versus empirical distribution 

  

                                                 

 
8 Measured as difference between lowest and highest budget across proposed cruises. 



63 

We put relatively minimal effort into building our semi-compensatory choice model, using a 

level of effort that would be feasible and reasonable in real commercial studies. It could be 

interesting to see the performance results of our research ideas, and the relative effort necessary 

to invest in order to achieve additional performance. 

 

 
 Naji Nassar 
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APPENDIX A 

CBC Choice Screen, Attributes & Levels 

Each respondent completed 21 CBC tasks with four alternatives per screen, like the 

following.

 

Attribute 1: Destination Attribute 2: Cruise Line 

1. Mexican Riviera 

(sailing out of Los Angeles, CA) 

2. Eastern Caribbean 

(sailing out of Fort Lauderdale, FL) 

3. Western Caribbean 

(sailing out of Tampa, FL) 

4. Alaska 

(sailing out of Seattle, WA) 

5. Norway and Northern Europe 

(sailing out of Oslo, Norway) 

6. Mediterranean 

(sailing out of Barcelona, Spain) 

1. Norwegian 

2. Disney 

3. Royal Caribbean 

4. Princess 

5. Holland America 

6. Carnival 

 

Attribute 3: Number of Days Attribute 4: Stateroom 

1. 7 days 

2. 8 days 

3. 9 days 

4. 10 days 

5. 11 days 

1. Inside stateroom (no windows) 

2. Ocean view stateroom, porthole window 

3. Balcony stateroom, sliding door to 

private balcony 

Attribute 5: Ship Amenities/Age: Attribute 6: Price per Person per Day 

1. Fewer amenities, older ship 

2. More amenities, newer ship 

1. $100 per person per day 

2. $125 per person per day 

3. $150 per person per day 

4. $175 per person per day 

5. $200 per person per day 

“Attribute” 7: Price per Person 

Computed as number of days x price per person per day 
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APPENDIX B 

From Normal Draws     to Model Coefficients           

The   parameters assumed to have normal priors in the Hierarchical Bayes estimation were 

transformed to yield final model parameters                            for the consideration 

model) with the desired constraints. The transformations made constraint violations impossible, 

no matter what values the  ’s took on. 

The final form of a cruise’s utility for the MNL model: 

                                                                              

                                                

Consideration model: 

                                   

                                             

Overall probability:              
                                     

                                 
 

Attribute Level Transformation from   to   or   

Mexican Riviera  0: reference 

Eastern Caribbean 

No constraints,                    

Western Caribbean 

Alaska 

Norway and Northern Europe 

Mediterranean 

Norwegian  0: reference 

Disney 

No constraints,                    

Royal Caribbean 

Princess 

Holland America 

Carnival 

7 days  0: reference 

8 days 

No constraints                       
9 days 

10 days 

11 days 

Inside stateroom Fewer                               : Reference 

Inside stateroom More                                              

Ocean view stateroom Fewer 
                                                        

               

Ocean view stateroom More 
                                                        

                  

Balcony stateroom Fewer                                                         
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Balcony stateroom More 
                                                        

                  

$100 per person per day 0: reference 

$125 per person per day         =                  

$150 per person per day         =        +                  

$175 per person per day         =                          

$200 per person per day         =                           

Budget         =                  

Ln(Budget)             =                  

Mexican Riviera 

No constraints,                      

Eastern Caribbean 

Western Caribbean 

Alaska 

Norway and Northern Europe 

Mediterranean 

Consideration Budget No constraint:               

Budget                            
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USING BAYES’ THEOREM TO ADJUST SIMULATED PREFERENCE 

SHARES TO MARKET REALITY 

DAVID BAKKEN 
FORESEEABLE FUTURES GROUP 

ABSTRACT 

As every practitioner working with conjoint analysis knows, even with the best possible 

model, simulated preference shares often do not map to actual market shares. This paper 

introduces a “new” method of post-estimation adjustment using Bayes’ Theorem and compares 

adjusted results to other post-estimation adjustment methods. External measurements of market 

performance, previous survey data, or even subjective beliefs may serve as prior beliefs in the 

application of Bayes’ Theorem to adjusting shares predicted from Choice-Based Conjoint 

studies. The method is applied to two case studies. Results indicate that the method may be 

appropriate in the face of ignorance or uncertainty about the underlying differences between the 

predicted and reference market shares. 

INTRODUCTION 

Conjoint analysis has proved to be a valuable tool for understanding consumer choices 

among competing alternatives that can be defined (and differentiated) by observable 

characteristics (“features” or “attributes”) and, in many cases, price. Conjoint analysis derives 

much of its value from the fact that a set of model parameters estimated from data collected from 

survey respondents can be incorporated into a “market simulator” that permits “what-if” scenario 

analyses. Most often such analyses are used to refine a product profile, optimize a portfolio, or 

model competitive dynamics (such as price competition). 

As every practitioner working with conjoint analysis knows, even with the best possible 

model simulated preference shares often do not map to actual market shares. Discrepancies 

between model-based simulated preference shares and actual market shares can be due to any 

number of factors that have been identified elsewhere (e.g., Allenby et al. 2005; Orme & 

Johnson 2006). 

Practitioners have employed various techniques for closing the gap between simulated 

preference shares and in-market results. In general, these techniques rely on either improving the 

quality of the data and parameter estimates (Allenby et al. 2005) or use of various post-

estimation adjustments such as multiplicative weighting of predicted preferences shares to 

achieve a target distribution of shares. Orme and Johnson (2006) have described and evaluated 

several of these adjustments. In this paper we introduce a method of post-estimation adjustment 

using Bayes’ Theorem. The rationale for this method is that, before we collect data and estimate 

a model, our best guess (prior belief) for the market shares of the various alternatives is the 

current observed share. The current observed shares provide information about unobserved 

factors that may be contributing to the differences between predicted and actual market shares. 
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For example, actual shares are subject to a number of constraints, such as supply capacity, that 

are not directly observed but that are reflected in the actual market shares. 

ARE DISCREPANCIES REALLY A PROBLEM? 

The discrepancies between simulated and actual shares can be substantial. In one of the case 

studies described later in this paper, the predicted preference share for one alternative was larger 

than the actual market share by a factor of nine. In the other study, the predicted preference share 

for one alternative was five times larger than the actual market share. 

From one perspective—that of internal validity—differences between model predictions and 

the real world may not matter much. Consider the case where a company must decide on the set 

of features that will define a new product. As long as the conjoint model informs the company as 

to the optimal set of features based on some relevant criterion, the model results can be 

meaningful and useful even if they do not predict real world market shares. However, this view 

is shortsighted in many respects. Imagine that in this case the predicted market share is two times 

the (unobserved) actual share the product will achieve. Actual shares translate to actual volumes, 

and volume usually determines both revenue and profit. If the economic breakeven point for the 

product is somewhere between the predicted share and the realized actual share, the firm is likely 

to lose money by launching the product. 

Discrepancies between predicted and actual shares also make it difficult to validate our 

models and modeling approaches. If we cannot demonstrate that our predicted results at least 

correlate with real world results, managers may justly question the credibility of our findings and 

recommendations. 

Finally, managers may possess knowledge and hold assumptions about their markets that are 

not made explicit in the discrete choice model. If results predicted by the model are at odds with 

that knowledge and those assumptions, they again are likely to challenge the findings and 

recommendations. Just such a case provided the impetus for testing the Bayesian post-estimation 

adjustment described in this paper. 

CAUSES OF DISCREPANCIES BETWEEN SIMULATED AND ACTUAL MARKET SHARES 

Because the reasons for differences between simulated and actual market shares have been 

discussed in detail by other authors (Allenby et al. 2005, Orme and Johnson 2006), I will only 

summarize those reasons here. Several of these factors impact the estimated parameter values; 

our primary interest lies in the impact of violating the assumptions incorporated into choice 

simulators. 

Here are the principal causes of discrepancies between simulated and actual market shares: 

 Study design factors 

 Data collection errors 

 Respondent reliability 

 Respondent validity 

 Modeling errors 

 Violation of simulation assumptions 
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Study design factors include poor or incorrect operationalization of attributes and levels, 

mismatch between the conjoint method used (e.g., CBC, ACBC, MBC) and the real-world choice 

architecture, inadequate experimental designs, and poor “pre-conditioning” of respondents with 

respect to their understanding of the choice context and tasks. Because the experimental choice 

context is, by necessity, an abstraction or simplification of the real marketplace, we may omit or 

ignore one or more explanatory variables, resulting in a mis-specified model. 

Data collection errors include inadequate sample size, improper sampling frame, inaccurate 

measurement of actual share, and asynchronicity between the survey data and actual market 

share measurement. 

Respondent reliability is compromised when respondents answer inconsistently or when their 

responses change systematically over the course of the choice experiment. In addition to these 

within-subjects effects, stochastic heterogeneity in traits that may be related to preferences may 

introduce between-subjects noise. For models using hierarchical Bayesian estimation methods, 

within-subjects noise should have greater impact on the lower level model, while between-

subjects noise should have greater impact on the upper level model. 

Respondent validity suffers when respondents do not answer realistically. They may choose 

to answer unrealistically—an example would be consistently choosing higher-priced options 

when they would not do so in real life—or they may be unable to respond realistically, as when 

they do not have an adequate understanding of some of the attributes that define the choices. 

Respondents may be insufficiently motivated to respond accurately. Several researchers have 

experimented with incentivized conjoint methods to reduce the likelihood of unrealistic 

responses. 

Modeling errors include failing to account for interaction effects (for example, failing to 

include a price cross-effect when modeling choices between bundled and a la carte options) and 

possible mismatch between the model assumptions and the data-generating process (for example, 

assuming a compensatory, additive process when consumers actually employ screening rules or 

elimination by aspects). 

Violations of simulator assumptions include all the differences between the conditions 

encoded into the simulator and the real world. The choices that generate the model parameters 

for the simulator typically take place under conditions of 100% awareness of the alternatives and 

an assumption of 100% availability for each of the alternatives (with a corollary assumption that 

there are no differential supply constraints for the alternatives). Respondents often are better 

informed and have greater understanding of the differences between the alternatives than might 

occur in the marketplace. Simulated shares are instantaneous; all options are assumed to have 

reached maturity (or to require equal time to reach maturity). Other assumptions typically 

include that the consumers represented in the simulator have no budget constraints, and that the 

sales efforts of the different brands are equally effective (a corollary of the 100% awareness 

assumption). 

WHAT DO WE WANT FROM AN ADJUSTMENT METHOD? 

Any method that we apply to reducing simulator vs. real world discrepancies should satisfy a 

few important criteria. 
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First, the method should have some plausible link to the reasons for the differences between 

simulated and real market shares. To understand why this is important, consider a simple 

aggregate share adjustment. We might run a simulation set up to reflect the current market 

(brands, prices and attributes), compare the simulated shares to actual shares and then calculate 

an adjustment factor for each brand by dividing the predicted shares by the actual shares. Then, 

for every scenario we simulate, we multiply the results for each brand by that brand’s adjustment 

weight (and then renormalize the shares to 100%). Because this method does not take any 

explanatory variables into account, we have no way of validating simulations for scenarios other 

than the current market. On the other hand, if our method explicitly incorporates explanatory 

variables such as awareness or distribution, we can systematically vary our assumptions about 

those explanatory variables to test the robustness of our adjustment method. 

Second, the method should be transparent. Underlying relative changes in preference shares 

(that is, before external adjustment) between scenarios should be preserved in the post-

adjustment results. Orme and Johnson (2006) demonstrate how this is not the case for the simple 

aggregate adjustment described in the preceding paragraph. That method can produce “reversal 

anomalies” where the post-adjustment simulated shares actually move in different directions 

from the un-adjusted shares. 

Third, the results of the adjustment should be predictable. We should be able to tell from the 

method whether simulated shares will increase or decrease as a result of the adjustment. If we 

increase the assumed awareness level for a brand, for example, we expect that brand’s simulated 

share to increase. If we decrease distribution, we expect a brand’s simulated share to decrease. 

Finally, the method should be robust, producing consistent results across the range of input 

values. Basically, this means that for extreme values of adjustment inputs, such as very low 

levels of awareness, the adjusted results are not wildly off-base. 

SOME POSSIBLE SOLUTIONS 

Although it is something of an inversion to talk of the real world “violating” the simulator 

assumptions, most approaches to dealing with these violations involve interposing some type of 

correction to bring the simulator assumptions more in line with the real world. For example, if 

we know the actual awareness levels of each of the brands in our model, or the actual geographic 

distribution, we can apply some type of weighting scheme that adjusts the probabilities of 

choosing each of the brands based on actual awareness or distribution (or both). This type of 

“external” adjustment (i.e., post-estimation adjustment) depends on our ability to discover or 

make an educated guess about the parameter values for awareness, distribution, or some other 

real world factor that differs from the simulator assumption. 

Some factors, such as awareness and distribution, have an aggregate effect on market shares. 

Other factors, such as budget constraints, operate at the level of the individual consumer. While 

individual-specific factors should be applied to respondent level data, aggregate factors such as 

awareness can be applied at either the aggregate level (applying the weights to the alternatives) 

or individual-level (stochastically deciding whether each respondent becomes aware of each 

alternative, in proportion to the target levels of awareness). Aggregate adjustment has a 

consistent effect across all respondents. Assigning respondent-level probabilities can lead to 

different results when the simulator is based on individual-level utilities and therefore the 

specific mechanism used to adjust at the individual level is an important consideration. 
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Aggregate external adjustments are fairly easy to construct and apply. By way of comparison, 

we can imagine building a simulator that explicitly incorporates variables that differ between the 

simulator and the real world. Bakken (2006) has illustrated the use of agent-based modeling to 

simulate awareness, consideration set formation, and consumer choice. Given a set of individual 

decision models derived from Choice-Based Conjoint, this approach overlays a set of stochastic 

processes to model market choices. Each respondent is treated as an autonomous buyer agent 

subject to a variety of environmental stimuli, such as advertising and word of mouth. Such 

models can also incorporate seller (brand) agents that respond to the buyer agents’ choices (by 

changing prices, for example, or increasing the resources devoted to creating awareness). 

Building this type of expanded simulator requires that we both understand and can parameterize 

all of these various components of the market system of interest. 

In most cases, simpler external adjustment methods will be adequate for closing the gap 

between predicted and actual shares. Agent-based simulations, however, may be a better choice 

when we need to model temporal dynamics, such as the rate of adoption and diffusion of a new 

product over time, or the impact of positive and negative word of mouth. 

Orme and Johnson (2006) describe and evaluate several external effects adjustments. These 

include a simple adjustment for awareness wherein respondents are asked to indicate their 

awareness of each brand in the model (prior to the choice exercise!) and then “post-processing” 

the part-worth utilities, setting any part-worth for a brand the respondent is unaware of to an 

arbitrarily low value so that the respondent’s probability of selecting that brand is close to zero.
9
 

The same type of adjustment can be applied to unequal distribution if individual level data 

reflecting access (Orme and Johnson suggest the respondent’s zip code or region) to the different 

alternatives is available. The stochastic micro-simulation method described above for awareness 

can also be used for unequal distribution in those cases where we do not have information about 

which respondents will have access to the different choices in the simulation. 

Orme and Johnson also describe a method of individual-level utility adjustment that applies a 

brand-specific constant correction to each respondent’s part-worth for the brand. They find these 

brand-specific correction factors with a simple iterative procedure that employs the ratios 

between target shares and unadjusted simulated shares. 

Orme and Johnson describe an additional approach that calculates respondent-level weights. 

This method might be appropriate in situations where the discrepancy between predicted and 

actual shares is due to the fact that the sampled respondents differ from the target population in 

some unobserved way that interacts with their preferences. 

USING BAYES’ THEOREM FOR EXTERNAL ADJUSTMENT OF SIMULATED SHARES 

These methods for adjusting simulated preference shares are all based on the assumption that 

the actual market shares represent “truth” and our goal is to move the simulated shares closer to 

the actual shares. We can also view the “problem” as arising from two different sources of 

information about consumer preferences, namely the data provided by our survey respondents 

                                                 

 
9 As Orme and Johnson note, this reflects a “micro-level correction.” In the absence of self-reported awareness for each brand, we could assign 

respondents randomly to states of aware or non-aware for each brand with a probability equal to awareness measured in some other way, such 

as a brand tracker and then adjust the brand part-worths. We would need to run many simulations, repeating the random assignment in each 
iteration, and then average across the iterations to obtain awareness-adjusted preference shares. 
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and data on actual market shares, and we can view our objective as the integration of these 

different information sources. Bayes’ Theorem (Bayes 1763) offers a way to combine 

information from the survey data with other, external information about the market. 

While many market research practitioners will be familiar with Bayes’ Theorem, it may be 

helpful to review the calculations using a classic example described by Piatelli-Palmarini (1994) 

and known as the “Juror’s Fallacy.” In this example, a taxi driver is accused of a hit and run 

accident. An eyewitness claims to have seen a blue taxi strike a pedestrian and drive away. The 

police, understandably, look towards the blue cab company for suspects. We’ll assume that, for 

whatever reason, such as company records of which drivers were on duty, a single plausible 

suspect is identified. Additional information emerges during the course of the trial: there are only 

two taxi companies in town and one uses only blue cars and the other only green cars. On the 

night of the accident, 85% of the taxis on the road were green and 15% were blue. The 

prosecutor has been diligent and conducted an experiment to determine the reliability of the 

eyewitness. The experiment revealed that, under conditions identical to those on the night of the 

accident, the eyewitness was able to correctly identify the color of a taxi 80% of the time. The 

jurors are charged with determining whether, in fact, the accused was involved in the hit and run 

accident. Our concern at the moment is determining the probability that the cab seen by the 

eyewitness was blue (which is analogous to determining the probability that the eyewitness is 

telling the truth). 

This example is called the juror’s fallacy because our intuitive reaction is likely to be that the 

probability of a blue cab is the same as the reliability of the eyewitness, or 80%. Even if we feel 

that the answer cannot be quite that simple, we are likely to assume that it is more probable that 

the cab was blue than that it was green. If, given the fact of a blue taxi, other evidence points to 

the accused, the preponderance of the evidence likely would support conviction. However, we 

have not considered the eyewitness’s identification must be conditioned on the likelihood that 

any taxi out that night was blue. 

There are a few different ways of writing Bayes’ Theorem, but one of the easiest to grasp is 

the formula used by Silver (2012): 

            
  

           
 

The “event” of interest is the taxi being blue. For the other terms: 

x = our “prior probability” that the taxi is blue or our best guess prior to the eyewitness 

appearing. In this case, x = 15%, the proportion of taxis on the road that night that were 

blue. 

y = the probability of the eyewitness’s testimony if the taxi is in fact blue (that is, the 

accuracy of the eyewitness), which = 80%. 

z = the probability of the witness saying the taxi is blue if in fact it is green, which = 20% 

Dropping these values into the equation gives us: 
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So now, instead of our intuitive 80% probability that a blue taxi was involved in the hit and 

run, our posterior probability is only 41%, and the driver of the blue taxi appears much less 

likely to be guilty. So why does the probability that the driver is guilty decline? It’s because the 

probability that any taxi seen by the witness that night was blue is much lower than the 

probability that any taxi seen was green (15% versus 85%). Of course, there might be other 

evidence that would alter our prior probability. Perhaps the two taxi companies tended to operate 

in different parts of the city. In that case, we would need to refine (or “update”) our original 

guesses and recalculate the probability that the witness saw a blue taxi. 

How do we apply this calculation to the problem of “adjusting” simulated preference shares? 

In other words, how do we set values for x, y and z in our formula? 

“X” is our prior belief, or our best guess about the expected market share in the absence of 

the data from our conjoint study. In the project that prompted me to begin exploring Bayes’ 

Theorem as a possible method for adjusting simulated shares, the client firm’s market share was 

12%. The study was designed to explore pricing for the next generation of the product that 

included some feature enhancements. In the absence of the market research, our best guess might 

be that the new version of the product will sell about the same number of units per year as the 

current version. For the moment considering only aggregate adjustment, we can set x to equal 

current market share for the product. 

“Y” is our hypothesis about the probability that a customer will choose a particular 

alternative. Again considering just aggregate adjustment, we can set y equal to the predicted 

preference share for the alternative. 

Setting a value for z may present the greatest challenge. Unlike our blue taxi/green taxi 

example where we know the error rate for the witness’s color identification, we have to think 

carefully about the way in which we establish the probability that we would observe consumers 

choosing the target alternative if our “hypothesis”—the simulated preference share—is wrong. In 

the absence of any other information, we can set z equal to the random probability of choosing 

an alternative, which is 1/(number of alternatives). Thus, if we have five alternatives in our 

simulation, z would be set to 1/5 or 0.2. 

Going back to the example above: 

x = 0.12 (current market share) 

y = 0.25 (predicted market share) 

z = 0.2 (based on five alternatives in the simulator) 

P = 0.14 (adjusted share prediction) 

Changing our assumption about z can have a fairly big impact. If our simulation has eight 

options and we set z equal to 0.125 (meaning that it’s less likely that the product would be 

selected by chance), our adjusted share jumps to 21%. 

So far we have looked at applying Bayes’ Theorem to adjust aggregate preference shares. If 

we have individual-level prior beliefs we can apply this adjustment at the individual level. For 

example, if we are simulating automotive choices and we have captured each respondent’s 

current vehicle make and we know something about the retention rate for each brand, we can 

calculate Bayes’ Theorem separately for each respondent and then average across respondents. 

To keep things simple, assume that there are only two makes of automobile; 45% of the sample 

currently own Make A, which has a retention rate of 60%. Make B has a 55% share of current 
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owners and a 70% retention rate. For respondents who currently own Make A, we would set x 

for Make A equal to 0.6 (the retention rate, which is our prior belief about the probability that 

they will choose Make A). Consider two different respondents who both own Make A. For one 

respondent, the simulated probability of choosing Make A is 30% before adjustment; for the 

second respondent, that simulated probability is 70%. Setting x to 60% for each individual (with 

z = 50% since there are two alternatives), our posterior probability of choosing Make A for the 

first respondent is now 47% while the posterior probability for the second respondent is 67%.
10

 

CASE STUDIES 

This Bayesian method for externally adjusting simulated shares was applied to two market 

studies. The first study focused on preferences for sliding patio doors. The second study focused 

on individual choices of health insurance coverage. 

Patio Door Study 

The patio door study was designed to estimate consumers’ willingness to pay for specific 

feature enhancements. Most patio doors are sold through either big box home improvement 

stores or trade channels (e.g., lumber supply companies and local door and window fabricators 

who sell direct to contractors). Doors can be constructed using wood (which is usually covered 

with aluminum cladding on the exterior side), fiberglass/composites, or vinyl. Vinyl doors are the 

least expensive and account for the lion’s share of category volume. Fiberglass/composite doors 

are more expensive and more durable, but represent only about 3–5% of total patio door unit 

sales. Wood doors tend to be most expensive and represent about 30–35% of the market. Reasons 

for the differences across the different materials include awareness, distribution, and supply 

constraints. 

Health Insurance Study 

Many health insurance companies offer Medicare Advantage plans which are sold directly to 

eligible consumers (in contrast to group plans which are marketed to employers and other 

organizations who provide or offer insurance for employees or members). The insurance 

companies attempt to design benefits and premium structures that will attract profitable 

customers. This study tested different plan designs for Medicare Advantage products. The 

underlying assumption is that consumers will prefer those plans with the richest benefits relative 

to their needs. Thus, someone with a chronic illness that results in occasional hospitalization will 

look for a plan with richer hospitalization benefits, while a relatively healthy individual may be 

drawn to ancillary benefits such as fitness club membership. Because of the regional nature of 

health insurance, local Blue Cross Blue Shield carriers often have the largest market share. 

Possible reasons for the observed differences in market shares include awareness, consumer 

inertia, and time to market maturity (some of the brands are new to the local market). 

The following charts display the simulated and actual market shares for each study, before 

any external adjustments. 

                                                 

 
10 If using a first-choice method for simulated shares, the individual level adjustment would be applied before determining the respondent’s first 

choice. 
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Bayesian Adjustment of Simulated Shares 

In both studies an aggregate Bayesian adjustment was applied to simulated market shares. 

This table illustrates the calculations for a patio door simulation. The simulation included three 

door options (wood, composite and vinyl) plus a “none” option. 

 Option 1 Option 2 Option 3 “None” 

Prior belief (x) 61% 5% 34% NA 

Simulated 

Preference 

share (y) 

28.6% 24.4% 26.4% 20.6% 

Z 25% 25% 25% NA 

Bayes 

calculation 

0.644 0.044 0.353 NA 

Rescaled* 49.1% 3.3% 26.9% 20.6% 

*Rescaling accounts for not including the “none” option in the Bayes’ calculation as there is no prior belief 

regarding the “none” option. 

The following charts compare the unadjusted, Bayesian adjustment, and actual market shares 

for both studies. 
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For the door study, the simple Bayesian adjustment brings the simulated market shares much 

closer to the actual shares. In the health insurance study, one company offers a utility-dominating 
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plan ($0 premium with relatively rich benefits). In simulation, this plan achieves about five times 

the observed in-market share. Because the value of y in the Bayesian calculation is relatively 

high, the Bayesian adjustment alone shrinks the share only a little. In a frictionless market, this 

might be an accurate representation of what will happen under conditions of 100% awareness. 

However, given high consumer inertia (the retention rate for the market leader, Brand E, is about 

90%), it’s possible that there is more “noise” in the conjoint data than in the real world. In such 

cases, tuning the scale factor (as applied in Sawtooth Software simulators) reduces this 

difference. Combining the scale factor and Bayesian adjustments brings simulated shares even 

closer to actual shares. 

How Does the Bayesian Adjustment Compare to Other External 

Adjustment Methods? 

The Bayesian adjustment appears to reduce the gap between predicted and actual shares, but 

we might ask if it is a legitimate way to adjust simulated shares. To answer that question, we 

compare the Bayesian adjustment to two other adjustment methods using the patio door study. 

We look at three different indicators: 

 Ratios of adjusted predicted shares to actual or “expected” shares (based on prior belief), 

 Consistency of predictions across methods, and 

 Ability to capture competitive interactions (substitution effects) between products. 

Three adjustment methods are compared: 

 Bayesian external adjustment (a prior belief—actual market share—is integrated with the 

simulated share—to arrive at a posterior prediction) 

 Simple aggregate external adjustment (differential external factors such as awareness and 

distribution are translated into weights applied to the simulated shares) 

 Stochastic consideration set formation (differential external factors such as awareness and 

distribution are used in a probabilistic simulation of consideration set formation). 

The following table shows the calculations for the simple aggregate external adjustment. 

 Option 1 Option 2 Option 3 “None” 

“Distribution” 
61% 5% 34% 

 

Simulated 

Preference share 
28.6% 24.4% 26.4% 20.6% 

Distribution X pref 

share 
17.6% 1.1% 9.0% 20.6% 

Rescaled 
50.4% 3.1% 25.8% 20.6% 
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The stochastic simulation method models consideration set formation as a random process 

dependent on the probability of being aware of the product and being able to find it when 

shopping (distribution). For purposes of the simulation, we assumed that the probability that a 

particular door type will be included in a consumer’s consideration set is equal to that type’s unit 

share of volume.
11

 Using a Monte Carlo process, we generate a random number between 0 and 1 

from a uniform distribution for each brand for each respondent. If that random value falls within 

a specified range determined by the unit share of volume, the material type is included in the 

individual’s consideration set. This results in roughly 61% of respondents considering a vinyl 

door in any one simulation. To keep things simple, we multiplied the total exponentiated utility 

for each option by either 1 or 0, depending on whether or not it was in the consideration set, 

before calculating the preference shares. We then repeated this process 1,000 times and averaged 

across the iterations. 

This chart compares the ratio of simulated to actual shares for each of the methods tested. We 

can see that for all of the adjustment methods, the ratio of simulated to actual shares is close to 

1:1 for the three door types. 

 

The following chart illustrates the degree of consistency in adjusted shares across the 

different methods. In this simulation, the product line-up has been expanded to capture 

substitution effects. For each material type, the simulation offers one “basic” product and one 

product with enhanced features (at a higher price). Both the Bayesian and simple aggregate 

adjustments yield similar adjusted shares across the different alternatives in the simulation. The 

stochastic simulation seems to run into some difficulty in predicting the shares for the two vinyl 

options; the ratio of the simulated shares for Vinyl 1 to Vinyl 2 is much different for the 

                                                 

 
11 This is a simplifying assumption that is useful for demonstrating the differences between the methods but that would likely be inappropriate for 

actual simulation of consideration set formation. Among other things, we would want to separate distribution and awareness in determining 
whether or not a material type gets into the consideration set. 
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stochastic method than we see in the unadjusted shares. This particular implementation of 

stochastic consideration set formation appears to fail the transparency criterion. 

 

Finally, using the same product lineup, the price for Composite Door 2 was decreased by 

$200 while the price for Composite Door 1 remained at $1,950. The doors are similar except for 

small feature differences, so we would expect Composite 2 to compete most directly with 

Composite 1. We might also expect to see some competition with Vinyl 1, which has a similar 

feature set. As the price gap between Vinyl 1 and Composite 2 shrinks, Composite 2 may become 

more appealing to some of those who preferred Vinyl 1.  
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Change in predicted preference share vs. base case 

 

Unadjusted Bayes Adjusted 
Simple External 

Rescaled 

Stochastic 

consideration set 

Wood 1 0.00% 0.11% 0.17% 1.90% 

Composite 1 -0.30% -0.02% -0.02% -0.02% 

Composite 2 1.48% 0.15% 0.16% -0.75% 

Vinyl 1 -0.59% -0.48% -0.75% 15.59% 

Vinyl 2 0.00% 0.22% 0.37% -19.63% 

Composite 3 -0.59% -0.05% -0.05% -0.38% 

Wood 2 0.00% 0.07% 0.11% 3.29% 

The Bayesian and simple external adjustment methods both perform reasonably well. The 

stochastic simulation does not perform well. There are inexplicable swings between the two 

vinyl options, and Composite Door 2 actually loses some share despite the lower price. 

However, there are some anomalies suggesting that the Bayesian adjustment method requires 

further testing across some different contexts. For example, both the Bayesian and simple 

external adjustments have Vinyl 2 increasing in share. The unadjusted shares do the best job of 

capturing the expected substitution effects. 

RECOMMENDATIONS AND CONCLUSIONS 

It is tempting to suggest that practitioners avoid making external adjustments to simulated 

shares whenever possible. However, there are real consequences for decision-making when 

simulated shares vary from actual market conditions by as much as they do in the two case 

studies. 

The Bayesian adjustment method introduced in this paper is intuitively appealing for at least 

a few reasons. First, at least for those of us with a Bayesian orientation, the method offers a way 

to incorporate all of the information we have available into our simulation models. Second, this 

method is, for want of a better descriptor, self-calibrating. By that I mean that as the simulated 

share value (or any other input, such as our assumptions about z or y) changes, the adjustment 

changes in proportion to those changes. As the prior beliefs and the simulated shares converge, 
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the adjustments decrease in magnitude. Third, if individual-level priors are available, this method 

might well outperform other methods. 

More testing, across different contexts, is needed to confirm the promise of this method. For 

one thing, we need to understand the apparent anomalies in substitution effects. While the 

Bayesian method does a little better than the simple aggregate external adjustment in this regard, 

there are still concerns. Testing the method across a variety of choice models is imperative. 

In the meantime, if there is a strong empirical prior like current market shares, and parameter 

values for factors like awareness and distribution are unknown, you may want to try this method 

of external adjustment. 

 

 
 David Bakken 
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ABSTRACT 

Research presented at the 2015 Sawtooth Software Conference demonstrated that conducting 

MaxDiff exercises on traditional PCs (desktop/laptop), tablets and smartphones did not produce 

any substantive differences by device type. However, this research did not investigate various 

aspects associated with the presentation of content when conducting a MaxDiff study on a 

mobile platform. 

In our research, we investigated the number of items and screens to show, as well as the 

length of the item descriptions to determine how these different factors impact MaxDiff results 

when conducted on mobile devices. 

We found that showing fewer items within a mobile MaxDiff study likely produces more 

accurate results than showing a larger number of items. Further, we did not find any impact on 

model accuracy as the number of screens increases. Thus, our research found that when MaxDiff 

studies are conducted on mobile devices, it is better to show fewer items in each question and to 

show more questions than presenting a greater number of items in fewer questions. We also find 

that minimizing the “complexity” of the information is advised. 

INTRODUCTION 

Mobile devices, particularly smartphones, have become ubiquitous across the United States. 

It is estimated that by 2019, nearly 3 out of 4 US adults will own and use a smartphone (see 

Figure 1). 

Figure 1. US Smartphone Adoption Rates 

 
Source: eMarketer; US Census Bureau 
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Further given the prevalence of smartphones (and tablets), they are frequently used to 

complete online surveys (we estimate 20% to 30% are completed via mobile devices). 

However, there are several notable challenges with completing surveys using mobile devices 

(particularly smartphones), including: 

 Smaller screen sizes—which limit the amount and level of complexity of information 

that can be displayed on the screen. This can be particularly true with studies such as 

MaxDiff which display multiple items within each question. 

 Lower attention spans—we would argue that individuals are often multi-tasking when 

using mobile devices, therefore they are often less engaged in processing information and 

are more easily distracted when taking surveys on a mobile device. This suggests that the 

presentation of information should be compelling, succinct and easy to 

understand/process. 

Despite these challenges, mobile devices have been found to be an effective platform for 

completing surveys, including relatively complex questions such as MaxDiff exercises. 

For example, at the 2015 Sawtooth Software conference, Jing Yeh and Louise Hanlon 

demonstrated that conducting MaxDiff exercises on traditional PCs such as desktops and/or 

laptops, tablets and smartphones did not produce any substantive differences by device type. 

However, they did find that smartphone surveys take longer to complete and have greater drop-

off levels than do MaxDiff questions administered on PCs and tablets. 

While Yeh and Hanlon (2015) showed that researchers can be confident in MaxDiff results 

obtained on mobile devices, they did not specifically investigate various parameters that should 

be kept in mind (e.g., number of items shown) when designing questions. However, other 

research has been conducted that can be used to provide guidance. 

In one study, Chrzan & Patterson (2006) investigated the impact of displaying differing 

numbers of items in MaxDiff experiments that were conducted on desktops and laptops. Across 

three studies, they found that predictive accuracy is enhanced when researchers show 4 or 5 

items in each MaxDiff question. In conclusion, they argued that it is better to utilize a larger 

number of questions with fewer items than fewer questions with more items. 

In an earlier study, Orme (2005) also explored the trade-off between the number of items 

versus number of screens via analysis of simulated data. In his analysis, Orme found that 

MaxDiff experiments that presented 5 items per set provide a substantial increase in predictive 

accuracy versus those showing 3 items in each set. He further found that moving from 5 to 7 

items per set provided little incremental impact. 

Based on these previous studies, it could be surmised that displaying 4 to 5 items in each 

MaxDiff question might be optimal; however, given their smaller screens, it is possible that 

showing fewer items (3 to 4) might be optimal. But, if a researcher reduces the number of items 

shown in each question, there needs to be a corresponding increase in the number of 

tasks/screens shown in order to collect a sufficient amount of information to obtain accurate 

utility estimates. Increasing the number of screens could be problematic, however, given the 

higher drop-off levels associated with smartphones as seen in Yeh and Hanlon’s (2015) study. 

In previous research, one dimension that has not been investigated is the amount of 

descriptive content associated with the information being presented. That is, is there an effect of 
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displaying more versus fewer words when trying to convey information to the respondents. With 

respect to mobile devices, it would seem that relatively short descriptions (defined as 2 to 6 

words) could be easier to process on mobile devices relative to descriptive content that is more 

verbose (e.g., ~10+ words). 

Thus, in the current study, we were interested in exploring MaxDiff on mobile devices to 

determine whether there is an “optimal”: 

 Number of items to show in each MaxDiff question 

 Number of screens to display 

 Amount of descriptive content to present to respondents 

RESEARCH DESIGN 

Respondents were recruited via MFour’s mobile panel which consists of individuals who 

complete surveys via an app on Apple and Android mobile devices (smartphones & tablets). An 

app does not exist for PCs; therefore we are certain that respondents did not complete surveys via 

desktops or notebook computers. The survey took respondents approximately 15 minutes to 

complete. To qualify, respondents were required to be decision makers for technology purchases 

within their homes. During the MaxDiff exercise, respondents were asked to evaluate the 

importance of various features and capabilities when purchasing a PC (either a desktop or 

notebook) or tablet computer for use in their home. 

Prior to the MaxDiff exercise, respondents were randomly assigned to one of 8 experimental 

conditions as shown in Table 1. 

Table 1: Experimental Conditions 

Experimental 

Condition 

# of items shown 

in each set 
# of screens shown 

Amount of 

descriptive 

Information 

1 3 8 succinct 

2 5 8 succinct 

3 7 8 succinct 

4 4 6 succinct 

5 4 9 succinct 

6 4 12 succinct 

7 4 8 succinct 

8 4 8 longer 

The first three experimental groups allow us to investigate the impact, if any, of varying the 

number of items shown in each MaxDiff question. In this case, respondents either saw 3, 5, or 7 

items in the MaxDiff question while the number of questions asked was held constant at 8 for 
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each respondent. Respondents in these three groups were also shown content with descriptions 

that consisted of 2 to 6 words (defined as “succinct” descriptors). 

Experimental conditions 4 through 6 allowed us to look at the influence of the number of 

MaxDiff questions answered by respondents. Respondents were shown 6, 9, or 12 MaxDiff 

questions in these groups. Four items were consistently shown in each of the questions and all of 

their content was composed of “short” descriptions. 

The final two groups varied the amount of information used to describe the product features. 

In the “short” condition, items consisted of 2 to 6 words, while those in the “long” condition 

were show descriptions that consisted of 7 to 20+ words. The items tested in the two groups are 

shown in Table 2. 

Table 2. Items Tested in the MaxDiff Exercise 

Succinct Descriptions 

Device price 

Battery life or power consumption 

Overall visual experience 

CPU processor brand 

Size/weight/form factor 

Device manufacturer 

Warranty/after sale service and support 

Storage Capacity 

Number of ports or external connections  

Longer Descriptions 

Device price (price of the device excluding tax) 

Battery life or power consumption (how long the device will run on battery, or amount of power it 

consumes) 

Overall visual experience (e.g., resolution and graphic clarity) 

CPU processor brand (the manufacturer of the processor) 

Size/weight/form factor (the physical characteristics of the device) 

Device manufacturer (the brand of the device) 

Warranty/after sale service and support (the extent to which service and support are available after the 

purchase) 

Storage Capacity (how much internet storage is available on the device—either a hard drive or SSD) 

Number of ports or external connections (includes ports such as USB, HDMI, etc.) 

A total of 2,002 completes were obtained in the US. The completed surveys were evenly 

distributed across the 8 experimental conditions so that each group had 250 completes with the 

exception of Experimental Condition #2 which had 252 completed surveys. 
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PLANNED COMPARISONS 

Several planned comparisons were conducted: 

Drop-Off Rates 

We measured the proportion of respondents who suspended the survey by failing to complete 

the MaxDiff exercise once they began. This analysis involved conducting a two-proportion z-test 

to test each of the experimental conditions against one another to determine if they were 

significantly different. 

Task Length 

We assessed the average amount of time (in seconds) it took individuals to complete the 

MaxDiff exercise. We would expect as the number of screens increase, the task length should 

also increase. It is also possible as the number of items increase, the time will also increase. 

Analysis of Variance (ANOVAs) with post-hoc tests were performed to compare the means 

within each group of experimental conditions (e.g., conditions 1–3, 4–6, 7 and 8). 

McFadden’s Pseudo R2 

McFadden’s pseudo R
2
 (also known as Percent Certainty) was computed to judge the internal 

fit within each respondent in each of the experimental condition groups. In this case, McFadden’s 

pseudo R
2
 was calculated as 1 - (LN RLH / LN (1/C)) where RLH is the root likelihood and C is 

the number of items shown in each MaxDiff exercise. The pseudo R
2
 were then analyzed via 

ANOVAs with post-hoc tests to determine if there were differences between experimental 

conditions. 

Predictive Validity 

To assess predictive validity, respondents were randomly shown two of six MaxDiff holdout 

questions, each of which contained four items. The holdout questions were always the last two 

questions asked in the MaxDiff series. Those in the “longer” description group saw long 

descriptive items; all others saw succinct items. Two measures of predictive validity were 

examined. 

 Hit Rate: The percentage of time we could predict each individual respondent’s best and 

worst responses based on the MaxDiff utilities. Higher hit rates are preferred over lower 

hit rates. 

 Mean Absolute Deviation (MAD): Allows us to measure how well the aggregate best 

and worst share predictions match actual shares. Smaller MAD is better than higher. 

ANOVAs with post-hoc tests were performed to compare hit rates and MAD within groups 

of experimental conditions. 

Parameter Equivalence 

We examined the utilities from each of the conditions to determine if there were significant 

differences. The utilities were transformed via zero-centered internal scaling to remove 

differences in the scale factor that might exist across groups. Multivariate ANOVAs 
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(MANOVAs) with post-hoc tests were computed to compare the utility vectors across 

experimental condition groups. 

Task Perceptions 

To assess respondents’ perceptions of the survey experience, we asked three questions at the 

conclusion of the survey to determine respondents’ satisfaction with the survey, the ease of the 

survey to complete and how accurate they felt their answers were. 

RESULTS 

Drop-off Rates & Task Length 

As the number of screens increases, the drop-off rate also increases. Significantly more 

respondents dropped off when shown 9 or 12 screens vs. only 6 screens. As the number of items 

increases from 3 to 5, there is also an increase in the dropout rate, although the difference is not 

significantly different. 

For task length, as expected, as the number of items and screens increase, the time to 

complete increases. The same is true for longer text vs. succinct text. 

Table 3: Drop-off Rates & Task Length 

Experimental 

Condition 

Drop-off Rate Task Length (s) 

3 Items 7% 209 

5 Items 12% 235 

7 Items 12% 241 

6 Screen 6% 183 

9 Screen 11% 228 

12 Screen 13% 258 

Succinct 9% 201 

Longer 10% 257 

McFadden’s pseudo R2 

When examining McFadden’s pseudo R
2
, higher values suggest that we have more accurate 

utility estimates and hence are better able to predict respondent’s preferences. The results 

demonstrate that showing 3 items leads to a significantly higher pseudo R
2
 in comparison to 

displaying 5 or 7 items. Providing a shorter item description also produces a higher pseudo R
2 

relative to longer descriptions. This suggests that showing fewer items that are more succinct in 

nature will lead to more accurate utility estimates that provide better fitting MaxDiff models. 

9,12 

7 
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Figure 2. Pseudo R
2
 

 

Hit Rates & Mean Absolute Differences (MAD) 

We find that displaying 7 items leads to a significantly lower hit rate in comparison to 3 or 5 

items. Further, displaying longer descriptions results in a lower hit rate in comparison to more 

succinct items. There is no difference in hit rates based on the number of screens shown. 

There are no differences across the experimental conditions in terms of the mean absolute 

differences. 
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Table 5. Hit Rate and Mean Absolute Deviation (MAD) 

Experimental 

Condition 

Hit Rate MAD 

3 Items 70% 4% 

5 Items 70% 5% 

7 Items 61% 5% 

6 Screen 68% 5% 

9 Screen 71% 4% 

12 Screen 72% 4% 

Succinct 57% 5% 

Longer 54% 5% 

Testing for differences in parameters reveals that there are no statistically significant 

differences among the three number of items conditions. 

Table 6. Utilities by Number of Items Shown 

 

Looking at the screen conditions, we do find significant differences in the parameter 

estimates. However, from a managerial standpoint, we would draw similar conclusions 

concerning the directional preferences of the items regardless of group. That is, looking at the 

rank ordering of the utilities, we see that the appeal of the items is nearly identical across the 

three conditions. 

3,5 
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Table 7. Utilities by Number of Screens Shown 

 

We also find significant difference in our parameter estimates based on the amount of content 

displayed. While most of the differences are relatively modest, the one that is most notable is 

related to “Overall visual experience” where we find higher utilities for those in the longer 

description condition. In this case, we could surmise that the description provided additional 

information leading respondents to judge that this factor was more important. 

Table 8. Utilities by Amount of Information 
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Task Perceptions 

There are no significant differences in terms of satisfaction levels, perceived ease of 

completion or accuracy based on the number of items seen nor the number of screens shown. The 

only significant difference is among those in the longer item description condition who express 

higher satisfaction levels than the succinct group, however, the effect is relatively modest. 

Table 9. Satisfaction, Ease of Completion & Accuracy 

Experimental 

Condition 

Satisfaction Ease of Completion Accuracy 

3 Items 1.89 1.90 1.80 

5 Items 1.85 1.92 1.80 

7 Items 1.95 2.00 1.83 

6 Screen 1.88 1.91 1.75 

9 Screen 1.90 1.94 1.79 

12 Screen 1.90 1.98 1.82 

Succinct 1.87 1.83 1.78 

Longer 1.98 2.06 1.88 

DISCUSSION 

In this research, we find that showing fewer items (ideally 3, but up to 5) within a MaxDiff 

study conducted on mobile devices is likely to produce more accurate results (when judged by 

holdout hit-rates and pseudo R
2
 values) versus studies that show a larger number of items (7 and 

perhaps more). Further, there seems to be no impact on model accuracy as the number of screens 

increases (at least up to 12 screens). 

Thus, like Chrzan & Patterson (2006), we would argue that with MaxDiff studies conducted 

on mobile devices it is advised to show fewer items in each question and to show more questions 

than presenting respondents with a greater number of items in fewer questions. 

Further, we also find that as much as possible, the verbiage associated with the items 

presented to respondents should be minimized thus resulting in more accurate results (again as 

judged by hit-rates and pseudo R
2
). Obviously, items need to be adequately explained so that 

respondents understand them sufficiently which suggests that pre-testing of items is warranted to 

ensure proper understanding. 
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CHOICE-BASED CONJOINT IN A MOBILE WORLD— 

HOW FAR CAN WE GO? 

CHRIS MOORE 

CHRISTIAN NEUERBURG 
GFK 

ABSTRACT 

With more than two-thirds of panel respondents having now used a tablet or smartphone to 

answer surveys it is just as important as ever to understand what effect this has on the results of 

conjoint studies. Past research into the effect of conducting conjoint surveys on a mobile device 

has typically concentrated on how to simplify the conjoint task and have tested a limited number 

of designs. To expand knowledge in this research area we conducted the most comprehensive 

study known using an 18 split-sample design and more than 6,800 respondents to evaluate what 

effect different conjoint designs have on conjoint data. Rather than asking the question of how 

simple do we need to make design, the question is how complex a design can we show and still 

obtain robust results? Through this research we are able to conclude that respondents can 

comfortably cope with complex designs with very little, if any, degradation on the robustness of 

the data. Interesting findings were also captured regarding the environment respondents take 

mobile surveys in, which conflict with popular perception and the demographic composition of 

these respondents. Analysis was also conducted to look at the effect of showing concepts 

vertically rather than the more traditional horizontal layout, which showed only minor 

differences. 

BACKGROUND 

Over recent years the usage of mobile devices (defined in this paper as a smartphone or 

tablet) makes up a significant minority of the interviews collected on market research access 

panels. Internal research on past projects conducted in 2015 concluded that on any one survey 

the proportion of panelists answering a survey on a mobile device was: 

Proportion of Respondents Using Mobile Devices 

Germany 12% 

UK 14% 

USA 21% 

 
Source: GfK 

This shift towards using mobile devices to answer surveys also has a significant impact on 

dropout rates. In a comparison of dropout rates for those respondents that answer on a 

desktop/laptop versus a mobile device, those answering on a smartphone are more likely to drop 

out of the survey. Figures of dropout rates are shown below. 
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Dropout Rates 

 Desktop/Laptop Tablet Smartphone 

Germany 6% 20% 22% 

UK 6% 14% 22% 

USA 14% 31% 30% 

 

In the research conducted for this paper, of the 6,866 respondents that were interviewed, over 

91% had previously used a smartphone or tablet to answer a market research survey (54% had 

previously used a smartphone and 61% had previously used a tablet). Due to an increasing use of 

mobile devices, most market research agencies now implement responsive web designs to 

provide a better user experience for respondents answering a survey on a mobile device. 

However, these responsive designs to date have typically been limited to standard survey 

questions rather than the conjoint exercise itself. 

Two papers that were presented at the 2013 Sawtooth Software conference (Diener et al., 

White) investigated whether there are any differences in conjoint results when a conjoint survey 

had been conducted via a mobile device versus more traditional means (laptop or PC). Both 

papers found little evidence of any differences but the research was restricted in terms of the 

number of experimental conditions that were tested, for example, the number of tasks, the 

number of concepts and the number of attributes contained within the design. The focus instead 

was more on testing simplifying strategies that may be needed by the researcher in order to 

obtain comparable conjoint results. 

As these papers showed evidence that there is little need to simplify conjoint designs, the 

primary objective of this paper is to systematically research the effect of different conjoint design 

settings within a mobile environment and to recommend where possible the best combination of 

design parameters to conduct mobile CBC experiments. In order to test this, a 16 split sample 

design was set up where the experimental design conditions differed by cell. The experimental 

conditions tested were: 

Experimental Factors Tested 

 

In addition to these 16 mobile cells, an additional 2 cells were included where respondents 

completed the conjoint experiment on a fixed device (desktop or laptop), which allowed, as a 

secondary objective, comparisons to be made between device types. To be able to also make 

Factors

Responsive

Standard

6

10

8

15

2

4

Programming platform

Number of random tasks

Number of concepts

Number of attributes
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some direct comparisons between previous work in this area, the study area used for the conjoint 

experiment was based on the preference for tablets. 

WHAT WE (THINK WE) KNOW ABOUT “MOBILE” RESPONDENTS 

When we think of a respondent answering a survey on a mobile device, the image of what 

one thinks is happening is not necessarily what is actually happening in real-life. The immediate 

thought is that someone conducting a survey on a mobile device is either in a public place or in a 

busy and/or distracting environment, and as a consequence it is not possible to give their full 

attention to the stimuli that is required to give sensible and consistent answers to the conjoint 

tasks. They are also viewing the questions/conjoint tasks on a much smaller screen so the survey 

experience is compromised and these people may be very time conscious so are only willing to 

spend a short time to answer the entire survey. Compare this to someone who is answering on 

their PC/laptop and is at home in a quiet and relaxed environment. We assume that they are 

giving the survey their full attention, have a good user experience because of the much bigger 

screen size and are willing to spend more time to answer the survey. 

Within this research a number of questions were asked about the environment that the survey 

was taken, in addition to survey experience questions. Analysis that will be presented later in the 

paper will show that the reality is that respondents answering on mobile devices are just as likely 

to be at home in a quiet a relaxed atmosphere and despite the smaller screen size there is little to 

suggest that their user experience has been significantly affected. 

In terms of what we know about differences between respondents answering on a mobile 

device and those answering on a fixed device (Desktop/laptop) previous papers (Diener et al. 

2013, White 2013) have shown that between device types: 

 Conjoint utilities are highly correlated. 

 Holdout accuracy is comparable. 

 Mean Absolute Errors (MAE) are comparable. 

 Dropout rates are comparable. 

 The user experience is slightly less enjoyable for mobile users. 

 Conjoint exercises taken on mobile take slightly more time to complete. 

This research has shown similar findings to most of these points so it adds to the body of 

evidence that indicates that there is little, if any systematic bias when answering conjoint studies 

on a mobile device. 

We also know from demographic analysis of respondents answering surveys on a mobile 

device that they tend to be younger and are more likely to be female. 

STUDY DESIGN 

In order to systematically test different design conditions, a 16 monadic cell design was set 

up, each testing a specific design configuration (Figure 1). A sample size of N=400 was assigned 

to each cell, and soft quotas were included to ensure a minimum of N=175 respondents answered 

on smartphone and N=175 respondents answered on a tablet (quotas were not needed as each cell 

had c.50% of each device type). No other quotas were included in the survey. As a benchmark, 

two additional cells were included where respondents answered via a desktop or laptop. The 
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most simple and most complex combinations of experimental factors were chosen for these fixed 

cells and there was a sample of 200 in each of these cells. 

Figure 1. Experimental Designs Tested 

 

 

The experimental conditions were defined as: 

Platform: 

The non-conjoint element of the main questionnaire was conducted using SPSS 

Dimensions© and it had been optimized for use on a mobile device. For the conjoint part of the 

questionnaire this differed, where in one experimental condition the conjoint task was still taken 

within the same Dimensions platform (we refer to this as “Dimensions”) while in the other 

condition a responsive method called Angular JS (we refer to this as “Responsive”) was 

implemented. This involved routing out of the main questionnaire to conduct the conjoint 

experiment before routing back in to the Dimensions platform. The Angular JS method is a 

framework which is used for creating responsive single page applications and consists of a 

collection of libraries and directives. The main components of the framework are: 

 Angular (by Google) is a fast and simple JavaScript framework that allows the creation 

of single page applications in an easy an efficient manner. 
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 Twitter Bootstrap delivers the responsiveness to the platform by automatically 

repositioning and resizing based on the screen resolution that the respondent is 

conducting the survey on. 

 Yeoman/Bower/Grunt are tools that are combined and used as an app creator which 

delivers a test framework and test server. 

The combination of these techniques provides a multi-device application with the same 

layout quality as Flash but with the advantage that it allows complex surveys to be conducted via 

smartphones and tablets. An advantage of this method over standard interviewing platforms like 

Dimensions or Confirmit is that it is a single page application process and as such the 

interviewing time is reduced. With a platform such as Dimensions, there involves a significant 

amount of server communication in order to process the result that a respondent has given for a 

task and then to upload the new task. With the Angular JS system, the conjoint tasks are loaded 

onto a single page application that is uploaded prior to commencing the conjoint part of the 

survey so there is no lag between submitting an answer to a task and the next task appearing. 

The presentation of the concepts will also differ. With the responsive Angular JS platform, 

the concepts will either be alongside one another (horizontal layout) or below one another 

(vertical layout) depending on the orientation and size of the screen that the respondent is using. 

In a Dimensions platform the concepts always appear alongside to one another regardless of 

orientation and size of screen. Appendix A shows example screenshots of the layout of the 

conjoint tasks by device and orientation. Figure 2 shows a summary of the differences between 

Dimensions and Angular JS. 

Figure 2. Comparison of Dimensions and Angular JS 

 

Attributes: 

A six- and a ten-attribute design were used across the cells. The attributes and levels were 

chosen based on actual retail sales data and reviewing the technical descriptions of the leading 50 

tablets sold in the UK in 2014. See Appendix B for a description of the attributes and levels. 
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Tasks: 

Designs with eight or fifteen random tasks were created. In addition to the random tasks, two 

additional holdout tasks were included, meaning in total, ten or seventeen tasks were shown to 

respondents. 

Concepts: 

Designs either had two or four concepts, plus a None option for respondents to make a single 

choice from. 

The designs were generated in Sawtooth Software SSI Web v8.3.10. For each design, 50 

versions of the tasks were generated using a balanced overlap algorithm. 

ESTIMATION PROCEDURE 

The analysis was conducted using Sawtooth Software’s CBC/HB v5.5.3 and the analysis was 

run separately for each device type (smartphone and tablet) within cell. This resulted in 34 

separate runs (16 cells x 2 device types + 2 fixed cells) and was done to ensure that any 

differences between respondents were not influenced by the device type. A part-worth estimation 

procedure was used and no covariates or constraints were included in the estimation procedure. 

Due to the split sample design, in order to make comparisons across cells it is important to 

ensure the demographic balance of the cells. Through the random fallout of interviews, the 

demographic balance was very similar across the mobile cells but a RIM weighting procedure in 

SAS was implemented where the target weights were set as the demographic composition across 

the entire sample. Each cell (including the fixed cells) was weighted on: 

 Age 

 Gender 

 Children in HH 

 Working status 

 Internet usage 

 Tablet ownership 

 Device type (used to conduct survey)* 

* For the two fixed cells the device types was not applicable. 

RESULTS 

Sample demographics 

A review of the unweighted demographic data by cell showed large differences between the 

mobile and fixed samples in terms of age distribution and gender. This backs up previous 

research done in this area which has shown similar patterns. Figure 3 shows further details of the 

demographic differences between the mobile and fixed cells. 
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Figure 3. Demographic Breakdown of Mobile and Fixed Cells 

 

An interesting finding is that when the mobile sample is split between those that answered 

the survey on a smartphone and those that answered on a tablet, the age distribution differs 

significantly again. Tablet users are more aligned to the fixed cells in terms of age demographic 

and are much older that those that answer on a smartphone. 

User Experience 

Four user experience questions were included in the survey after the conjoint section to 

understand differences in user experience across the different experimental conditions. An 

additional question about willingness to answer future surveys using the same device was also 

asked. The questions were asked on a 5-point anchored scale. 

1. Horrible (1) vs. Fun (5) 

2. Complicated to answer (1) vs. Easy to answer (5) 

3. Difficult to read (1) vs. Easy to read (5) 

4. Boring (1) vs. Interesting (5) 

5. Unwilling to use device again (1) vs. Willing to use device again (5) 

When comparing results for the mobile cells against the fixed cells the latter consistently 

scored higher by c.0.2 points on average on all statements (Figure 4). However, the results 

suggest there is little difficulty in completing the exercise on a mobile device with readability 

averaging 4.3 (out of 5) and willingness to use device type again also averaging 4.3. While the 

results are statistically significant between the fixed and mobile cells (due to the large sample 

size) the results suggest that there are no real concerns regarding conducting surveys on mobile 

devices. When looking at the mobile cells only, the biggest difference is between the device 

types (smartphone vs. tablet) where the tablet consistently scored higher by up to 0.2 points. 
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Figure 4. User Experience Questions 

 

Differences across the four sets of experimental conditions were minimal (generally less than 

0.1 points in mean score). For the platform type, number of attributes and number of tasks, 

differences were all less than 0.1 and it is only with the number of concepts where differences 

seen are between 0.1-0.2 in favour of the 2 concept design. A comparison was also conducted to 

look at the different combinations of concepts/tasks. While it would be expected that a 2 

concept/8 task design would have better ratings than the 4 concept/15 task design, the total 

amount of information shown is similar for the 2 concept/15 task design and the 4 concept/8 task 

design so any differences may lead to a recommendation to use one over the other. Like the other 

experimental conditions, while the scores across the conditions were very similar, the 2 

concept/15 task design combination had better ratings on statements 2 and 3 and comparable 

ratings for the other statements. 

Environment 

To understand the environment in which the survey was taken, particularly for the mobile 

cells, questions were asked about where they took the survey and the surrounding environment 

they answered it in. Across the entire mobile sample, 90% of respondents took the survey at 

home, 5% at work with the remaining 5% in a public place. The figures differed slightly when 

comparing where smartphone users took the survey compared to tablet users. For smartphone 

users, 85% took the survey at home, 7% at work and 8% in a public place, whereas for tablet 

users the figures were 95%, 2% and 3% respectively. Therefore while smartphone users are more 

likely to be on-the-go, it appears that this is not the primary purpose for using a mobile device to 

answer surveys. Probably due to a higher proportion of smartphone respondents conducting the 

survey in public places there is a small difference in the general environment of where the survey 

was conducted with 4% stating that they answered the survey in a very busy or distracting 

environment (compared to 1% for tablet respondents). Overall, more than 80% claimed to have 

taken the survey in a quiet and relaxed environment which would indicate that we can reject the 

hypothesis that any differences we see in conjoint results are attributable to the distracting nature 

of the environment. One has to note though that these figures are based on claimed behaviour 

and not observed behaviour. Therefore, the numbers might be biased as some respondents might 

fear negative consequences when admitting they took the study in a distracting environment. 

Time to Complete the Conjoint Survey 

The time taken to complete the conjoint part of the survey was captured to test the hypothesis 

that the Angular JS platform is quicker, as well as to test for differences in time taken to 

complete equivalent designs on a mobile device. Across all mobile cells the grand mean time 

taken to complete the conjoint element was 192 seconds. Figure 5 shows the difference in time 

taken between the grand mean and the different experimental conditions. 
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Figure 5. Average Interview Time (Sec), 

Deviation from Grand Mean 

 

Across all cells that used the Angular JS platform the average time to complete the conjoint 

section was 176 seconds. This compares to 207 seconds for the cells that used the Dimensions 

platform, which represents an 18% increase in time and thus proving the hypothesis that this type 

of responsive design is quicker than the standard Dimensions platform. Increasing the number of 

tasks from 8 to 15 increased the time needed by 55% (150s vs. 232s) and doubling the number of 

concepts from 2 to 4 concepts increased the time needed by 30% (166s vs. 216s). Interestingly 

there is very little difference in time taken for those that answered on smartphone versus a tablet 

despite the need to do extra scrolling to review the text. 

It was also possible to directly compare timings between equivalent designs conducted on a 

mobile device (using Dimensions) and a fixed device. For the simple 6 attribute, 8 task, 2 

concept design it took on average 128 seconds to complete the conjoint experiment on a mobile 

device compared to 131 seconds on the fixed device, while for the complex design (10 attributes, 

15 tasks, 4 concepts) the fixed cell was slightly quicker, averaging 298 seconds compared to 311 

seconds. Previous studies (Kurz et al. 2016) have indicated that conjoint exercises taken on a 

mobile device take longer and this research shows similar results when the design is complex, 

albeit only marginally, but timings are comparable when designs are much simpler. 

Behavioural Differences 

Due to the smaller screen size when conducting a mobile survey there is a hypothesis that 

there may be inherent biases regarding the position of the concept that is being chosen. Figure 6 

shows the percentage of times the first and last concept is chosen across the mobile cells (results 

split by the 2-concept cells and the 4-concepts cells). Across each of the experimental conditions 

and device types there appears to be a very marginal bias towards the first concept being chosen 

more often. Typically the difference is less than two percentage points for the 2 concept design 

and less than 1.5 percentage points for the 4 concept design. When comparing positional bias of 

the mobile cells against the fixed cells, there is no such bias in the fixed designs towards the first 

concept. 
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Figure 6. Percent of Times the First and Last Concept Was Chosen 

 

Other behavioural analysis between the mobile and fixed cells was also conducted which 

evaluated the proportion of times that the None option was selected for each task, and across all 

tasks how often the most frequently chosen concept position was chosen (flat-lining) and 

whether there were any behavioural changes in terms of selecting the None option more often 

later in the tasks. The results were very consistent across both mobile and fixed cells and results 

are in line with what would be expected given the design conditions. 

Analysis was also conducted to identify the number of reversals in the individual level part-

worth utility scores. Across the attributes which had an a priori order, for the low complexity 

design there were on average 4.8 reversals in the mobile cells compared to an average of 4 

reversals for the fixed cells. The figures for the high complexity design were 9.5 and 8.1 

respectively. In reviewing the number of reversals by attribute, the difference seen above are 

purely a result of differences in the price attribute as the number of reversals were very similar 

between device types for all other attributes. 

Utility Structure 

Figure 7 shows the average re-scaled (zero-centered) part-worth utilities for the six attributes 

that were included across all designs. Attributes relating to Brand, Screen size, Screen resolution, 

Storage and Connectivity have almost identical part-worth utility structures across the different 

experimental conditions. For Price there are a number of reversals between the £99 and £149 

level. Within the UK market the entry level Apple tablet retails from c.£249 whereas the Kindle 

Fire is generally available from £99. As no prohibitions were included in the design, during the 

conjoint experiment there would have been numerous occasions where an Apple product was 

shown at a price significantly lower than is seen in the real-world. Given that the majority of 

respondents in the mobile cells had a tablet and therefore would have a good knowledge of the 

pricing structure of the market it is believed that these reversals are a cause of psychological 

pricing and the belief that products at the lower end of the price range tested would have doubts 

about the quality of the product. This is likely to explain when the number of reversals in the 

mobile cells is higher than the fixed cells. It is also interesting to note that the reversals tend to be 

where the 4 concept experimental condition is being used. Overall the correlation between the 

part-worth utility parameters across the 18 cells was over 0.92. 
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Figure 7. Part-Worth Utility Scores by Experimental Condition 

 

The biggest difference in utility structure that was identified was the difference between the 

mobile cells and the fixed cells. There are significant differences in the utility structure for the 

Brand and Price attributes. Within the mobile sample, there is a large increase in part-worth 

utility for the Apple iPad, at the expense of the Google Nexus and Kindle Fire. Mobile cells are 

also less price sensitive especially at the lower end of the price range tested. This again suggests 

a high level of market knowledge in this category and the pricing of tablets. The part-worth 

utility structure is flat between £99–£199 and only after this price does the elasticity become 

more pronounced. The fixed cells are less likely than the mobile cells to have a tablet and they 

show very high levels of price elasticity across all price points. The comparison of the part-worth 

utility structure between the mobile and fixed cells is shown in Figure 8. 

This result is not unexpected. White (2013) also found the same pattern, albeit less 

pronounced than in this study. He hypothesized that this is a result of the study area and that 

respondents answering on a mobile device have a strong affinity to brands that they own. To test 

this, he conducted a second study in a non-technology area and found no significant differences 

in utility structure. 

Figure 8. Part-Worth Utility Scores by Mobile and Fixed Cells 
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There is also strong evidence from this research to back up this hypothesis. Analysis of the 

part-worth utility structures split by device and screen size showed that respondents answering 

the survey on a smartphone with a screen size greater than 5" had a very different set of part-

worth utilities for Brand. Unlike the other cells, rather than the Apple iPad being the most 

preferred, for this group of respondents the Samsung Galaxy was most preferred. At the time of 

the survey (March 2015), Samsung was the most dominant brand in the 5"+ market (as the 

iPhone 6 had not been fully launched) and almost half the sample in the smartphone/5"+ cell 

answered the survey on a Samsung device. Similarly, from Figure 9, the Apple iPad part-worth 

utility is most dominant in the Tablet 10"+ cell, and this is where Apple is dominant over 

Samsung with more than 75% of respondents in this cell answering the survey on an Apple iPad. 

Apple is much less dominant in the < 9" tablet market and this cell (38% answered on an Apple 

iPad and 15% on a Kindle Fire) show a much lower part-worth utility for the Apple iPad while 

the Kindle Fire displays a higher preference than in the other cells. It is also noted that the main 

reversal in the price attribute comes from the tablet 10"+ sample which further enhances the 

hypothesis of psychological pricing issues as the pricing of these products typically start from 

£300. 

Figure 9. Part-Worth Utility Scores by Device/Screen Size 

 

PREDICTIVE VALIDITY 

For this research, tablet sales data had been obtained so an external validation was conducted 

to simulate the sales of the top 20 tablet products. The attributes/levels had been designed based 

on the sales data so that it was possible to do this even for cells that contained 6 attributes. For 

the purposes of the simulation, cells with 6 attributes had a utility structure of 0 for the levels 

within the 4 attributes that were not included. 

However, the results were not satisfactory as the average MAE’s were very high. When 

comparing simulated results against real-world shares there are many external factors which are 

not taken in to account such that when conducting simulations there is the possibility that real-

world shares do not align well to simulated shares. These factors can be extensive and include 

awareness, distributions, marketing campaigns, stock availability, effect of sales force, etc. Two 

of the leading products are the Apple iPad Air 16GB and the Galaxy Tab 3. The Apple iPad has 

double the sales of the Samsung Galaxy despite the latter product having a better technical 
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specification and being almost 50% cheaper, so when simulating shares using the part-worth 

utilities the Samsung Galaxy tablet obtained a significantly higher share than the Apple iPad, 

resulting in very large errors in the shares across these two products. 

Two holdout tasks were incorporated into each design so it is possible to conduct analysis to 

determine internal prediction accuracy. Outputs such as hit rates, mean absolute error (MAE) and 

root likelihood (RLH) are typically used in these cases. For this study, in addition to running 

internal validation, MAE figures were also calculated based on out-of-sample analysis, for 

example, using the utility estimates obtained in cell 1 to predict the holdout data for cells 2–16 

(only cells with the same number of attributes were analysed in the out-of-sample analysis) and 

so on. 

While this output can provide useful diagnostics of internal validity they can also be 

misleading. For example, it is not possible to directly compare a 2 concept design with a 4 

concept design as it would be expected that hit rates and MAE would be lower for the 4 concept 

designs. It is also common among some bodies when comparing MAE’s across cells to multiply 

the part-worth utilities by an exponent factor in order to minimise MAE. This is done in an 

attempt to remove the effects of scale across the cells. For this study, a Swait-Louviere test was 

conducted on all possible combinations of experimental conditions (where feasible) and the tests 

indicated in most cases that any differences in preference are too strong to attribute the 

differences between the cells to only scale factor. As it is therefore unknown whether the 

exponent is adjusting for scale or actual differences in the preference structure it was also felt 

that any output based on this would be misleading so results are not reported. 

HORIZONTAL VS. VERTICAL CONCEPT LAYOUT 

While not an initial objective of the study, additional analysis was conducted to understand 

whether there were any differences observed depending on whether the concepts were presented 

horizontally or vertically. This was possible because with the responsive Angular JS design the 

choice of whether the concepts appeared horizontally or vertically was automatic based on the 

orientation and screen size of the device being used. For respondents using a tablet, more than 

98% of respondents had the tablet in a landscape orientation and as such concepts appeared 

horizontally. These respondents also did not change to a portrait orientation so it was not possible 

to do any analysis on respondents who used a tablet. However, for respondents who used a 

smartphone, those who went through the Angular JS platform would see the concepts in a 

vertical layout regardless of orientation and screen size, whereas respondents who went through 

the Dimensions platform would see the concepts in a horizontal layout regardless of orientation 

and screen size. Therefore, it is possible to compare smartphone users who went through the 

Angular JS platform to those who went through the Dimensions platform to understand if there 

are any differences between horizontal and vertical layouts. 

Figure 10 shows the differences in part-worth utility scores for the 6 attributes that were 

present in all designs. For comparison, the part-worth utilities for all mobile respondents have 

been included. Reversals can be seen for the vertical layout and the magnitude (and subsequently 

the importance) for the Brand/Product attribute is also higher in the vertical layout. 

The higher importance for the Brand/Product attribute may suggest additional simplification 

strategies being applied in the case of the vertical layout but when looking at behavioural 

diagnostics this does not appear to be the case. As discussed previously, across the mobile cells, 
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the proportion of times the first concept was chosen was consistently higher than the proportion 

of times the last concept was chosen. When comparing the horizontal and vertical cells, it is the 

horizontal layout that produces the biggest bias with 41.1% choosing the first concept (in the 2 

concept design) and 38.2% the last concept. This compares to the vertical layout which had 

figures of 37.3% and 36.9% respectively. A similar pattern can also be observed in the 4-concept 

designs where the horizontal layout had proportions of 21.4% and 18.7% and the vertical layout 

had proportions of 22.6% and 21.3%. 

Figure 10. Part-Worth Utility Scores by Layout 

 

When looking at the number of reversals by the different layouts, for the 6-attribute designs 

the vertical design had more reversals (5.5) than the horizontal layout (4.9). This compared to 5.1 

across all mobile respondents. A similar pattern was observed in the 10-attribute designs also 

(Vertical = 7.5, Horizontal = 6.9). An interesting observation recorded was that the number of 

reversals did not differ much when comparing the 2-concepts designs against the 4-concept 

designs for the vertical layout (5.4 vs. 5.6 in the 6-attribute designs) but was much more 

pronounced for the horizontal layout (4.7 vs. 5.2). 

In terms of the user experience, similar scores were recorded for both layouts although the 

vertical layout did score marginally higher in some of the statements (Figure 11). 

Figure 11. User Experience Scores 

 

Further work would need to be conducted to look at the composition of respondents in both 

these cells as the research has shown that the device that was used to answer the survey and the 

knowledge of market prices could have caused any of the differences that have been observed. 

While the two cells are not directly comparable as the vertical layout was conducted within an 

Angular JS platform and the horizontal layout completed in a Dimensions layout there is little to 

suggest based on the work done that using a vertical layout will result in significantly different 

results than the more conventional horizontal layout. 
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CONCLUSIONS/RECOMMENDATIONS 

The research has shown that there are no significant issues with conducting conjoint on a 

mobile device as long as the overall questionnaire structure has been optimized for mobile. 

Tablet users did have a better user experience than smartphone users and while differences 

between fixed cells and mobile cells are significant, the mobile cells scored highly on the key 

user experience questions. 

There are large demographic differences between respondents using mobile devices and 

those that use fixed devices so it is not recommended to conduct mobile device-only research 

unless there is a specific requirement to target those particular types of respondents. 

The analysis has shown that respondents are able to complete conjoint designs with a high 

cognitive burden (4 concepts, 17 tasks, 10 attributes) with little difficulty or degradation in 

survey experience. While respondents could cope with 10 attribute designs which involved 

scrolling it should be noted that the attribute text in this research was relatively little. Only minor 

differences were seen in utility structure between the experimental conditions (reversals in Price 

utility more prominent in the 4-concept designs) and where there were differences these could be 

explained through psychological pricing issues or due to the brand affinity that respondents had 

which is a reflection of the brand of the device they used to conduct the survey (smartphone or 

tablet). 

While there was little sign of degradation the data showed slightly better user experience for 

the 2 concept/15 task design compared to the 4 concept/8 task design, although the time to 

complete the conjoint experiment is slightly longer for the 2 concept/15 task design. Unless a 

responsive platform is being used a 2 concept design will require less scrolling which is an 

advantage over the 4 concept design. 

Based on the designs used in this research, standard interviewing platforms such as 

Dimensions, as long as they are optimized for mobile research, appear to perform as well as 

more sophisticated responsive platforms. However, if designs are likely to include heavy text 

and/or use of images, then a responsive design is likely to be more suitable. Responsive designs 

are also proven to be quicker due to the single page application and generally scored higher on 

the user-experience ratings. 

Hypotheses regarding whether it is the environment that may affect the quality of mobile user 

rather than the device were rejected on the basis that more than 9 in 10 conduct the survey at 

home and 8 in 10 do so in a quiet and relaxed environment. 

The analysis conducted to understand whether there were any behavioural changes in the 

way mobile users answer conjoint tasks did not show any significant differences. There appears 

to be a very minor first concept bias (1–2 percentage points) but this is unlikely to affect results. 

Across the experimental conditions there was a consistent pattern towards the first concept 

across all conditions. There were also no differences identified in the proportion of times the 

None option was selected (across experimental conditions or across device type) and the increase 

in reversals may be explained by the mobile sample having a better knowledge of pricing in the 

tablet area. 

In summary: 
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 Conducting conjoint on mobile devices, even complex designs is no problem if the 

questionnaire is optimized for mobile. 

 Those answering on a tablet had a slightly better user experience that those answering on 

a smartphone but both scored highly. 

 Respondents answering on a mobile device exhibit a different demographic structure than 

those who answer on PC/Laptop. 

 There is no need to oversimplify conjoint designs for mobile. Respondents can 

comfortably cope with 10 attributes when text is light. 

 It is still better to keep things simple so 2 concepts per task is preferred to 4. 

 For complex designs that involves long text, lots of concepts and/or graphics, consider a 

responsive platform. 

 The vertical layout did not affect results significantly. 

 Studies optimized for mobile do not necessarily take longer to complete especially with a 

simple design. 

 

  
 Chris Moore Christian Neuerburg 

APPENDIX A—CONCEPT ORIENTATION 

Tablet—Responsive Design 
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Dimensions—Responsive Design 

 

Smartphone—Responsive Design 
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Smartphone—Dimensions 

 

APPENDIX B—CONJOINT ATTRIBUTES 

 
Attributes highlighted in blue formed the 6 attribute design 
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CAN ADAPTIVE MAXDIFF PROVIDE BETTER RESULTS THAN 

STANDARD MAXDIFF? 

HOWARD FIRESTONE 
RTI RESEARCH 

BACKGROUND 

Maximum Difference Scaling (a.k.a. MaxDiff) is a choice-based tradeoff technique that is 

widely used to understand the value of members of a list of items. Respondents are shown a 

series of screens (typically comprised of 3 to 5 items) and asked to select the “best” and “worst” 

item on each screen. Here is an example of a MaxDiff screen. 

 

Historically, MaxDiff has provided a hierarchy of the relative appeal or importance of the 

items being measured. 

We, at RTi, report this hierarchy as indices (where the average equals 100). We calculate the 

indices from the rescaled scores (or the probability sheet from Lighthouse Studio files) by simply 

multiplying the scores by the number of items on the list. In the study we will be referencing in 

this article, we included 28 flavors in the MaxDiff exercise—therefore, we multiplied the 

Average MaxDiff scores by 28 to calculate the unanchored indices. 

Label Average Average X 28 

Flavor 1 3.00 84 

Flavor 2 5.41 151 

. . .   

Flavor 28 5.15 144 

Sum 100.00  

Average  100 

About 8–10 years ago, both Jordan Louviere (Indirect Dual Response method) and Kevin 

Lattery (Direct Binary method) developed anchoring techniques that added an absolute 

dimension to the MaxDiff scores. Prior to the development of these anchoring techniques, you 

wouldn’t know if the most appealing items were truly appealing or if they were the best of a 

weak set of items. 
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Both of these anchoring techniques compare the utilities to a “reference point” or an “average 

item.” When the utilities are more appealing than the reference point, the indices are above 100, 

whereas items that are less appealing have indices below 100. 

Brief descriptions of both anchoring approaches follow:  

 Indirect Dual Response Method—On each MaxDiff screen, respondents are asked to 

select all/some or none of the items. 

 

We don’t use this technique because we would expect a response of “Some of these items 

are appealing” to most MaxDiff screens. With this response, we learn how only 2 (of the 

4 or 5) items are rated relative to the reference. 

 Direct Binary Method—With this technique, a follow-up question is asked after the last 

MaxDiff screen. 

Below are some ice cream flavors that you have evaluated. Which, if any, of the following 

flavors would you be likely to purchase? (SELECT ALL THAT APPLY) 

We use this question on most studies and typically report it as an index. Depending on the 

appeal or importance of the items included in the MaxDiff exercises, we find that the 

average of all indices can be higher or lower than 100. 

We typically include all items in the follow-up question. Sawtooth Software’s MaxDiff 

scores on-the-fly functionality can also be used to select a subset of items for the follow-

up. 

While we have successfully employed the Direct Binary Method on numerous studies, a few 

concerns have surfaced over time: 

1. Indices that don’t average to 100 are counter-intuitive to clients who are accustomed to 

indices that average 100. 

2. The wording of the follow-up question can influence the response to the anchoring 

question and impact results. For example, should the anchor be asked as “Which of these 

flavors are appealing” vs. “Which of these flavors are very appealing.” 

3. When using MaxDiff scores on-the-fly functionality, Sawtooth Software recommends 

showing each item 4 times in order to obtain reasonable individual level score estimation 

for follow-up questioning. Since we typically include each item on 2 MaxDiff screens we 

usually include all items in the follow-up anchor question. 

As a result of these concerns, we sought an alternative approach—an Adaptive MaxDiff 

technique where we changed both the composition of the items shown in the MaxDiff exercise 

and the follow-up exercise. 
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 For the MaxDiff exercise, we felt that we would get better individual level discrimination 

between items by including: 

o MaxDiff tasks comprised of the respondent’s “preferred” (“Best”) items only. The 

items that are the “Best of the Best” are then included in the follow-up slider question 

described below. 

o Other MaxDiff tasks that contained only the respondent’s “least preferred” (“Worst”) 

items. The items that are the “Worst of the Worst” are also included in the follow-up 

slider question. 

o Other MaxDiff tasks comprised of items that were not selected as either best or worst. 

 For the follow-up question, we replaced the Direct Binary Method with a 100 point slider 

which enables us to convert the HB scores to a 100 point scale. This scale provides a 

better gauge of the appeal or importance of each item because it provides an end point at 

the upper end of the scale. The follow-up slider question was only asked of a few items 

(the “best of the best” and “worst of the worst”) which shortened the respondent exercise. 

 

The Adaptive MaxDiff approach was comprised of 4 rounds of MaxDiff Screens. 

 Round 1—Sparse MaxDiff (where each item appears on only 1 screen) of all the items. 

This round is used to assign items to 3 groups—Preferred/Not selected/Less Preferred. 

 Round 2—Sparse MaxDiff of the items “Not Selected” in Round 1—The Not Selected 

group tends to be the largest group from Round 1. This round provides additional 

learning of preferences from this large number of items. Furthermore, the items selected 

as “Best” are added to the Preferred group and the items selected as “Worst” are added 

to Less Preferred. This increases the likelihood that a “preferred” item is placed in the 

“Preferred” item group and was not mis-assigned because it was on a screen with 

another “preferred” item. 

 Round 3—MaxDiff of the Preferred (“Best”) items selected in Rounds 1 and 2. This 

round develops the hierarchy of the preferred items. It also identifies the “Best of the 

Best” which will serve as the “High” end of the respondent’s scale when the HB scores 

are converted to the 100 point scale. 

 Round 4—MaxDiff of the Less Preferred (“Worst”) items selected in Rounds 1 and 2. 

This round identifies the “Worst of the Worst” which will serve as the “Low” end of the 

respondents scale when the respondent’s HB scores are converted to the 100 point scale. 

The schematic of the approach follows. 
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As mentioned earlier, the follow-up exercise was a 100 point slider for the items that are the 

“Best of the Best” from Round 3 and the items that are the “Worst of the Worst” from round 4. 

 

While the primary focus of this paper is to illustrate the value of the slider follow-up, we also 

assessed the viability of using Lattery’s Direct Binary anchoring question among a subset of the 

items. 

 For the proof of concept study, we asked the Direct Binary question for the items that 

were not selected from the first 2 rounds of MaxDiff screens. 

 Alternatively, we could have selected a mix of items from the MaxDiff exercise. 

We expected the Adaptive MaxDiff approach to have the following advantages over standard 

MaxDiff approaches: 

 Better individual level discrimination between items 

 Easier understanding of reporting by replacing indices with a 100 scaling framework 

 Shorter MaxDiff exercise for the respondent 
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ADAPTIVE MAXDIFF—PROOF OF CONCEPT STUDY METHODOLOGY 

The next section of this paper describes the research approach we employed to assess the 

Adaptive concept. 

The study we conducted was comprised of 1,000 adults who had purchased and eaten ice 

cream in the past 6 months. Each respondent was assigned to 1 of 6 cells. 

 2 cells used Standard MaxDiff exercise 

o They differed in terms of the number of MaxDiff screens and the number of times 

each item was seen 

o Both cells included Lattery’s Direct Binary follow-up among all flavors 

 2 cells employed Adaptive MaxDiff 

o 1 used the slider follow-up 

o The other used Lattery’s Direct Binary Anchor among a subset of flavors for the 

follow-up 

 2 cells of holdout tasks 

The methodological comparison between the 4 MaxDiff cells is provided in the table below. 

  

Cell 1 

Standard 

MaxDiff 

Cell 2 

Standard 

MaxDiff 

Cell 3 

Adaptive 

MaxDiff 

Cell 4  

Adaptive  

MaxDiff 

# MaxDiff Screens 17 12 14 14 

# Items / MaxDiff Screen 5 5 4 /5 4/5 

Follow-up Question 

Direct 

Binary 

Anchor—

all 28 

flavors 

Direct 

Binary 

Anchor—

all 28 

flavors 

Direct 

Binary 

Anchor—

8 flavors 

100 Point Slider 

—4 flavors 

(Best of Best 

and Worst of 

Worst) 

More detailed descriptions of the 6 cells follows. 

 4 MaxDiff cells—all cells included 28 ice cream flavors/200 respondents per cell 

o Cell 1—Standard MaxDiff exercise in which each item is shown on 3 MaxDiff 

screens 

 17 MaxDiff screens—5 items per screen 

 Lattery’s Direct Binary Anchor asked of all 28 flavors spread across 3 screens 

o Cell 2—Standard MaxDiff exercise in which each item is shown on 2 MaxDiff 

screens 

 12 MaxDiff screens—5 items per screen 

 Direct Binary Anchor asked of all 28 flavors spread across 3 screens 

o Cell 3—Adaptive MaxDiff with Direct Binary Anchor 

 4 rounds of MaxDiff screens (total of 14 screens) 

 Round 1—Sparse design of all 28 flavors—6 screens, 4 had 5 items/2 had 4 items 

 Round 2—Sparse design of items not selected in Round 1—4 screens, 4 items 

each 

 Round 3—Winners from rounds 1 and 2—2 screens of 5 items each 
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 Round 4—Losers from rounds 1 and 2—2 screens of 5 items each 

 Follow-up question—Direct Binary anchor of the 8 items not selected in either 

Round 1 or Round 2 

o Cell 4—Adaptive MaxDiff with Slider Follow-up 

 4 rounds of MaxDiff screens—Same as Cell 3 

 Follow-up question—100 point slider for 4 items 

o 2 items selected as best in round 3 

o 2 items selected as worst in round 4 

 2 Holdout Task cells—100 respondents per task 

o Holdout cell 1—2 holdout tasks 

 Ranking of 8 of the 28 flavors 

 Purchase interest of 8 other flavors 

o Holdout cell 2—2 holdout tasks 

 Ranking of a different set of 8 flavors 

 Purchase interest of a different set of 8 flavors 

The grid below describes the MaxDiff design that was used for the 2 Adaptive cells. 
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Round 1 Round 2 Round 3 Round 4 

Set 1 Item 1 Set 7 S1 NS-1 Set 11 S8 Winner Set 13 S2 Loser 

  Item 2   S2 NS-1   S3 Winner   S9 Loser 

  Item 3   S5 NS-1   S1 Winner   S10 Loser 

  Item 4   S4 NS-1   S10 Winner   S5 Loser 

  Item 5   

 

  S5 Winner   S3 Loser 

Set 2 Item 6 Set 8 S3 NS-1 Set 12 S7 Winner Set 14 S1 Loser 

  Item 7   S5 NS-2   S2 Winner   S8 Loser 

  Item 8   S4 NS-2   S6 Winner   S4 Loser 

  Item 9   S6 NS-1   S4 Winner   S7 Loser 

  Item 10   

 

  S9 Winner   S6 Loser 

Set 3 Item 11 Set 9 S2 NS-2         

  Item 12   S3 NS-2   

 

    

  Item 13   S4 NS-3   

 

    

  Item 14   S1 NS-2   

 

    

Set 4 Item 15 Set 10 S1 NS-3   

 

    

  Item 16   S6 NS-2   

 

    

  Item 17   S2 NS-3   

 

    

  Item 18   S5 NS-3   

 

    

  Item 19   

 

  

 

    

Set 5 Item 20       

 

    

  Item 21   

 

  

 

    

  Item 22   

 

  

 

    

  Item 23   

 

  

 

    

  Item 24   

 

  

 

    

Set 6 Item 25   

 

  

 

    

  Item 26   

 

  

 

    

  Item 27   

 

  

 

    

  Item 28             

One hundred versions of the Round 1 design were generated using Sawtooth Software’s 

MaxDiff designer with the following specifications: 

 Number of Items (Attributes) = 28 

 Number of Items per Set (Question) = 4 

 Number of Sets (Questions) per Respondent = 6 

 Allow Individual Designs Lacking Connectivity = Yes 

This accounted for 24 of the 28 flavors in each version. For each version, we scrambled the 4 

items that were not included and assigned them to Sets 1, 2, 4 and 5. This means that 4 screens 

contained 5 items and the other 2 screens contained 4 items. 

Round 2 was structured so that each set was comprised of items that came from different sets 

in Round 1. Each set in round 3 included 3 winners from Round 1, and 2 winners from Round 2 

while each set in Round 4 contained 3 losers from Round 1, and 2 losers from Round 2. 
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CELL 4—ADAPTIVE MAXDIFF WITH THE SLIDER FOLLOW-UP 

The next section of this paper describes how the slider scores are processed in HB and how 

scores are converted to the 100 point scale. 

 

In Cell 4 we asked respondents to use a 100 point slider to tell us how interested they would 

be in purchasing 4 of the ice cream flavors that had been included in the MaxDiff exercise. Each 

respondent rated the 2 flavors that had been selected “best” in Round 3 (MaxDiff screens from 

the items selected as “best” in earlier rounds) and the 2 flavors that were rated “worst” in Round 

4 (MaxDiff screens from items selected as “worst” in Rounds 1 and 2). 

Each of the slider scores were compared to an anchor such that the sum of the slider score 

plus the anchor would equal 100. Using this suggestion, there would be 4 additional tasks—1 for 

each of the 4 slider scores as follows. 

 

Best 1 Best 2 

Worst 

1 

Worst 

2 

Flavor  1 2 3 28 

Slider Score 90 70 40 25 

Value for Choice 

Task (Slider 

Score/100) 

0.90 0.70 0.40 0.25 

Anchor (100- 

Slider Score) 
10 30 60 75 

Value for Choice 

Task (Anchor/100) 
0.10 0.30 0.60 0.75 
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Using CBC/HB, the tasks would be coded as follows: 

 
Task 

Flavor 

1 

Flavor 

2 

Flavor  

3 . . . 

Flavor 

28 Choice 

Best 1 1 1 0 0 
 

0 0.90 

 

1 0 0 0 
 

0 0.10 

Best 2 2 0 0 0   0 0.70 

 

2 0 0 0   0 0.30 

Worst 1 3 0 0 0 
 

0 0.40 

 

3 0 0 0   0 0.60 

Worst 2 4 0 0 0   0 0.25 

 

4 0 0 0   0 0.75 

Note that the anchor is coded as 0s for all flavors. In addition to creating the appropriate 

relationship between the slider scores when generating the HB scores, this anchoring technique 

helps to establish 50 as the slider score for an average item. Thus a score of 50 on a 100 point 

slider would be equivalent to an index of 100 when reporting anchored MaxDiff scores. 

Since the purchase interest slider was obtained for only 4 flavors, we used the following 

process to interpolate purchase intent scores for the other 24 flavors for each respondent. 

1. Calculate the difference between the highest and lowest HB score for each respondent 

HB Range = HB Max minus HB Min 

 Since we had included the slider scores as additional tasks, we knew that the item 

that received the higher slider score would have the highest HB and the item with 

the lower slider score would have the lowest HB score 

2. Calculate the difference between the highest and lowest slider scores for each respondent 

Slider Range = Slider Max minus Slider Min 

3. For each respondent, calculate the difference between each item’s HB score and the 

lowest HB score 

Item HB diff = HB Item minus HB min 

4. Slider scores for each respondent were interpolated using the following formula: 

Item Slider score = (Item HB diff / HB Range * Slider Range) + Slider Min 

An example of the interpolation calculation follows: 

  Example Scores 

HB Score 3.72 

HB Max 6.21 

HB Min -6.05 

Slider Max 90 

Slider Min 15 
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  Calculation Result 

HB Range (HB Max - HB Min) 6.21 minus -6.05 12.26 

Slider Range (Slider Max - Slider Min) 90 minus 15 75 

Item HB Diff (HB Score - HB Min) 3.72 minus -6.05 9.77 

Item Slider Score [(9.77 / 12/26) * 75] + 15    

  9.77 / 12.26 79.70% 

  79.7% * 75 59.80 

  59.8 + 15 74.80 

For this example, the item Slider Score = 74.80 

KEY LEARNINGS FROM PROOF OF CONCEPT STUDY 

Key Finding #1—Converting scores to a 100 point client-friendly scale generates 

similar findings to the MaxDiff Indices. 

The following exhibit compares the Interpolated Purchase Intent scores to the Unanchored 

MaxDiff Indices for Cell 4 and shows that the hierarchy of results is very similar as reflected by 

the correlation 0.99 for the actual scores. 
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In the exhibit above, a Purchase Intent score of 55 would be equivalent to an unanchored 

MaxDiff Index of 100. As you can see from the following analyses, this equals the midpoint 

between the Average Maximum (95) and Average Minimum (14) slider scores. 

Key Finding #2—The range of slider scores helps to convey strong individual 

respondent discrimination between items. 

In cell 4, the Adaptive MaxDiff with the slider follow-up, most respondents gave very high 

purchase intent scores to the flavors they preferred and very low scores to the flavors they liked 

least suggesting very good discrimination between these flavors. 

 

When comparing the maximum and minimum scores, most respondents had a very wide 

range of slider scores and only 2 respondents gave essentially the same slider scores (as indicated 

by a range of less than 10) which would be equivalent to straight-lining when using a rating 

scale. 
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Key Finding #3—Individual respondent discrimination between flavors was 

higher for the 2 Adaptive MaxDiff cells. 

As mentioned earlier, we expected individual level results to be more discriminating for the 2 

Adaptive approaches than they were for the Standard approaches. This expectation was borne out 

when we looked at the range of both unanchored and anchored HB scores for individual 

respondents. 

 

Key Finding #4—The results from the Adaptive MaxDiff cells were similar to the 

Standard MaxDiff cells. 

The pattern of results were very similar across the 4 cells as noted by the high correlations 

between the 4 cells when looking at both the Indices from the Unanchored HB scores and the 

results as they would be reported. For both of the Standard MaxDiff cells and 1 of the 2 Adaptive 

MaxDiff cells, the scores would be reported as Indices from the anchored HB scores, while the 

Adaptive cell that includes the slider would be reported as Averages on a 100 point scale. These 

results are included in the appendix as: 

 Appendix Table 1—Unanchored MaxDiff Indices 

 Appendix Table 2—Results as they Would be Reported 

The pattern of results was very similar for both analyses—as between cell correlations are 

very high. 
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Key Finding #5—The results from the Adaptive and Standard MaxDiff 

Approaches were similar when compared to Holdout Tasks 

The results from the 4 cells were compared to 4 out-of-sample holdout tasks. 

1. 2 holdout tasks were comprised of Rankings of 8 flavors. 

2. The other 2 holdout tasks were purchase intent scores using a standard 5 point purchase 

intent scale. 

For the holdout tasks where flavors were ranked, the analysis was based on the Average 

ranking of the 8 flavors. For all 4 cells the pattern of rankings are similar to the holdout tasks as 

the correlations were strong when these 2 holdout tasks are combined. The Average difference 

(MAE) tends to be slightly higher for the 2 Adaptive cells than they are for the 2 Standard cells. 

 

When the results from these 4 cells were compared to the 2 holdouts using a standard 

purchase intent question, the pattern of responses was again similar to the holdout tasks (as 

reflected by the fairly strong correlations). However, both the MaxDiff Indices (for cells 1 thru 3) 

and the Purchase Intent scores estimated (for cell 4) are substantially lower than the Top Box 

Purchase Intent levels for the holdout tasks. This likely reflects the overstatement inherent with 

rating scales rather than any concerns with the MaxDiff exercise. 

 

CONCLUSIONS 

We recommend using Adaptive MaxDiff with the Slider follow-up because it has a number 

of advantages compared to a Standard MaxDiff exercise. 
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 The primary advantage of the Adaptive MaxDiff with Slider follow-up is that the 

reporting framework is more client-friendly and intuitive as Indices (that do not average 

100) are replaced by a straightforward 100 point scale. 

o Furthermore it provides a gauge of how well an item performs relative to a top end 

value of 100. 

o A score of 50 is average which is comparable to an index of 100 for an Anchored 

MaxDiff exercise. 

o In addition to reporting the scores as averages, you can report the percent of 

respondents who have interpolated scores that meet or exceed a threshold. 

 Item hierarchies for individual respondents are clearer as reflected by the wider ranges of 

HB scores. 

 Respondents who should be considered to be pulled can be identified while the study is in 

field, thereby improving the quality of the data, rather than waiting for the fieldwork to 

be completed so the “Goodness of Fit” statistic can be reviewed when the HB scores are 

generated. 

o Respondents would be pulled if: 

 They assign a higher slider score to a “Worst of Worst” item than they give to a 

“Best of Best” item. 

 The difference between the slider score for a “best” item and a “worst” is below a 

threshold level may suggest that the respondent is “straight-lining.” 

 Shortens the MaxDiff exercise for the respondent as only a few items are included in the 

follow-up slider question. 

 The use of the slider with the endpoints and midpoint labeled reduces the concern we had 

regarding the question wording for the follow-up question when using Direct Binary 

anchor. 

 Contains strong correlations to the holdout tasks. 

There are, however a few disadvantages to using this approach: 

 Requires more programming expertise and data preparation time (If using Sawtooth 

Software, the analysis must be done in CBC/HB rather than Lighthouse). 

 MAE was slightly higher than the Standard MaxDiff cells. 

 The Goodness of Fit statistic does not apply. 

The Adaptive MaxDiff approach with Lattery’s Direct Binary anchor follow-up is also a 

viable approach that offers advantages relative to a standard MaxDiff: 

 Item hierarchies for individual respondents are clearer as the ranges of the HB scores are 

wider. 

 Shortens the MaxDiff exercise for respondents by reducing the number of items included 

in the anchor follow-up. 

o Further investigation is needed to determine if the anchoring question should include 

a mix of preferred, not selected and less preferred items. 

 Contains strong correlations to the holdout tasks. 

There are, however, some disadvantages to this approach. 

 Requires more programming expertise and data preparation time (If using Sawtooth 

Software, the analysis must be done in CBC/HB rather than Lighthouse). 
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 MAE was slightly higher than the Standard MaxDiff cells. 

 The Goodness of Fit statistic does not apply. 

ADDITIONAL CONSIDERATIONS  

It is important to note there are a number of differences between the Adaptive MaxDiff 

approach and a Standard MaxDiff. 

When using an Adaptive MaxDiff, 

 Counts analysis should not be used. 

 The design is not orthogonal even though the Sparse design created for Round 1 is “near” 

orthogonal. 

 You cannot prohibit pairs of item from appearing together. 

 Item pairs will appear together on 2 MaxDiff tasks for some respondents. 

 The number of items may vary between screens. 

o The design can be modified slightly so that the same number of items can be shown 

on all screens. In our design, Round 1 had 6 MaxDiff screens—4 screens had 5 items; 

and 2 screens contained only 4 items. We could have taken items that were not 

selected on earlier screens and added them to later screens in the same round. 

FUTURE CONSIDERATIONS 

We plan to add a MaxDiff screen to future studies that use the Adaptive technique. This 

additional screen addresses the concern that all of the items in one of the Round 1 screens may 

be among the more preferred items, which places a preferred item in the less preferred group. 

This screen would include: 

 The items selected as “Worst of the Best” from Round 3 (Round 3 contained MaxDiff 

tasks of the “Preferred items” from Rounds 1 and 2), 

 The items selected as “Best of the Worst” from Round 4 (Round 4 contained MaxDiff 

tasks of the “Less Preferred” items from Rounds 1 and 2), 

 Item(s) not selected in Rounds 1 and 2. 

 

 
 Howard Firestone 
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Appendix Table 1. Unanchored MaxDiff Scores 

  

Std MD 

17 

screens 

Std MD 

14 

Screens  

Adaptive 

Anchor 

NS 

Adaptive  

PI 

Flavor 2 151 176 155 162 

Flavor 25 151 195 157 150 

Flavor 8 146 150 158 146 

Flavor 6 145 149 160 170 

Flavor 28 144 131 141 134 

Flavor 12 130 127 148 169 

Flavor 20 126 110 118 126 

Flavor 19 125 150 129 117 

Flavor 22 123 133 133 145 

Flavor 9 121 93 115 102 

Flavor 14 116 145 148 138 

Flavor 27 102 111 108 103 

Flavor 15 99 96 113 107 

Flavor 4 96 120 107 118 

Flavor 26 93 98 97 107 

Flavor 1 90 69 78 61 

Flavor 11 87 82 92 77 

Flavor 18 87 82 76 83 

Flavor 5 85 81 76 74 

Flavor 13 84 47 67 62 

Flavor 3 83 52 61 64 

Flavor 24 79 74 110 89 

Flavor 7 71 59 62 68 

Flavor 17 68 68 56 71 

Flavor 21 61 54 52 61 

Flavor 16 55 65 65 61 

Flavor 23 54 49 32 47 

Flavor 10 29 33 26 25 
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Appendix Table 2. As Results Would Be Reported 

  

Std MD 

17 

screens 

Std MD 

12 

Screens  

Adaptive 

Anchor 

NS 

Adaptive 

PI 

Flavor 6 191 211 210 70 

Flavor 25 189 261 201 67 

Flavor 2 188 229 193 68 

Flavor 8 185 203 212 65 

Flavor 28 179 175 185 64 

Flavor 12 173 195 194 70 

Flavor 22 158 181 180 66 

Flavor 19 157 210 180 59 

Flavor 14 156 218 198 63 

Flavor 20 156 156 148 63 

Flavor 9 146 131 151 57 

Flavor 27 135 166 144 56 

Flavor 4 127 165 145 60 

Flavor 26 120 138 113 58 

Flavor 13 119 73 100 44 

Flavor 15 119 133 143 57 

Flavor 1 117 86 104 43 

Flavor 11 112 121 124 48 

Flavor 3 111 68 76 49 

Flavor 18 107 118 94 53 

Flavor 5 105 113 97 52 

Flavor 24 99 98 137 53 

Flavor 7 94 85 75 47 

Flavor 17 90 95 80 48 

Flavor 21 78 81 68 44 

Flavor 16 77 99 86 49 

Flavor 23 63 61 48 42 

Flavor 10 33 46 43 36 
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COMPARING TWO METHODS TO ESTIMATE MISSING 

MAXIMUM DIFFERENCE UTILITIES 

KELSEY WHITE 

PAUL JOHNSON 
SSI

1
 

 

Since the development of the Maximum Difference technique, researchers have been pushing 

the limits of how many items can be tested in a single exercise. What might have started as 20 to 

30 items in one exercise has quickly ballooned to 40 or even 400. Having every respondent see 

every item quickly creates fatigue, even with Sparse MaxDiff where the respondents only see 

each item once instead of multiple times. 

The trend of wanting more data out of fewer questions is not unique to MaxDiff. Many 

researchers have been looking at ways to get more data out of shorter surveys using 

modularization. The biggest problem with modularization is how to handle the missing data. 

Ralph Wirth used one technique called Express MaxDiff (Wirth & Wolfrath 2009), which 

systematically selects which items respondents see. This technique relies on the HB algorithm to 

borrow information across respondents to estimate the individual-level utilities for items a 

respondent did not see. We blend this technique with elements of another technique applied by 

Kevin Lattery (2007). Lattery uses the EM algorithm to estimate unseen tasks in Choice-Based 

Conjoint. We use the same technique, not to estimate the tasks themselves, but to replace the 

estimation of the individual-level utilities from the HB algorithm when the item was never 

shown to the respondent. 

To test the EM algorithm against HB estimation, we select 200 policy statements made by 

2016 presidential candidate Donald Trump and design an Express MaxDiff exercise. Then we 

use the Direct Binary method to anchor to two different thresholds; one threshold being 

increased likelihood of voting for Mr. Trump and one threshold being decreased likelihood of 

voting for Mr. Trump. We then perform several types of analyses and compare the results of the 

HB-only utilities with the HB+EM utilities. 

INTRODUCTION 

Market researchers in today’s environment face two major challenges: clients who want more 

data from a single survey, and respondents who want a shorter, more engaging survey 

experience. Discrete choice data collected via a conjoint or MaxDiff exercise requires question 

repetition, naturally limiting the number of attributes that can be tested if respondent fatigue is to 

be avoided. 

In considering MaxDiff specifically, it is recommended to show each item 2–3 times to each 

respondent (Orme 2005). The number of tasks required for stable individual level utility 

                                                 

 
1 Survey Sampling International 



136 

estimates scales linearly with a large item set, contributing to long interviews and causing 

respondent fatigue. 

In an effort to avoid burdening respondents with a large number of MaxDiff tasks while still 

obtaining utilities for a large set of attributes, researchers have tried several methods of dealing 

with the issue. These methods include adaptive designs (Orme 2006), aggregate models such as 

the Bandit Model (Fairchild, Orme & Schwartz 2015), estimating unseen tasks (Lattery 2007), 

conducting an initial sorting exercise (Hendrix & Drucker 2007), showing attributes fewer times 

than recommended, such as Sparse MaxDiff (Wirth & Wolfrath 2009), and not showing all 

attributes to all respondents via an Express MaxDiff (Wirth & Wolfrath 2009). 

With an interest in eliminating the tradeoff between respondent fatigue and complete data for 

a larger number of attributes, we decided to test the capabilities of the EM algorithm (expectation 

maximization) in imputing “missing” data in a prohibitively long set of MaxDiff items. 

BACKGROUND 

We decided to use an extreme number of items, 200 in total, in designing our MaxDiff test. 

We wanted to find an equally unique subject matter, and decided upon policy statements made by 

2016 presidential candidate Donald Trump. We hoped to not only test utility imputation methods, 

but to also illustrate the usefulness of the MaxDiff technique when applied to political studies. 

Mr. Trump has spent time in the political sphere as both a conservative and a liberal, 

providing a wide range of statements from both sides of the aisle for use in our study. Trump is 

also a polarizing figure with strong and simple statements that are easy for respondents to 

evaluate and then agree or disagree with. 

We chose roughly 10 statements in each of 22 topical categories, with statements 

representing both conservative and liberal stances on the issues. These statements, with the 

categories included shown in Table 1, ranged from specific policy evaluations such as “I support 

the ban on assault weapons” and “I support a slightly longer waiting period to purchase a gun” to 

more general commentary on the current state of America, such as “Our country needs a truly 

great leader” and “we need a truly great leader now.” 

Table 1. Statement Categories 

2
nd

 Amendment 

Corporate America 

Criminal Justice Reform 

Deficit/Spending 

Discrimination 

Education 

Eminent Domain 

Environment 

Foreign Policy 

Free speech/Media 

Healthcare 

Immigration 

Jobs/Economy 

Military/VA 

Other candidates/politicians 

Patriotic Statements 

Religion 

Social Issues 

Social Programs 

Taxes 

Trade 

Women 
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RESEARCH DESIGN/METHODOLOGY 

We fielded a 20-question survey (excluding MaxDiff exercises) focused on political opinions 

and feelings about the media among Survey Sampling International’s Online U.S. Voter Panel. 

We obtained n=1,500 completes from late March to early April 2016. The survey began by 

collecting respondents’ party affiliation, recent voting patterns, and general attitude about the 

direction the country is headed. Quotas were in place to balance respondents on key metrics 

aligned with the registered U.S. voting population, including age, gender, and party affiliation, 

displayed below in Table 2. After the data were collected, some minor weighting was put in place 

to balance on ethnicity. 

Table 2. Respondent Quotas 

Gender Age Party Affiliation 

Male 47% 18–34 23% Republican 26% 

Female 53% 35–54 34% Democrat 30% 

 
55+ 43% Independent 44% 

 

After assessing respondent familiarity with current 2016 presidential candidates from the two 

major political parties (at the time including Hillary Clinton, Donald Trump, Bernie Sanders, Ted 

Cruz, and John Kasich) and collecting the candidate each respondent felt most likely to vote for 

at that moment in time, we began the MaxDiff portion of the study. 

Figure 1, displayed below, shows the experimental design of the study. Respondents were 

shown a partial subset of the total 200 items in an Express MaxDiff and were then given the 

option to opt in to additional rounds of MaxDiff questions. Once respondents no longer opted in 

to additional rounds, they were shown a Direct Binary threshold question for use in creating two 

anchors. 

Figure 1. Survey Flow 

 

The MaxDiff portion of the study was set up as 7 MaxDiff “modules,” each containing a 

subset of the total 200 items. The first MaxDiff module consisted of 10 fixed items and 20 

additional items selected randomly, for a total of 30 items tested. Each respondent saw 25 

screens with 4 statements per screen. We wanted a large amount of data on these items to ensure 
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robust individual-level utilities for each statement seen. Table 3 displays the 10 statements 

chosen as fixed to be seen by all 1,500 respondents. 

Table 3. Fixed Items in the First MaxDiff Module  

Category Statement 

Education 

We’ve got to bring on the competition. Education reformers call this school 

choice, charter schools, vouchers, even opportunity scholarships. I call it 

competition—the American way. 

Immigration 

We have to have a wall. We have to have a border. And in that wall we’re 

going to have a big fat door where people can come into the country, but 

they have to come in legally. 

Labor Unions 
Unions are about the only political force reminding us to remember the 

American working family. 

Military/VA 

Militarily, we’re going to build up our military. We’re going to have such a 

strong military that nobody, nobody is going to mess with us. We’re not 

going to have to use it. 

Other 

candidates/politicians 

One of the key problems today is that politics is such a disgrace. Good 

people don’t go into government. 

Patriotic Statements Our country needs a truly great leader, and we need a truly great leader now.  

Social Issues 
I have so many fabulous friends who happen to be gay, but I am a 

traditionalist. 

Supreme Court The ideal Supreme Court Justice would be Scalia reincarnated. 

Taxes 

If you tax something you get less of it. It’s as simple as that. The more you 

tax work, the less people are willing to work. The more you tax 

investments, the fewer investments you’ll get. This isn’t rocket science. 

Trade We have very unfair trade with China. 

Respondents were informed that the statements displayed on the MaxDiff screens could be 

said by a political candidate, but were not initially told the statements were real quotes from 

Donald Trump. Respondents were then asked to choose the statement they most agreed with and 

the statement they least agreed with. An example of the question format is shown in Figure 2. 

Figure 2. MaxDiff Example Screen 
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After completing the first 25 MaxDiff tasks, with exposure to 30 of the 200 items, 

respondents were asked if they would like to continue the survey by completing an additional 

round of statement questions with new statements, or if they wanted to simply proceed through 

the remaining 6 minutes of questions required of all respondents. The question format is 

displayed in Figure 3. 

Figure 3. Modularization Opt-In Screen 

 

Respondents who chose to opt in to additional rounds of MaxDiff sets were again shown 30 

statements (all randomly selected this time) across 25 screens with 4 items per screen. 

Respondents were able to opt in to up to 6 additional rounds, with the final round consisting of 

20 randomly selected statements across 18 screens of 4 statements per screen. 

At the first opt in juncture, nearly three quarters of respondents opted out of additional 

rounds of statements, instead finishing the remainder of the required survey questions and 

completing the study with only one MaxDiff module. A little over a quarter of respondents 

proceeded to opt in to an additional round, with the percentage of respondents opting in to 

additional rounds dropping quickly, as displayed in Figure 4. In the end, a total of only 10 

respondents out of n=1,500 were exposed to all 200 statements. This resulted in a massive 

amount of missing data for our test. 

Figure 4. Opt In Rates 
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As soon as a respondent opted out of additional MaxDiff modules (whether it be following 

the first module or after completing all 7 modules), respondents were exposed to a threshold 

question. At this point, we informed respondents that all of the statements seen previously had 

been said by 2016 presidential candidate Donald Trump. We then showed respondents a grid of 

the 30 statements seen in the first MaxDiff module, and asked them to indicate, for each 

individual statement, whether it increases, decreases, or does not affect that respondent’s 

likelihood of voting for Donald Trump. These responses were then used to create two anchors 

using the Direct Binary approach presented by Kevin Lattery (2010). The first anchor 

distinguished which statements increase respondent likelihood of voting for Trump, while the 

second anchor distinguished those statements that decrease respondent likelihood of voting for 

Trump. The exact question wording can be seen below in Figure 5. 

Figure 5. Direct Binary Threshold Question 

 

Once the experimental portion of the study was completed, respondents answered a few more 

questions about their views on the trustworthiness of various forms of media, and then concluded 

the survey by answering a set of demographic questions. 

After collecting all data, we discovered that nearly 75% of respondents were lacking data for 

85% of the statements tested. This is where we began our analysis to see whether HB estimation 

or EM imputation performs better in generating utilities where data are missing. 

We started with two separate sets of utilities: one individual level model (anchors included) 

run in Sawtooth Software using the default HB estimation, and a second model in which we 

removed the anchored HB utilities generated by Sawtooth Software for items that a given 

respondent did not see, and then estimated those blanks using the EM algorithm in R (Soft 

Impute Package). 
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Figure 6. Estimation Approaches Used 

 

These two sets of utilities, HB only and HB+EM, were used in performing several types of 

analyses, and the results were compared. 

Following some of our initial analysis, we decided to recontact a portion of the original 

respondents to collect some additional data to serve as a baseline in comparing the utilities 

estimated using HB and those replaced with imputed EM utilities. 

In early July we recontacted 310 respondents for a total of n=200 completes. We used the 

exact same questionnaire, simply removing those candidates who had at that point dropped out 

of the race. Respondents only saw one MaxDiff exercise with no modularization. Like the first 

study, the MaxDiff included 30 statements and consisted of 25 screens with 4 items displayed per 

task. The design contained 30 statements that the recontacted respondents had not been exposed 

to in the original survey. 

Collecting this data gave us a baseline of “truth” with which to compare the HB only and 

HB+EM utilities that had previously been estimated with zero direct information about the 30 

statements in question. 

RESEARCH RESULTS 

When the two sets of utilities (with and without the EM algorithm) are compared at the 

aggregate level we end up with very similar results. Figure 7 below plots the mean of each of the 

200 items with and without the EM algorithm to estimate the utilities of the missing items. The 

correlation is very close to 1 (r=.99), which indicates that at the aggregate level using the EM 

algorithm to estimate the individual level utility scores isn’t meaningfully different from the HB 

estimated utilities. 
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Figure 7. Aggregate Utility Comparison 

 

This result holds up even when looking at the key segments of the data such as party 

affiliation even when not using these variables as covariates. The aggregate utilities also make 

intuitive sense within these segments of the population. Figure 8 shows the aggregate utilities 

both with and without the EM algorithm by party affiliation, aggregating the items by topic for 

an easier read. In particular, you can see that Republicans do not like Trump’s statements on 

labor unions, while the Democrats do. To a lesser extent the same is true with social issues where 

Trump is considered more moderate than many Republicans. Both parties like Trump’s 

statements on the economy, jobs, and general patriotic statements. The Republicans like his 

statements on the opposition (in particular Hillary Clinton), immigration, and taxes more than the 

Democrats. Neither party is particularly enamored with his environmental stances or the delay in 

the Supreme Court nomination (although Republicans prefer that delay to the Democrats). These 

trends hold regardless of if the EM algorithm is added to the normal HB scores. However, we do 

notice more volatility in the segmentation analysis than when we look at the two in aggregate. 
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Figure 8. Topical Aggregate Utility Comparison by Political Affiliation 

 

While the aggregate results are nice, the main reason to do these individual level models is to 

operate at the individual level rather than the aggregate level. In particular, many times these 

models are used for segmentation purposes. We ran both sets of utilities with and without the EM 

algorithm through a Latent Class Segmentation (using Latent Gold) and as a standard k-means 

cluster analysis. While we looked at 3–7 segment solutions in both cases, we preferred the five 

segment solution to tell the story of attitudes towards Trump. Figure 9 shows the results of the 

segmentation. Surprisingly, these results were similar regardless of whether or not the anchors 

were included in the utility calculations. 

Figure 9. Top Statements by Each Segment 

 

While every segment of respondents had statements that they related with, the overall driver 

of the segment assignment was the anchor in the utilities (increased/decreased likelihood of 

voting for Trump). Those who supported Trump indexed high on his statements for America’s 

interests coming first in foreign policy, his statements against the current Obama administration, 

and strong immigration policy. Those who opposed Trump agreed with more of his statements on 

the importance of tolerance towards minorities and how current social programs work. While 
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they might agree with these statements he has said, they probably do not agree that Trump 

exemplifies these statements, as information that Trump was the author of the statement did not 

cause these respondents to be more likely to vote for him. In fact, many respondents for whom 

some of the statements resonated simultaneously indicated that knowing Trump said the 

statements in fact made them less likely to vote for Trump. It is also interesting to note that the 

undecided swing voters were most likely to be disgusted with the current government and not 

feel their interests are being represented. Trump’s outsider status gives him a leg up in this group. 

Full results of the 200 statements by segment can be provided at request to the authors. This 

story does not change depending on which segmentation is used or if the EM algorithm is 

included or excluded. 

Both segmentation methods and utility calculation methods yielded similar results. When 

using anchored utilities, the classification into the same segment was between 92% and 96%. 

Removing the anchor does provide more variation in the segmentation algorithms, but the 

classification into same segments is still extremely high with the lowest being 80%. Table 4 

compares these segmentation results and demonstrates the similarity. 

Table 4. Segment Assignment Similarity by Utility Algorithm and Segmentation Method 

Anchored Utilities 

 EM 

K-Means 

No EM 

K-Means 

EM 

Latent Class 

No EM 

Latent Class 

EM K-Means 100% 96% 94% 92% 

No EM K-Means 96% 100% 94% 94% 

EM Latent Class 94% 94% 100% 96% 

No EM Latent Class 92% 94% 96% 100% 

Unanchored Utilities 

 EM 

K-Means 

No EM 

K-Means 

EM 

Latent Class 

No EM 

Latent Class 

EM K-Means 100% 80% 85% 83% 

No EM K-Means 80% 100% 82% 94% 

EM Latent Class 85% 82% 100% 87% 

No EM Latent Class 83% 94% 87% 100% 

The final test we did used the recontact data to assess the ability of the two sets of utilities to 

predict future tasks by the same respondents. We used the individual utilities from each model to 

see which was better at predicting how respondents would react to these tasks where they had not 

seen any of the items using hit rates. We compare both of these models to an aggregate logit 

model to see what, if any, predictive lift we get at the individual level. Table 5 confirms that 

adding in the EM algorithm on top of the HB algorithm does not boost predictive validity. 

However, both methods do slightly better than the aggregate logit model, and all models do 

significantly better than just random chance with no information. 
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Table 5. Predictive Comparison Using Hit Rates by Model Type 

 Best Tasks Worst Tasks 

EM Anchored 42.9% 44.1% 

EM Unanchored 42.6% 43.4% 

No EM Anchored 42.3% 44.0% 

No EM Unanchored 42.7% 43.4% 

Aggregate Logit 38.7% 40.2% 

CONCLUSION 

It is clear that respondents get fatigued when completing a large series of MaxDiff tasks. 

Most of our respondents decided to leave after 25 MaxDiff tasks rather than continue evaluating 

more political statements. However, not everyone was equally fatigued. Giving respondents the 

option to complete additional MaxDiff tasks did give us more complete data on a few 

respondents who likely had higher interest in the topic. Finding a way to estimate unseen items is 

essential to keeping an engaged audience when confronted with a large number of items to 

evaluate. 

Trying to predict individual level utilities where a respondent has not seen the item in a 

MaxDiff exercise is uncertain at best. While the HB algorithm will estimate individual level 

utilities, there is a lot of shrinkage going on to the aggregate model. While we attempted to add 

in covariates to help guide the shrinkage, the amount of time it took to run the model with these 

covariates was prohibitive. Removing the utilities for items not seen in the tasks and imputing 

them with an EM algorithm yields very similar results. The two algorithms produce similar 

results not only at the aggregate level, but on the individual level when looking at segmentation 

composition. Both types of utilities give a slight boost in hit rates for items when a respondent 

sees new items in a recontact when compared to the aggregate logit model. 

One important advantage of HB is that it has an estimate of variance in the draws, whereas 

the EM algorithm only provides point estimates. However, industry market simulators commonly 

only use the point estimates, which do not allow for the full advantage of HB. While calculating 

individual level utilities might not boost predictive performance much above the aggregate 

model, it can still be useful in these simulators that use the point estimates. In particular, 

individual level utilities allow simulators to recalculate preference for subgroups on the fly 

without having to calculate new utilities. The aggregate logit model would need to be 

recalculated for every desired segment of the population rather than just taking a new average of 

existing individual utilities. The extra step of removing the HB utilities for unseen items and 

replacing with an EM algorithm doesn’t seem to be worth the effort. We would not recommend it 

in the future. 

There are many avenues researchers could take to build on this work. In particular, with 

political surveys there are known covariates (such as party affiliation and past voting behavior) 

that could likely inform the models on respondent attitudes towards statements that were not 

seen. Using a Sparse MaxDiff instead of an Express MaxDiff to get some information on most of 

the statements instead of a lot of information on only some of the statements could yield much 

better results. Lastly, even using the results of a segmentation algorithm (either the ones used or a 

cluster ensemble algorithm) might improve the model’s hit rates on the individual level by 

adding it in as a covariate. 
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We would also prefer to do the recontact closer to the initial survey as several big news items 

occurred between the two waves of data collection. In particular, presidential candidates dropped 

out of the race, which could have changed respondent’s opinions on the statements and of Trump 

in general. This delay could have contributed to the overall lower hit rates of all the models when 

predicting respondent choices in the recontact data. 

 

  
 Kelsey White Paul Johnson 
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ABSTRACT 

MaxDiff is ideal for determining preference order, yet becomes problematic for large item-

sets. While sparse and express methods address these issues, not enough large item-set research 

exists. This research explores and validates both methods, with real respondents, on a set of 100 

items to determine which is better. 

BACKGROUND 

Clients continue to push the envelope when it comes to increasing the length of item lists in a 

MaxDiff (Maximum Difference Scaling or Best-Worst Scaling) study. For traditional MaxDiff, 

Sawtooth Software has suggested that each item should be seen at least three times per 

respondent for accurate, individual-level estimation. This rule of thumb means longer lists of 

items (i.e., >50) equate to more survey screens, which can lead to respondent fatigue and bad 

data. It is our duty as researchers to consider how valuable our respondents’ time is. While 

researchers want more data to ensure better estimation, they have to balance this desire with what 

respondents are willing to provide. 

MaxDiff is a superior technique for determining preference order among a list of items. This 

methodology not only ranks a list of items, but also reveals the magnitude of difference between 

ranked items. Additionally, MaxDiff has been valuable in other research applications such as 

TURF or Segmentation, and has proven its use in previous research for up to 30 to 40 items. 

Under the traditional MaxDiff method, the more items included in the exercise, the longer the 

survey will be. The standard formula for determining the number of sets is shown below in 

Equation 1. In this formula, the goal is for each item to be seen at least three times, on average, 

by each respondent. 

Equation 1. The Numbers of MaxDiff Screens Required for Analysis 

                
                              

                             
 

The number of screens increases quickly as the number of items being tested increases. 

Assuming the formula above, along with showing each respondent five items per set, Figure 1 

indicates how long and taxing this exercise can be for a respondent. 
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Figure 1. The Number of Set Required to Test per Number of Items

 

One of the major issues facing a long MaxDiff exercise is respondent fatigue, resulting in bad 

data that can bias final results. This paper encourages researchers to address this issue and 

explores if there is a way to obtain accurate estimation without taxing respondents in large-

scale choice exercises. 

PREVIOUS RESEARCH 

Over the past decade, a number of practitioners have investigated different ways of analyzing 

large-scale MaxDiff exercises. These include: 

 Orme—Adaptive MaxDiff 

 Hendrix/Drucker—Augmented MaxDiff, Tailored MaxDiff 

 Wirth/Wolfrath—Express MaxDiff, Sparse MaxDiff 

 Orme/Fairchild/Schwartz—Bandit Adaptive MaxDiff 

Most of the research presented in this paper stems from the work presented by Wirth and 

Wolfrath in their exploration of sparse and express MaxDiff. The theory behind sparse MaxDiff 

is to show respondents each item less often than they would see in the traditional method. For 

example, under the traditional method, respondents are usually shown each item an average of 

three times; whereas with the sparse methodology, respondents might only see each item fewer 

times on average. 

On the other hand, the express methodology uses a different approach by showing 

respondents a subset of the items being tested. For example, a study with a list of 100 items is 

broken up into smaller subsets (e.g., 30) where each respondent receives one subset. Then, 

Hierarchical Bayes is used to stitch the data together into a set of utilities that can be used for 

analysis. The main advantage of both of these methodologies is their ability to test a large 

number of items without burdening respondents with a longer survey. 

Although there has been a lot of research in the past decade, many of these studies have 

either been simulations or have contained lists of items that were not excessive in nature (e.g., 

Wirth and Wolfrath tested 60 items). The purpose of this paper is to determine if an excessive 

number of items (i.e., 100 items) can be tested under three different MaxDiff methods: traditional 

MaxDiff, sparse MaxDiff, and express MaxDiff. 
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RESEARCH DESIGN 

A MaxDiff experiment containing 100 items was fielded among 2,746 respondents through 

GMI’s Lightspeed panel. The survey tested the importance of a wide array of items related to ice 

cream. It contained items sure to resonate with many respondents, such as: “it tastes good,” “it 

has good add-ins,” and “it’s creamy.” However, it also tested the importance of more obscure 

items, including: “the packaging is biodegradable,” “the packing is see-through,” and “the ice 

cream is made with stevia.” 

Respondents were screened to be between the ages of 18 and 65, to have at least half of the 

responsibility for grocery shopping in their household, and have had purchased or consumed 

packaged ice cream within the past six months. Each respondent was then randomly assigned to 

one of six MaxDiff methods, shown below in Figure 2. When data collection was complete, the 

data was weighted to the same demographic proportions across all 6 cells. 

Figure 2. MaxDiff Methods Tested 

 

Each of the MaxDiff methods shown in Figure 2 was set up to be unique and depended on 

the overall number of items seen, the number of sets and versions shown and the average number 

of times each item was shown per respondent. A more detailed description of the first four 

methods appears in the figure below (Figure 3). 
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Figure 3. MaxDiff Method Details 

 

As previously referenced, two other MaxDiff versions were tested. The first was a 1-version 

traditional MaxDiff exercise (n = 285) and the other a 1-version sparse MaxDiff exercise (n = 

280). Both of these methods were randomly assigned to respondents and were used as an out-of-

sample validation test against the main, three hundred versions of both the traditional and sparse 

MaxDiff methods. Another note of importance is that both of the express MaxDiff methods 

contained the same exact design. 

In addition to testing the accuracy of estimation for each MaxDiff method, another goal of 

this research was to test if applying Kevin Lattery’s Direct Anchoring Method could improve 

accuracy measures across these different methods. Respondents who saw the traditional and 

sparse were asked a follow-up Direct Anchoring question on all items. This was a multi-punch 

question that also offered a “none of the above” option. This same process was done for the 

express all anchor respondents, even if their specific MaxDiff did not include these items. On the 

other hand, express unique anchor respondents were only shown items that they rated in their 

actual MaxDiff exercise. 

ACCURACY ANALYSIS 

A hit rate was calculated using a holdout task to determine the accuracy of each method in 

identifying preference at the individual level. The hit rate is the proportion of the holdout ranks 

that match the utility ranks across the entire population. In the holdout task, respondents were 

asked to rank five statements from the MaxDiff in order of preference. They did this for five 

unique batteries—resulting in 5 holdout tasks, or more specifically, 25 statements that could be 

compared to the rank order of the utilities. For comparison, the utilities for the 25 statements 

were ranked in order within each of the 5 groups. Each person had 25 pairs of ranks that could 

either match or not. 
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Due to the large item list, some utilities were very close to one another. To accommodate 

these very close scores that could essentially be ties in the respondent’s mind, a confidence 

interval was developed to apply to the hit rate scores. This process allows very close utilities, that 

overlap within their margin of error, to flip ranks and be considered a successful match. The 95% 

confidence interval for each of the 25 statements was created using the standard deviation of all 

utilities for the statement. Bounds of 95% were applied to the utility to create a range of utilities 

(1.96*sd). These ranges were ranked; those that overlapped could count as a success in either 

rank, while those that had no overlap were assigned their rank. 

Using either hit rate calculation, traditional MaxDiff is the most accurate. Sparse follows as a 

close second, while both express methods are less accurate, seen below in Figure 4. 

Figure 4. Pure and Confidence Interval Hit Rates 

 

CORRELATION ANALYSIS 

Another measure of accuracy is the correlation between the utility ranks and the ranks from 

the holdout tasks at the individual level. This measures the relationship between the ranks of the 

holdouts and the ranks of the generated utilities. Using Spearman’s rank correlation, a metric was 

calculated for each of the five holdout tasks, comparing the five holdout ranks to their 

corresponding utility’s ranks. This results in five correlations for each respondent. The average 

correlation was taken to create one measure for each respondent. Similar to results from hit rate 

calculations, the traditional method shows the strongest relationship between the holdout and 

MaxDiff exercise with sparse falling just behind, followed by both express methods shown in 

Figure 5. 
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Figure 5. Spearman’s Rank Correlations for Holdout, Traditional, and 

Sparse Utility Ranks 

 

When items ranks are plotted, sparse ranks align better to the traditional ranks than the 

express, however sparse and express align to one another better than either does to the 

traditional, shown below in Figure 6. 

Figure 6. Utility Ranks Plotted against Different Designs 

 

OUT-OF-SAMPLE VALIDATION 

Another way to test the models’ performance is out-of-sample validation. Two sample groups 

were withheld from the estimation process, each consisting of n=250
+
 respondents. One group 

saw a 1-version traditional MaxDiff, resulting in 60 fixed sets for this out-of-sample data. The 

other group saw a 1-version sparse MaxDiff, resulting in 30 fixed sets of holdout data. Design 

details are shown below in Figure 7. 
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Figure 7. Details for the 1-Version Out-of-Sample Validation Versions 

 

Using model estimates from each of the four methods (T, S, eA, eU), share of preference 

(SOP) simulations were compared to the counts of the “best” items in the holdout exercises. It 

should be mentioned that the scale factor for each of the four models was also tuned as to 

minimize the mean absolute error (MAE) within each model. 

The table below shows the MAE scores for each of the four methods at the aggregate level; 

the goal is to minimize the MAE (Figure 8) with a typical MAE found between .02 and .04. 

Although the differences in MAE are likely not significant, they do suggest that sparse is a viable 

alternative to the traditional. 

Figure 8. Mean Absolute Error Scores for Each Method Using the 1-Version 

Out-of-Sample Validation 

 

Another hypothesis was that increasing the number of tasks used in model estimation would 

decrease the MAE (i.e., more sets result in less error). If this isn’t true, one might assume the 

quality of an individual’s response degrades over time. Therefore, using data from the traditional 

only, four separate utility estimates were created using the first 30 tasks; then 40; then 50; then 

all 60. The table suggests that even as the number of tasks used in the utility estimation 

increases, there is not a significant decrease in MAE (Figure 9). This is another indication that 

sparse or express methods may be just as, if not more, effective than traditional in utility 

estimation for large item sets. 
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Figure 9. Mean Absolute Error Scores for Traditional Estimating Using the First 30, 40, 50, 

and 60 Tasks and the 1-Version Out-of-Sample 

 

The traditional method is more accurate than the proposed alternatives, however, it is a much 

longer exercise to include in a survey. In order to understand the increase in accuracy relative to 

the number of tradeoff sets evaluated by respondents, hit rates and correlations were calculated 

for the first 30, 40, and 50 sets seen. As more tasks are estimated using Hierarchical Bayes, only 

slight increases among in-sample hit rates occur. This further suggests that the gain in adding 

more sets may not offset the loss through respondent fatigue and satisfaction. Hit rates and 

correlations suggest that sparse is approximately as accurate as a traditional method with a 

limited number of sets (Figure 10 and Figure 4). 

Figure 10. Hit Rates and Correlation to Holdout for Traditional Using Only 

First 30, 40, 50 and All 60 Sets 

 

RESPONDENT SATISFACTION 

Although the scientific purpose of this paper is to focus on the statistical accuracy of each of 

the MaxDiff methods tested, the respondent experience is a very important piece of the puzzle 

that cannot be overlooked. Respondents who are disengaged throughout the course of the survey 

or who become dissatisfied with the length of the survey can have a substantial impact on the 

overall results. Disengaged respondents can lead to responses with a large amount of directional 

noise—without a researcher being able to discover the issue—or the need to clean a large 

number of respondents out of a data set. 
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In order to gauge satisfaction, respondents were asked a series of seven-point semantic 

differential questions about the MaxDiff exercise they took. Some examples of these questions 

included: was the MaxDiff portion short or long, was it fun or dull, and was the MaxDiff 

enjoyable or not. The results with regard to respondent satisfaction are shown below in Figure 11 

and indicate a top-two box score with regard to the semantic differential question (Figure 11). 

Figure 11. Top Two Box Scores for Respondent Satisfaction on Each Attribute 

 

These results show a positive trend from those who participated in the longer, traditional 

MaxDiff to those who were shown the shorter, express MaxDiff. Respondent satisfaction was 

lower for those who saw the traditional; they explained that the survey was long, hard, less 

appealing, and duller. These results improved for those respondents who were assigned the 

sparse MaxDiff and were the highest with the express. In addition to being shorter, the more 

satisfied respondents also found the survey easier, more enjoyable, more appealing, and more 

fun. 

Respondents were asked open-end questions about what they liked and disliked in the 

MaxDiff exercises. These were analyzed using Rapid Automatic Keyword Extraction text 

analysis. Common themes in the “Like” category included “ice cream” and “choices,” with little 

variability across MaxDiff methods. However, the “Dislike” category showed more variation 

between methods, as can be seen in the word clouds in Figure 12. The traditional emphasized the 

“long” and “repetitive” nature of the exercise, whereas the sparse highlighted “preference” and 

“choices.” Both of the express methods emphasized the “repetitive” nature of the exercise and 

the choices available—which makes sense, as they only saw a small subset of the items 

available. The key takeaway from the text analysis was the traditional method was viewed as 

“long.” 
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Figure 12. Word Clouds for the “Dislike” Open End for Each Method 

 

“BAD” RESPONDENT ANALYSIS 

Another objective of this research was to determine the amount of “bad data” respondents 

each MaxDiff method yielded. A respondent was determined to be “bad data” if they failed two 

or more data quality checks or if that respondent admitted to cheating during their survey. The 

different quality checks implemented throughout the survey included: respondent completion 

time for their respective MaxDiff, a poor Root Likelihood Score, straight lining on other 

questions asked throughout the survey, or incorrectly answering a question for which they were 

told to mark a specific answer. When analyzing the amount of bad data across each of the 

different designs, the traditional MaxDiff and the express all anchor had the highest percentage 

removed (16%). The sparse and express unique anchor showed fewer respondents removed, 8% 

and 12% respectively. 

The traditional MaxDiff took respondents a median completion time of 16.4 minutes, while 

the shorter exercises, sparse and express, took respondents a median time of 9.7 minutes and 5.5 

minutes, respectively. This measure was calculated using all respondents who completed the 

survey, whether they were flagged as a “bad” respondent or not. When focusing on this overall 

sample (good and bad respondents), the longer, traditional MaxDiff had more respondents 

considered “speeders” (14%). A speeder is defined as anyone who completed in half the median 

completion time for their assigned MaxDiff design. On the other hand, the sparse and express 

MaxDiff respondents had a lower number of speeders (9% for sparse and 10%–11% for the two 

express methods). 
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As mentioned earlier, after respondents had finished completing the MaxDiff exercise, they 

were asked if they thought about cheating. If answered “yes,” they were asked if they actually 

cheated. Respondents were made aware that they would not be penalized for their truthful 

answer, would still receive the incentive promised to them, and that they would not face any 

repercussions from the panel company. With regard to the sparse “bad” respondents, nearly 

100% of the data removed was due to respondents admitting to cheating, while the two express 

methods averaged over 75%. However, when looking at the traditional, under 70% of the bad 

data was accounted for by cheating, which means that these respondents were more likely to be 

removed for other reasons (i.e., poor timing, straight lining, etc.). Amongst the data that 

remained as good data, almost 25% of the respondents in the traditional method considered 

cheating or straight lining in order to move through the survey more quickly. As the survey 

length shortened, the percentage of those who considered cheating decreased (sparse: -18%; 

express: -14%). 

ESTIMATING IMPORTANCE VALUES 

Previous research by Wirth and Wolfrath states that sparse and express MaxDiff methods 

perform similarly when estimating the importance of highly ranked items. To evaluate how the 

various methods performed against the more and less important items, the two holdout ranking 

tasks that contained the five most important and the five least important items were isolated. 

Most and least important items were determined from a previous study containing a subset of 

this item list. These holdout ranks were correlated to the corresponding items’ ranks in order to 

establish a measure of comparison. This research found that sparse did better than express with 

the more important items and slightly better than express with the least important items (Figure 

13). 

Figure 13. Spearman’s Rank Correlation for Most and Least Important Holdout Batteries 

 

To further understand how the alternative methods perform against the traditional MaxDiff, 

the top 25 ranked items from the traditional were correlated to their corresponding ranks in each 

of the other three methods. The same was done with the bottom 25 traditional ranks. The story is 

similar to that of the holdout task as well—sparse does better than express with the top ranked 

items, but conversely, express seems to do better with the items ranked lowest (Figure 14). 
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Figure 14. Correlation to Top and Bottom 25 Ranks 

 

ADDITIONAL TECHNIQUES EXPLORED FOR IMPROVING RESULTS 

Education 

Inspired by the findings of Sawtooth Software’s Turbo Choice event, this paper sought to 

explore if a respondent’s experience would improve if they were educated prior to the MaxDiff 

exercise. The sample was split into two groups, one of which was educated prior to the MaxDiff 

exercise with the following text “One of the benefits we like to provide consumers is real time 

feedback to thank them for taking part in this survey. At the end of this exercise, we will reveal 

your top 5 attributes that are MOST important to you in terms of packaged ice cream.” The other 

group received no information. 

After the MaxDiff exercise, Sawtooth Software’s MaxDiff on-the-fly calculations were called 

upon to show the educated respondents their top 5 ranked items. Respondents were then asked, 

“How well do these statements align with what is most important to you when buying packaged 

ice cream?” 

Among those that were educated, the traditional method does the best at aligning the 

estimated top 5 ranks with actual top 5 ranks, followed closely by sparse and then express. A 

slight lift in hit rate predictability is also observed (Figure 15). However, further investigation is 

necessary to understand why respondents’ answers don’t align as well with the express methods. 

The assumption is that respondents are more critical of their on-the-fly results in the block 

designs because they had a shorter list of items to evaluate and thus remember more about each 

item’s preference. 
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Figure 15. On-the-Fly Alignment with Top Attributes Sought and Hit Rates for the 

Educated Sample 

 

More importantly is the lift in key satisfaction measures by the educated group compared to 

the non-educated group. In almost every case, the exercise is more appealing, more fun, and 

more enjoyable, regardless of MaxDiff method (Figure 16). These results would suggest that 

making respondents aware that they will be provided with their top ranked attributes at the end of 

the exercise should be implemented wherever possible, especially given the ease of using 

Sawtooth Software’s MaxDiff on-the-fly script language. 

Figure 16. Top Two Box Satisfaction Measures for the Educated Sample 

 

ANCHORING 

Because MaxDiff scores are relative and researchers often want to draw a line between the 

items that are actually important to respondents and those that are not important, this research 
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applied the Direct Binary Anchoring approach developed by Kevin Lattery (Lattery 2011). This 

method employs the standard MaxDiff questioning followed by a multi-select question at the end 

that is used for threshold estimation. 

Exploring the results shows that including the Direct Binary approach in the analysis has a 

positive effect on the hit rates of the traditional, sparse, and express methods when all items are 

used in the anchor question (eA). However, when only the subset of items tested in the express 

MaxDiff are used in the anchor (eU), there is a slight negative effect (Figure 17). This is likely 

due to the fact that the anchor in the eU approach doesn’t supply any information on items 

outside of the design. While a random subset of items may work well as the anchor, it is 

recommended that the subset not be limited to the items tested in the block.  

Figure 17. Hit Rates for All Design Employing Direct Anchoring 

 

It should also be mentioned that in comparing the position of the anchor, the anchors for the 

sparse and express all anchor methods were much higher (positions 12 and 13 respectively) than 

the traditional anchor (position 21). One hypothesis is that with less data, the actual anchor can 

fluctuate in comparison to the traditional method, which estimates with more information. While 

it cannot be said which approach is more “correct,” there would be a significant difference in the 

insights drawn from the differing anchor positions depending on the estimation method used. 

CONCLUSIONS AND FUTURE RESEARCH 

Overall, looking at large-scale MaxDiff studies, the traditional method is statistically the best 

when measured by accuracy hit rates amongst holdout tasks. However, this type of study is 

extremely long and challenging to respondents. It runs the risk of alienating respondents and 

leads to a significant amount of bad data and wasted sample. 

There are alternatives to help solve for the length of traditional MaxDiffs, including either 

sparse or express. The express method is preferred most by respondents due to its shorter length 

and more efficient questioning structure. However, the research within this paper demonstrates 

that it is the statistically least precise of the three methods tested, suffering the most on accuracy. 

Based on the data gathered during this research, the sparse MaxDiff is able to hold up both ends 

of the spectrum in terms of data accuracy and respondent satisfaction. Given its strength in both 

of these areas, sparse MaxDiff is the recommended methodology when dealing with MaxDiff 

studies that are extremely large in nature. 

Further exploration is required to answer the question: if the sparse method in this study only 

showed each item one time—on average, per respondent—and if the connectivity of the design 

Indicate an increase/decrease from original holdout scores 

36% 30% 

55% 45% 

3% 6% 

2% 
4% 

2% 
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was limited, would the express design perform better? Another hypothesis worth exploring is that 

there may be a “sweet spot” for the express methods in the proportion of items shown per block. 

The express design used in this study only showed 30% of the total items tested, but if that 

proportion were increased, possibly to 50%, different conclusions may be drawn. 

 

   
 Mike Serpetti Claire Gilbert Megan Peitz 
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NAÏVE BAYES CLASSIFIERS, OR 

HOW TO CLASSIFY VIA MAXDIFF WITHOUT DOING MAXDIFF 

DAVID W. LYON 
AURORA MARKET MODELING 

INTRODUCTION 

MaxDiff utilities are a popular basis for segmentation, in part because they avoid the scale-

usage bias often seen with batteries of ratings scales. But building a classifier (or “typing tool”) 

for MaxDiff-based segments can be a problem. Why? Because typing tools usually do best when 

built using the original basis variables, but with MaxDiff, the utilities are not available to the 

classifier.  

Classifiers in general (not just for MaxDiff) need to use as few questions as possible; we do 

not want to repeat a whole original questionnaire, and seldom even want to repeat every one of 

the original basis variables. Also, many typing tools need to work “on the fly,” so respondents 

can be assigned to different concept tests, focus groups or quotas as soon as they are screened. In 

the case of MaxDiff, this means we don’t want to use as many tasks as the original questionnaire, 

or use all the original items, and we certainly can’t wait for a full new sample on which to do a 

lengthy HB run or latent class run to get utilities. The utilities are great for segmentation, but we 

can’t use them at typing-tool time. 

This problem is widely recognized, and a number of “duct tape” practitioner approaches to 

get around it have been discussed. All, however, involve a degree of either violating the basic 

MaxDiff model or throwing away some information that is available. This is unfortunate, 

because Bryan Orme and Rich Johnson (2009) published a Marketing Research magazine article 

that showed a theoretically sound solution that fully respects the MaxDiff model.  

The method Orme and Johnson used is called Naïve Bayes Classification (“NBC”). Their 

article applied NBC to the MaxDiff situation, but did not discuss or name the underlying NBC 

method they were using. This paper has two main objectives: first, to further popularize the 

Orme and Johnson idea, and second, to introduce Naïve Bayes Classification as a general and 

widely useful approach to classification. NBCs can be a useful alternative to the usual 

discriminant analysis, multinomial logit regression or tree-based methods (CART, random 

forests, etc.). 

Others have addressed the MaxDiff classification problem in other ways. Jay Magidson 

(2016) showed an elegant and easy solution, not using NBCs, when the typing tool is meant to 

use only pairs of items. It can be extended to more typical MaxDiff tasks of triples, quadruplets, 

etc., but much less easily as non-standard software will then be needed. Lech Komendant (2016) 

shows, in the next paper in this volume, other approaches not only for MaxDiff but also for 

ordinary choice tasks.  

NAÏVE BAYES CLASSIFIERS 

This section introduces the general ideas behind Naïve Bayes. This discussion is independent 

of MaxDiff; how to embed MaxDiff into NBCs will be the topic of the next section. 
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Let’s begin with a trivial example. Suppose we have segments, let’s say there are three, and 

are asked to classify them using only a single variable, let’s say a four-level region. What can we 

do? Not much, but we could look at a crosstab like this 

Classifying from One Categorical Variable 

 
Counts 

 

Row Percentages 

 
Seg A Seg B Seg C 

 

Seg A Seg B Seg C 

Northeast 52 31 40 

 

42.3% 25.2% 32.5% 

Midwest 85 50 42 

 

48.0% 28.2% 23.7% 

South 87 89 43 

 

39.7% 40.6% 19.6% 

West 86 77 55 

 

39.4% 35.3% 25.2% 

and use it to classify. If we know a respondent is in the South, let’s say, we can find the largest 

entry in the South row, in this case 89, and conclude that our best bet is to classify them into 

Segment B. More precisely, we could look at row percentages for the South row, and say that 

there is a 40.6% chance the respondent is in Segment B, and a nearly equal chance he or she is in 

segment A. 

Note that we are using row percentages when we do this, while the usual use of a crosstab 

like this in a segmentation context would focus on column percentages. The column percents are 

used in profiling the segments, to evaluate them and describe them to the client. We can relate 

the two percentages by observing that the segment sizes (at the total sample level) times a row of 

column percentages (for any region’s row), if re-percentaged by dividing all those products by 

the region size, produce the row percentages.  

Thus we can say that the estimated probabilities of a respondent being in each segment are 

the vector of column percents for that respondent’s region, times the vector of overall segment 

sizes, re-percentaged (i.e., divided by their total so that the total becomes 100%; their original 

total happens to be the overall percentage of the sample in that region). See the table below for 

concrete details, continuing our region example. 

The reason for separating the row percentages into column percentages and segment sizes is 

that we need the two split apart when we look at using multiple variables to classify, rather than 

using a single variable. 
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Separating Row Percentages into Segment Sizes and Column Likelihoods 

 Counts  Reg 

Sizes 

 Row %s 

 
Seg A Seg B Seg C 

  

Seg A Seg B Seg C 

Northeast 52 31 40 

 

16.7% 

 

42.3% 25.2% 32.5% 

Midwest 85 50 42 

 

24.0% 

 

48.0% 28.2% 23.7% 

South 87 89 43 

 

29.7% 

 

39.7% 40.6% 19.6% 

West 86 77 55 
 

29.6% 

 

39.4% 35.3% 25.2% 

          Seg Sizes 42.1% 33.5% 24.4% 

                 Column %—Likelihoods   

Northeast 16.8% 12.6% 22.2% 

 

Sizes 42.1% 33.5% 24.4% 

Midwest 27.4% 20.2% 23.3% 

 

West Col %s 27.7% 31.2% 30.6% 

South 28.1% 36.0% 23.9% 

 

Size X Col % 11.7% 10.4% 7.5% 

West 27.7% 31.2% 30.6% 
 

÷ West reg size 39.4% 35.3% 25.2% 

When running through these mechanics, we are simply applying Bayes’ Rule to the 

classification process. The priors are the segment sizes (i.e., the probability of membership in 

each segment before considering any respondent data), the likelihoods are the row of column 

percentages (i.e., the likelihood of the region given the segment) and the posterior probabilities 

are the row percentages (i.e., the classification probabilities we seek). 

 

It’s obvious that our simple one-variable classifier will work poorly; not only is region a poor 

predictor in this case, but classifiers invariably need at least a handful of variables, if not a 

couple of dozen, even with good predictors. How can we add more variables here? 

The process is simple. We calculate similar cross-tabs for all the other variables we want to 

use, focusing on the column percentages, and multiply the segment sizes (prior) times all the 

applicable rows from the various crosstabs (the likelihoods of the data given a segment) for all 

the variables. If a respondent is in the West, college-educated, high-income and female, we find 

the right row in each of four crosstabs for region, education, income and gender, multiply them 

all together along with the segment sizes, and re-percentage. In the example below, the 

respondent is 62.6% likely to be in segment B. 

  

Bayes’ Rule: 

Pr ( Seg X | Reg G ) = Pr ( Seg X ) × Pr ( Reg G | Seg X ) / Pr ( Reg G ) 

“Posterior”  = “prior” × “likelihood”  / “evidence” 

Posterior    prior  × likelihood 

Segment probabilities     Tabled Row Percents (from counts) 

Segment probabilities     Segment Sizes × Column Percents 
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Multiplying Prior and Likelihoods to Incorporate Multiple Variables 

 
Seg A Seg B Seg C 

        Priors (segment sizes) 42.1% 33.5% 24.4% 

        Variable: Value Likelihoods (from column percents) 

Region: South 27.7% 31.2% 30.6% 

Education: College 32.0% 49.0% 19.0% 

Income: $150K and up 28.2% 37.5% 34.3% 

Gender: Female 40.0% 60.0% 55.0% 

        (Column) Products 0.00421 0.01152 0.00268 

Re-% to Probabilities 22.9% 62.6% 14.5% 

What if a variable is continuous, not categorical? Instead of using crosstabs to get likelihoods 

(column percentages) for the data at hand, we can assume a distribution shape and use the 

probability density at the observed data point as the likelihood. We might assume normal 

distributions, using the observed mean and standard deviation for each segment, as illustrated in 

the leftmost plot below. If we don’t like assuming normality, any other assumption can be used, 

as long as we can compute the probability density. If we want to avoid any assumptions at all, we 

can use an empirical density obtained from a kernel smoother in the same way. 

Likelihoods for Continuous Variables Are Their Probability Density Function Values 

 
     Assume normality Assume something else Empirical kernel smoothing 

In practice, it is common to bypass the problem and “bin” or categorize the continuous 

variables into, say, quartiles or quintiles or the like, and treat them like any categorical variable. 

It is also common to assume normality, sometimes after a transformation to make the data at 

least more symmetric or shorter-tailed. Many “continuous” survey questions are ratings on short 

scales (1 to 5, 1 to 7, 1 to 10, etc.) anyway; reducing those to categories is recognizing reality, 

not losing information. 

NBCs rely on a very simple process and concept. We start with segment sizes as priors. We 

multiply them by a set of likelihoods for each variable in the classifier, with the likelihoods either 

a simple row of column percentages from a table or an easy evaluation of a probability density 

function for some distribution. We divide the final products by their total to get percentages 

summing to 100%, and assign a respondent to the segment with the highest final percentage. 

What could be simpler? 
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Independence and Legitimacy 

But, is this legitimate? If the variables are all independent of each other, then yes, it is a 

rigorous, defensible procedure. Of course, that is never true in practice, and often not even 

approximately true. Nevertheless, almost every introductory exposition of Naïve Bayes notes 

that it works “surprisingly well”! NBCs are a rare case of something that works in practice, but 

not in theory. The naïveté of assuming independence is what gives Naïve Bayes its name, and 

also alternative terms for it that include “Independence Bayes,” “Simple Bayes” and “Idiot 

Bayes”! 

The independence assumption is not as strong, or as simple, as it first appears. The actual 

assumption required is not true independence at the total sample level, but conditional 

independence at the segment level. In everyday terms, we need to assume that the variables are 

independent within each segment. In principle, we can have conditional independence without 

overall independence.
1
 

Does this matter in practice? It does, because one way of conceptualizing what latent class 

does is that it tries to find segments that maximize the conditional independence within segment. 

In other words, latent class is doing the best it can to give us conditional independence (on the 

original basis variables). How well it succeeds depends on how related the variables are, and on 

the number of variables and number of segments. But, it’s at least trying to create the situation 

that NBCs assume. Even if latent class was not used to find the original segments, any clustering 

approach must enhance conditional dependence to produce useful results, even if only as a by-

product of whatever criterion it explicitly considers. So, yes, the fact that we only need 

conditional independence does make the independence assumption of NBCs more palatable, 

even if still far from true.
2
 

In practice, we can avoid too much conditional dependence by our choice of variables to use. 

In an ordinary regression, adding a new variable that is highly collinear with the ones already in 

use helps predictive power very little, so we don’t. With NBCs, adding conditionally dependent 

new variables doesn’t help much, or even hurts, so again we don’t. More details on how we 

avoid that will follow. 

INCORPORATING MAXDIFF 

How do NBCs help us classify using MaxDiff? We’ve seen how to incorporate continuous 

variables into NBCs, so an obvious first thought is to use MaxDiff utilities as variables in the 

NBC. But, as pointed out in the introduction, we can’t get those utilities in real time, and even if 

we could, we probably aren’t willing to ask as many tasks as would be needed to make them very 

accurate. Indeed, the secret of classifying via MaxDiff is to forget about using the utilities. 

Instead, we observe that the answer to any single MaxDiff task is a categorical variable, and 

we know how to use categorical variables in an NBC. The answer to a MaxDiff task has two 

                                                 

 
1 We can also have overall independence but not conditional independence, but examples of that are contrived and rare or non-existent in 

practice. 
2 Even conditional independence is not strictly required. At least in the case of normally-distributed variables, NBC has been shown to be an 

optimal classifier (in terms of hit rates) as long as each segment has the same conditional dependence patterns as the others (Zhang 2004). 

However, nothing in latent class or clustering methods promotes identical conditional dependence, so this is only a slight weakening of the 
assumption.  
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parts: the best item and the worst item. In this discussion, we will consider the two together. That 

means we will think of a 4-item task as producing one of 12 possible answers (one of 4 possible 

bests, and for each of those, one of 3 possible worsts among the remaining items). Each task’s 

answer is a 12-level categorical variable.
3
 

There is a problem. Any task we might be considering for a typing tool might not have been 

used in the original questionnaire, and almost certainly wasn’t answered by all respondents. How 

then do we generate the crosstab from which to select one of the 12 rows of likelihoods (column 

percentages)? The basic idea is easy: if we have utilities for each segment, we can compute the 

likelihood of each answer from the multinomial logit model that underlies MaxDiff.  

The formulas below give the details. They are standard multinomial logits, treating the best 

and worst answers as independent, except that they must eliminate (from the denominators) the 

impossible combination of the same item being both best and worst. Note that the easy 

computation in terms of scores works only for the score definition given below. The usual 

Sawtooth Software MaxDiff scores are adjusted in a way that does not work with the formulas 

shown. 

 

If our original segments came from latent class and we are keeping the “true” segments 

(meaning segments defined by a probability of inclusion for each respondent, as opposed to 

placing every respondent fully in their “modal” or most-likely segment), then the latent class 

model utilities are what we need. No matter where our segments came from, we can compute an 

aggregate MaxDiff model for each segment, and use those utilities for this purpose. 

But what if we have individual respondent-level utilities estimated by hierarchical Bayes 

(“HB”)? An obvious idea is to average the utilities for each segment and go from there. But, that 

approach leads to suboptimal performance. A better procedure is to use the MaxDiff model to 

transform the individual-level utilities into individual-level probabilities of each response to a 

task, and then average those probabilities (not the utilities) for each segment. 

This is one of numerous situations in statistics where it is best to keep all transformations at 

the lowest level (i.e., the respondent level in this case) as long as possible before averaging up or 

otherwise aggregating. In this case, the key is that we want to average information that is already 

in the terms we want (probabilities of response, as in a crosstab) rather than average underlying 

ideas like utilities and then transform them. The author has verified that this procedure performs 

                                                 

 
3 Another common way of thinking about a task’s answer is that it produces two variables, not one, each having as many levels as there were 

items in the task. We could use that thinking instead, with no difference in any conclusions or outcomes, as long as we always use both the 
variables, or neither, from a given task. 
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more accurately than transforming averaged utilities and that it almost exactly duplicates the 

results from building an aggregate MaxDiff model for each segment (details are beyond the 

scope of this paper). 

IMPLEMENTATION PRACTICALITIES 

At this point, we know what NBCs are and have seen how we can use answers to MaxDiff 

tasks with them. But a number of practical details must be dealt with: 

 How do we know which tasks to use? 

 If the answer is “those that work best” (and it will be), how do we evaluate that? 
o How can we tell from our original sample data? 
o What’s the criterion for how well a task works? 

 How can we decide which ordinary (non-MaxDiff) questions to use? 
o When should we use ordinary variables, vs. using MaxDiff tasks? 

 How many tasks/variables is “enough” (or too many) in the NBC? 

 How can we honestly estimate the expected accuracy of the final NBC? 

Which Tasks to Use 

We know how to use MaxDiff tasks for classification, but which tasks should we use? The 

answer is simple: the ones that work best. Much as we do when using stepwise discriminant 

analysis to build a typing tool, we can conduct a stepwise search. First, we find the best task to 

use on its own, then the one that helps the most given that we already have the first one, then the 

third one to add to the first two, etc. 

 But, we may not want or be able to evaluate every possible task. With 25 items, there are 

12,650 possible quadruplets to choose from, and far more if we want to consider quintuplets or if 

we have more items. We may not want to evaluate all the possibilities. Instead, we will use a 

random subset of tasks as starting points and apply a greedy algorithm to try to improve them, 

taking the best final product. 

First, note that if there are few items, or if we want to use triplets or pairs in our typing tool 

tasks (and pairs may be an attractive option for typing tools to be administered by phone), the 

numbers are small enough that we can evaluate every possibility after all. When that’s feasible, 

we do that and pick the best. 

With larger problems, the author’s strategy has been to generate 500 random tasks out of all 

the possibilities, evaluate them and choose the 10 that perform best. Then, each of those 10 is 

improved as much as possible by simple item swaps until no further improvement is possible. 

Whichever of the 10 improved finalists does best is then accepted as the one to use. This process 

is not guaranteed to find the best possible, but practical experience suggests that it often does (it 

is common to find many, or all, the 10 best starts converging to the same final task, for example). 

Nor is the best possible necessary; we need to be good, not perfect. 

The greedy improvement strategy is to consider all possible single-item swaps. If we have 25 

items in total and are considering quadruplets, then we have 4 items in the quad we are 
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considering and 21 not in it. Any of the 4 could be replaced by any of the 21, so there are 84 

possible single-item swaps. We evaluate each of the 84, and take whichever of them does best.
4
 

We repeat that process on the new quad until none of the 84 is better than the current quad. At 

that point, the algorithm is done; it has improved that quad as much as possible given the 

“greedy” simplification of looking at only one swap at a time. 

Note that we are free to consider any size task in the typing tool. If the original questionnaire 

used quadruplets, we can still use triples, or pairs, or quintuplets, or of course quads, in the 

typing tool. Any of those “works” in the sense of the basic theory underlying MaxDiff and NBC. 

Many (this author included) have an automatic preference for keeping the same task size as in 

the original questionnaire, but this is by no means required and should not be automatic. We are 

free to consider the practicalities of typing tool implementation (which may argue for smaller 

tasks), and to experiment to see how well we can do with different task sizes. 

Also note that we are free to exclude a few MaxDiff items from consideration when 

searching for tasks to use in the classifier. Doing so does not disrupt the underlying theory in any 

way. Of course, it may hurt classification accuracy if we exclude an item that is viewed very 

differently across the segments! 

Evaluating What Works from the Original Sample 

We want the tasks that work best, but how do we evaluate how well any given task works? 

We again have the problem that any task we might be considering probably wasn’t answered by 

all respondents, perhaps not by any at all. The solution is, in spirit, the same as before: use the 

utilities we do have to determine how any given respondent would have answered the task. 

First, consider the case where we have HB-estimated individual utilities. They give us a 

probability of each response for each respondent. This is, of course, different from the situation 

for ordinary questions where we know, with certainty, which one answer the respondent chose. 

We could assume the one MaxDiff task response with the highest probability, but that would 

ignore the uncertainty in the possible answers. Instead, we use the probabilities of each possible 

answer as weights, applied to the segment tables of likelihoods of each answer by segment, to 

obtain the likelihoods that would apply to that respondent, as illustrated by the table below. 

  

                                                 

 
4 This process is a simple special case of the “modified Federov swaps” that are used in most algorithms for finding d-optimal experimental 

designs. 
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Net Likelihood by Segment for One Respondent (HB case) 

Best/Worst 

Likelihoods (col %s)  Normalized (rows re-%’d)  
One 

Respondent 
Seg 

A 

Seg 

B 

Seg 

C 

 

Seg 

A 

Seg 

B 

Seg 

C 

Row 

Total 

 Useful/Correct 0.6 1.5 6.8 

 

6.7 16.9 76.4 100 

 

2.4 

Useful/Cute 25.6 3.1 2.9 

 

81.0 9.8 9.2 100 

 

1.4 

Useful/Brief 10.4 3.6 2.3 

 

63.8 22.1 14.1 100 

 

6.5 

Correct/Useful 6.5 34.1 5.6 

 

14.1 73.8 12.1 100 

 

2.7 

Correct/Cute 33.0 9.0 1.5 

 

75.9 20.7 3.4 100 

 

3.3 

Correct/Brief 16.1 11.6 1.7 

 

54.8 39.5 5.8 100 

 

14.8 

Cute/Useful 0.1 7.5 11.9 

 

0.5 38.5 61.0 100 

 

1.5 

Cute/Correct 0.1 0.5 5.5 

 

1.6 8.2 90.2 100 

 

3.0 

Cute/Brief 0.4 2.8 3.7 

 

5.8 40.6 53.6 100 

 

8.1 

Brief/Useful 0.8 18.5 32.6 

 

1.5 35.6 62.8 100 

 

13.3 

Brief/Correct 0.1 1.8 15.6 

 

0.6 10.3 89.1 100 

 

26.8 

Brief/Cute 6.4 6.1 9.8 

 

28.7 27.4 43.9 100 

 

16.3 

Column Totals 100 100 100 

 
Weighted (by resp.’s probabilities) average of rows 

     

22.0 26.5 51.5 100 

 

100 

Conceptually, we are using the expected likelihood for the MaxDiff response, with the 

expectation over all possible answers. Mechanically, instead of choosing a single row of 

likelihoods (like we would by picking a single region row out of the region crosstab), we take a 

weighted average of all the rows in the MaxDiff likelihoods table, weighted by the chances of 

each row being that respondent’s response. This is one major point of distinction vs. many ad hoc 

approaches—we do not presume to “know” one correct answer for each respondent, but account 

for all the possibilities. 

What about latent class-based segments where we don’t have individual-level utilities? Here, 

we use the segment-level utilities to generate likelihoods of each response and assume they are 

the same for all respondents in the segment. If we are using modal segments (i.e., each 

respondent is assigned only to the segment for which his latent class likelihood was highest), 

those segment-level utilities are from an aggregate MaxDiff model for each segment, estimated 

after the fact. In effect, we are using one column of the task-by-segment likelihood tables—the 

one for the segment a respondent is in—to weight together the rows of the table to get a single 

vector of likelihoods for the respondent. 

If we are using “true” segments, we don’t know for certain what segment a respondent is in. 

In that case, we use the segment probabilities from latent class to weight together the likelihoods 

for each possible segment. In other words, we weight the rows of the task-by-segment likelihood 

table together once for each segment, using that segment’s column of the table as weights, and 

then weight those results by segment together based on the segment likelihoods.
5
 

                                                 

 
5 Magidson (2016) avoids this by simulating answers instead, an approach that is simpler, but less exact due to the random nature of simulation, 

and which this author has not explored. 
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Criterion for What Works 

How shall we decide which task or variable works best? An obvious way is to look at the hit 

rate when it is included. However, there are problems with hit rates, in any classifier, and special 

issues with NBCs. A general problem is that hit rates are “chunky”: they take a bump up when 

one extra respondent is classified correctly, but do not budge when any improvements in the 

underlying probabilities are not quite enough to push one more respondent “over the edge” into 

the correct segment. They are simply not sensitive or precise. 

To see the particular problem with hit rates in NBCs, let’s look at what happens when we 

violate the key NBC assumption of conditional independence. Consider the most extreme 

possible dependence: what if we include the exact same variable several times? The table below 

shows the results as we repeatedly include an education variable, for a respondent with a post-

grad education (ignoring segment sizes). 

Repeated Inclusion of Highly (Perfectly) Dependent Variables 

Variable: Value 

One-Variable 

Likelihoods 

Net Probabilities Up 

to This Variable 

Classification 

Result 
In-Sample 

Seg A Seg B Seg C Seg A Seg B Seg C  Hit % RLH 

Educ: Post-grad 0.32 0.49 0.19 0.32 0.49 0.19 B 0.49 0.357 

Educ: Post-grad 0.32 0.49 0.19 0.27 0.63 0.10 B 0.49 0.337 

Educ: Post-grad 0.32 0.49 0.19 0.21 0.75 0.04 B 0.49 0.290 

Educ: Post-grad 0.32 0.49 0.19 0.15 0.83 0.02 B 0.49 0.234 

Confidence in B is exaggerated; hit rate is not affected; RLH raises the alarm.  

The likelihoods for post-grad respondents, re-percentaged to add to 1.00, tell us 49% of them 

are in segment B, which is the most likely segment, so we get a hit rate of 49%. So far, so good. 

If we add the variable again, the process of multiplying likelihoods for different variables squares 

our original likelihoods. After re-percentaging, the segment B likelihood is now 0.63. That is still 

largest, so we still put all these respondents in segment B and are still right 49% of the time. If 

we add the same variable a third and fourth time, the segment B probability climbs to 0.83, 

staying the highest, so the hit rate stays at 49%. We have exaggerated our confidence about 

placing these respondents in segment B, and completely violated the conditional independence 

assumption, without a hint of trouble in the hit rate!
6
 Indeed, in data science literature, the 

surprising success of NBCs is often explained in terms of their hit rates being insensitive to 

various errors. 

A more sensitive and useful criterion is the root likelihood or “RLH.” It is the geometric 

mean
7
 of the probabilities assigned to the correct segments for the respondents. RLH will be 

familiar to many readers in the context of choice experiments, where it is commonly computed at 

the respondent level, as the geometric mean across the various choice tasks that respondent 

answered. Its use here is different; we have one classification probability per respondent and are 

taking the geometric mean across respondents, not within each one. 

                                                 

 
6 In fairness, the hit rate did not go up and actually encourage this either. 
7 Where a regular average or “arithmetic mean” is the sum of all the values divided by n, the geometric mean is the nth root of the product of all 

the values, or the product raised to the 1/n power. The computation process in practice is to take the exponential of the average of the natural 
logarithms of the values. If there are weights, they can be applied in the usual way when the logs are averaged. 
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In the table above, we see the RLH (computed here for the post-grad education respondents, 

but similar patterns would apply in the total sample) declining, faster and faster, as we make the 

mistake of introducing a highly (in this example, perfectly) dependent variable over and over. In 

effect, the RLH is penalizing our exaggerated confidence for segment B as we go. For the 19% 

of these respondents in segment C, we are assigning a probability of 0.02 to the correct segment, 

and for the 35% in segment A, a 0.15 correct probability. In the geometric mean, these low 

values far outweigh the (illegitimate) gains from claiming 0.83 certainty for the 49% in segment 

B. 

Consequently, our key criterion in the stepwise search process will be the RLH. It is sensitive 

to the details of the classification probabilities a typing tool produces, not just to the final 

assignment and the hit rate. 

Including “Ordinary” Variables 

It is important to understand that an NBC treats ordinary survey questions and MaxDiff tasks 

in the same way. Many early readers of this paper and the conference presentation interpreted 

survey questions as “covariates,” or as providing a starting point from which we will improve by 

adding MaxDiff tasks. But there is no need to view them differently from the MaxDiff tasks. 

They are not co-variates, they are simply other variables. 

This means that we can search through the available survey variables in a stepwise fashion, 

much as we do for MaxDiff tasks, and indeed that is what the author would recommend in most 

cases, and what he did in the second case study presented below. 

Of course, we may want to exclude certain questions from a typing tool (many clients are 

reluctant to ask for income in a short consumer-oriented questionnaire, for example). As in any 

other classification situation, the original basis variables tend to predict much better than non-

basis variables. Thus, we may decide to simplify or speed up our search by considering only 

basis variables.
8
 If MaxDiff was the only basis for segmentation, we might not consider other 

survey questions at all. Or, we might consider only those survey questions that will be needed in 

a new screener anyway, whether basis variables or not, making them “free” to the typing tool. 

There is no inherent theoretical or statistical reason to avoid any survey questions, or to force 

any into an NBC. They can be excluded for practical reasons, but otherwise considered for 

inclusion in competition against possible MaxDiff tasks, with the ones that help the most being 

included. 

Significance Testing in the Stepwise Search 

As we build an NBC stepwise, we need a criterion for when to stop. This may be as simple as 

stopping when the in-sample hit rate or RLH is “high enough,” but if we have high standards, 

that may never happen. At some point, additional tasks or variables aren’t adding enough to be 

legitimate and we cross the line into overfitting. Significance testing helps prevent this. 

In addition, when considering survey questions with varying numbers of categories, and 

MaxDiff tasks with larger numbers of possible answers, we don’t want to always favor questions 

                                                 

 
8 If some basis variables are excluded from the typing tool, it may be much more worthwhile to search for other survey questions that might help 

substitute for them; a wider search would be appropriate in that case. 
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with more levels just because it is easier for them to increase RLH. Significance testing is a way 

to put all possible items on a more equal footing; we can choose the most significant option 

rather than the one with highest raw RLH increase. 

We can test significance using a Likelihood Ratio Test (“LRT”). This test involves comparing 

the log-likelihood for a model vs. that for the same model with one more variable or task added. 

Twice the difference in log-likelihoods (the difference in logs is the log of the ratio of the two 

likelihoods; hence the name) is distributed as a chi-squared under the null hypothesis of no 

contribution from the new variable. The log-likelihoods are easy to compute: they are N times 

the natural log of the RLH, where N is the number of respondents. 

For survey questions, that chi-squared is on m-1 degrees of freedom if the variable has m 

possible levels. The appropriate degrees of freedom is not clear-cut in the case of MaxDiff tasks. 

We could say that a quadruplet leads to 12 different possible answers and use 11 d.f. in that case. 

But then we are ignoring the fact that those 12 are structured from only 4 underlying utilities. In 

view of that, the author recommends the number of items in the MaxDiff task as the d.f. for the 

chi-squared.
9
 He is not certain that this is the correct procedure, however, and would appreciate 

any feedback. When we choose what to add next to an NBC, the assumption made here is critical 

in choosing between the best possible MaxDiff task and the best available survey question; it is 

an important question. 

A critical part of the significance testing is deciding at what level we will stop. When we are 

testing tens or hundreds of thousands of possible MaxDiff tasks, and perhaps hundreds of survey 

questions, we cannot simply apply a 0.05 significance criterion to each one. Doing that would 

lead to dozens or hundreds of variables being added even when all were generated randomly. 

There are many ways to deal with this multiple testing issue. The author uses the simple, but 

highly conservative and stringent, Bonferroni procedure. Its basic idea is that if we want an 

overall “experiment-wise” significance level of 0.05, we should require any one variable to meet 

a criterion of 0.05/k, where k is the number of variables we are considering. If we have 250 

survey variables, for instance, we would use only the ones that pass a 0.0002 level of 

significance. 

As with the d.f. in the chi-squared, it is not clear-cut how to apply this idea to the MaxDiff 

tasks. Do we say that there are 12,650 possible quadruplets of 25 items we are considering and 

ask for 0.05 / 12,650 = 0.000004 as our criterion? That is extreme, since there are only 25 

underlying utilities generating all those options. The author’s practice has been to use the total 

number of MaxDiff items as the number of variables being tested. This may be too lenient, and is 

another topic where feedback would be welcome. 

An easy way to implement the Bonferroni process is to calculate a conventional significance 

level for each variable or task, and then multiply it by the number of variables being considered, 

and compare that to the desired overall level (such as 0.05). (In other words, we can adjust the 

significance level for each variable by multiplying, rather than adjusting the criterion to be met 

by dividing.) If we do that both for the survey variables and for the MaxDiff tasks, we then have 

them on a common significance scale and can decide which one helps the classifier the most. If 

                                                 

 
9 In the conference presentation, and in the implementation of the Case Studies in a later section, the author used the number of items in a task 

minus one. Further thinking since then has convinced him that “minus one” is not appropriate. All the item utilities for a task are “free” 
parameters. Since none are constrained by the others, all should be counted toward degrees of freedom. 
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the MaxDiff correction is in fact too lenient, this process will favor MaxDiff tasks unduly. 

Judging from the face validity of the results in Case Study 2 (in a later section), this does not 

appear to be occurring. The Bonferroni correction for MaxDiff tasks in that case seems not to be 

lenient by a large margin, if at all. 

We could take all this one step further and “penalize” questions for their complexity by 

further adjusting the significance calculations. A MaxDiff task, for example, involves two 

questions and might be viewed as a bigger interviewing burden than an ordinary survey question. 

Or, a ratings item from the survey might be viewed as more costly if no other items using its 

scale have yet been added to the classifier, but less costly if the necessary scale and question 

introduction are already necessary for earlier items. The goal would be some kind of “RLH bang 

for the buck” criterion that reflects both classification improvement and interviewing burden. 

One obvious idea would be to divide the RLH gain by some cost measure (that would be set at 

1.0 for most questions), before applying the LRTs. 

Evaluating the Final Product 

Any stepwise procedure involves a degree of capitalizing on chance. We control this 

somewhat by careful significance testing. But to honestly estimate the performance of the final 

classifier, we need some type of out-of-sample testing.  

The classic market research response to this is the holdout sample. Modern data science 

practitioners go one step further, dividing their sample in three parts: a “training” sample from 

which to estimate parameters (i.e., in this case to generate the simple crosstabs and the MaxDiff 

utilities at the segment level), a “validation” sample that drives decisions as to which tasks and 

variables to use (in our case, RLHs would be computed on the validation sample as we do the 

stepwise search) and a “test” sample, like our usual holdout samples, on which to gauge the final 

performance.  

But market research samples are often smallish, and when divided into three parts, the 

validation and test samples may be too small to provide stable estimates of performance. This 

author would much rather use an approach that keeps the entire sample together. 

The author uses an approach known to statisticians as “jackknifing” and to data scientists, 

more descriptively, as “leave one out” or “LOO.” In it, we pick a single respondent, and leave 

him or her out while computing all the model likelihoods and tables on the rest. Then we 

calculate segment classification probabilities for the one left out, based on all the rest, and see 

how we did. That process is repeated for each of the original respondents. Each is predicted only 

by the others, creating “N holdout samples of one.” This is not the computational burden it 

seems; it can be fast with careful programming. 

This procedure is honest in terms of the likelihood estimates, and does not give credit for 

overfitting in estimating them. What it does not account for, however, is that the original 

stepwise decisions of which tasks and variables to use might have been different had a given 

respondent been left out of the original search. In principle, we could conduct the entire stepwise 

process for each respondent, but that would indeed be a crushing computational problem. 

Applying LOO to the likelihood estimates is a major step toward an honest estimate of overall 

performance, and it is practical to implement. We use it even though it does not quite cover all 

the issues. 
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It is crucial that the LOO assessment be applied once, to the one final classifier, after all other 

decisions have been made. If we were to apply LOO along the way to help decide what to do, we 

would be converting our left-out respondents from a test sample to a validation sample, and be 

back to overfitting. In the case studies presented here, LOO evaluations are shown for several 

alternative models. To be clear, the point of that is not to suggest looking at them and choosing 

the best. They simply indicate what the final assessment would have been for each of several 

different possibilities that might have been decided on based on in-sample statistics. 

Summarizing the Implementation 

In sum, our process for building a Naïve Bayes Classifier stepwise will be: 

 Generate 500 possible MaxDiff tasks, pick the 10 best, apply greedy improvements to 

each, and choose the best final one of the 10 results. Calculate its significance on a 

Bonferroni-corrected LRT basis. 

 Evaluate each survey variable (if they are being considered) via a Bonferroni-corrected 

LRT and choose the one with the best final significance. 

 Stop the stepwise search if neither the best task nor the best survey question passes our 

overall significance criterion. 

 Add the best task or the best variable, whichever had the lower corrected significance 

level, to the classifier so far, and repeat from the top. 

 Examine in-sample RLH and hit rates and decide whether to stop earlier than the 

significance tests suggested (based on practical issues). 

 Evaluate hit rates and RLH for the final classifier on an LOO basis. 

CASE STUDIES 

Case Study 1: Textbook-Simple 

The first case study is a straightforward MaxDiff-based segmentation. The MaxDiff exercise 

involved 14 items, with each respondent answering 11 quadruplets of items. That means each 

item appeared three times per respondent, in line with the most frequent recommendation for 

numbers of tasks. The items were characteristics of allergy medications. The 577 respondents 

were physicians treating allergies and the sample was unweighted. Individual-level utilities were 

estimated via HB, and then latent class was applied on the posterior means.
10

 A 4-segment 

solution was chosen for the final segments. The MaxDiff utilities were the only basis variables; 

no other questions were used. 

To build the NBC, we started with quadruplets, as in the original exercise, and excluded all 

other survey questions (since none were basis variables anyway). As detailed in the table below, 

significance testing stopped adding tasks after 9 were used, and produced an NBC with a hit rate 

over 90% (both in-sample and LOO). From a practical point of view, the last two tasks added 

                                                 

 
10 While this is a common procedure in commercial practice, it can’t be recommended on theoretical grounds. See Eagle (2013) for one 

discussion of why not. As Jay Magidson has said, this process amounts to “assuming there are no segments [by adopting HB], then trying [via 
LC] to find those segments that don’t exist.” Nevertheless, it is in wide use. 
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pushed the RLH up only a little and the hit rate hardly at all. We can still hit 90% with 7 tasks. 

We had 11 tasks in the original exercise; neither 9 nor 7 feel like much improvement. However, 

we can hit almost 85% with only 3 tasks, and 70% with just one! Those are outstanding results, 

with a mere 3 tasks achieving a performance better than most classifiers seen in practice. 

Case Study 1: Classification Accuracy Using Quadruplets 

Classifier 

# MD 

tasks 

In-Sample L-O-O 

RLH Hits RLH Hits 

NBC, all significant tasks 9 0.783 0.905 0.784 0.905 

NBC, cut off sooner 7 0.751 0.899 0.751 0.901 

NBC, cut much sooner 3 0.617 0.846 0.617 0.844 

NBC, cut ridiculously soon 1 0.438 0.700 0.437 0.697 

If we do that well with quadruplets, a natural question is whether we might get away with 

triplets or even pairs, resulting in an even less burdensome classifier. As shown in the table 

below, we can. Three triplets, or five pairs, either of which is a low respondent burden, will get 

us to 80% hit rates, a level that again beats most real-world classifiers. By the way, the largest 

segment in this study was 31% of the total—the high hit rates with minimal data were not 

achieved by putting almost everyone in a single huge segment. 

Case Study 1: Classification Accuracy Using Triplets or Pairs 

Classifier 

# MD 

tasks 

In-Sample L-O-O 

RLH Hits RLH Hits 

NBC, all significant triplets 10 0.766 0.905 0.767 0.901 

NBC, fewer triplets 6 0.700 0.863 0.699 0.860 

NBC, still fewer triplets 3 0.581 0.825 0.581 0.825 

      
NBC, all significant pairs 13 0.710 0.877 0.709 0.877 

NBC, fewer pairs 10 0.685 0.858 0.684 0.854 

NBC, still fewer pairs 5 0.583 0.809 0.582 0.808 

NBC, ridiculously few pairs 2 0.455 0.714 0.453 0.711 

In this case study, the in-sample and LOO evaluations of performance, in terms of both RLH 

and hits, were close to each other. The LOO values were lower, as would be expected, but by 

slim margins. This suggests that the significance testing is preventing overfitting, and that the 

sample is large enough vs. the number of tasks being considered as to not facilitate overfitting. 

Case Study 2: Complex 

The second case study involved two MaxDiff exercises, one with 27 items, the other with 26. 

Each concerned a software product; the two products were related but different. Twenty of the 

MaxDiff items were the same or similar between the two exercises, but of course applied to 

different products. There were 1047 small-business respondents, who each answered 11 

quintuplets for the first MaxDiff, and 10 for the second, so each item was seen twice by each 

respondent. MaxDiff utilities were estimated via HB, and the MaxDiff posterior means were then 

combined with numerous survey questions via canonical correlation. Howard-Harris clustering 
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on the canonical variates produced the final 6-segment solution. There were many moving parts 

here! 

The stepwise search process to build the NBC considered both of the two MaxDiff exercises 

simultaneously, as well as almost all the available survey question variables. Many of the survey 

questions included were ratings on 1 to 5 scales, which were treated as continuous normally-

distributed variables, not binned (an arguably sloppy, but still obviously effective, approach); 

about half those in the final classifiers were this kind of variable. The outcome of the search 

process is summarized in the table below. Note that the full final classifier, as determined by the 

significance-testing cutoff, involves more questions (16) and more MaxDiff tasks (nearly half the 

original total) than we would want to use in practice, although it does achieve about a 70% hit 

rate.
11

 We can cut the number of variables and tasks in half and still get a hit rate (LOO) of 66%. 

The first 5 MaxDiff tasks and 3 survey variables bring us up to 60%, and 4 more survey 

variables add about 6% more. 

Case Study 2: Classification Accuracy Using Both MaxDiffs and Survey Variables 

Classifier 

# Survey 

Vars 

#MD 1 

tasks 

#MD 2 

tasks 

In-Sample L-O-O 

RLH Hits RLH Hits 

NBC, all significant items 16 4 6 0.491 0.725 0.438 0.703 

NBC, cut off sooner 7 2 3 0.414 0.670 0.397 0.660 

NBC, cut much sooner 3 2 3 0.376 0.605 0.366 0.600 

Out of curiosity, we looked at NBCs using only MaxDiff tasks and only survey questions. 

Running them out until the final significance stop, we use 13 MaxDiff tasks but achieve only 

55% hit rates, or 21 survey questions to reach only 57% on LOO hits (61% in-sample). 

Eliminating either big chunk of the original basis variables hurts; we need them both to classify 

well. 

Case Study 2: Classification Accuracy, MaxDiffs Only, Survey Questions Only, vs. Both 

Classifier 

# Survey 

Vars 

#MD 1 

tasks 

#MD 2 

tasks 

In-Sample L-O-O 

RLH Hits RLH Hits 

NBC, all significant items 16 4 6 0.491 0.725 0.438 0.703 

NBC, MaxDiff tasks only 0 7 6 0.315 0.554 0.314 0.551 

NBC, no MaxDiff info 21 0 0 0.346 0.607 0.313 0.574 

The LOO evaluations are noticeably lower than the in-sample ones in this case study, 

reflecting the huge number of available tasks and variables and suggesting that the details of the 

LRT significance testing might in fact be too lenient. 

SUMMARY 

When segments are based on MaxDiff utilities, even if only in part, classifiers are unlikely to 

work well unless they can use MaxDiff results. But, that is not possible with most classification 

                                                 

 
11 After the high rates seen in the first case study, 70% may seem low, but for a 6-segment solution of such complexity, and compared to many 

live commercial studies, it is quite reasonable and acceptable. 
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approaches. With Naïve Bayes Classifiers, however, incorporating MaxDiff tasks in the classifier 

is natural. We are free to use tasks of any desired size in the classifier, regardless of what task 

sizes were in the original study. We do need a search strategy to determine what tasks to use, and 

have presented one such strategy that works well in practice. 

This procedure has key advantages over most of the alternatives that have been proposed. It 

fully accounts for what we know about each original respondent’s likely answers to typing tasks; 

we use the probabilities instead of pretending certainty that the highest-utility item will be best, 

for example. Similarly, there are no assumptions along the lines of “Segment C will always 

choose item A as best.” It treats both parts of the MaxDiff answers as a unified whole, using both 

the best and the worst responses. It uses actual MaxDiff questions (i.e., best and worst) rather 

than requiring a full ranking of all the items in a task. It does not attempt to create pseudo-

utilities to substitute for the real ones. In short, it adheres fully to the fundamental MaxDiff 

multinomial logit model. 

Naïve Bayes Classifiers, with or without MaxDiff, are another tool in the classifier toolbox; 

they can be considered alongside discriminant analysis, multinomial logit, CART, random 

forests, K-nearest neighbors, neural nets and a host of lesser-known (in market research circles) 

others. They are theoretically sound except for the (conditional) independence assumption. But 

they work much better in practice than might be expected, in part because judicious stepwise 

selection avoids inclusion of highly conditionally dependent variables. In machine learning 

circles, there are widespread claims that NBCs outperform other, more complex, options.  

The basic ideas presented here can be extended to general choice models beyond MaxDiff (as 

Komendant 2016 illustrates), although segmentations based on general-purpose discrete choice 

are not as common as ones based on MaxDiff. 

R includes several packages with functions to implement NBCs (e.g, e1071 and klaR), but 

none that understand MaxDiff or implement the necessary stepwise search for tasks to use. 

However, after the original Orme and Johnson (2009) paper was published, Sawtooth Software 

implemented the basic process in a pair of programs designed for in-house consulting use, 

without a nice user interface. Bryan Orme has now offered to make those available, as is, to 

interested parties. 

The Sawtooth Software programs do not use the exact search procedure described here for 

MaxDiff tasks, but achieve the same goal through similar means. The search program accepts 

ordinary survey question variables in addition to the MaxDiff, but the questions to be used must 

be specified in advance and are taken as given; they are not part of the stepwise search. One 

strategy to deal with this is to run a stepwise multiple linear discriminant analysis on the regular 

survey questions, and use its results to select the ones to include in the NBC via the Sawtooth 

Software programs. 
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 David W. Lyon 

APPENDIX —“SMOOTHING” AN NBC 

Naïve Bayes Classifiers can run into problems when a category of one of their variables 

never occurs in a segment. If no one in segment 2 was ever in the West region, for example, 

every respondent in the West will have a zero likelihood for segment 2. No matter how many 

other variables are included, or how strongly they might all point to segment 2 for a respondent 

in the West, that zero gives region an absolute “veto” over that segment for the West. If there are 

many variables, and a number of zeroes amongst them, we might even have to classify a new 

respondent for whom every segment is forced to zero likelihood by one variable or another! 

The fix for this is to ensure a minimum value in every cell. We can add 1.0 to every cell of a 

crosstab of counts before calculating percentages, a procedure known as “Laplace smoothing” 

(not to be confused with “Laplacian smoothing,” which is unrelated). Or, we can add an arbitrary 

amount α, with α typically less than 1 (perhaps 0.5), a generalization known as “Lidstone 

smoothing,” where α = 1 produces Laplace smoothing and α = 0 is no smoothing. Or, we might 

simply raise any zero percentage up to some minimum.  

Anything we do here has a distinct practitioner’s “duct tape” feel to it. However, the Laplace 

and Lidstone “additive smoothing” approaches do at least have a degree of mathematical 

elegance: applying them yields percentages that are the Bayesian posterior mean estimates of the 

percentages under a symmetric Dirichlet prior with parameter α. In effect, they are “shrinkage 

estimators” pulling all percentages toward a weak prior of equal probabilities for all categories of 

a variable.  

Similar problems can occur with continuous variables if an outlier value on one variable 

produces a tiny probability density, and with MaxDiff tasks if an improbable answer is chosen. 

The author has controlled for that by imposing a minimum likelihood of 0.0001 (i.e., 0.01%) for 

all MaxDiff likelihood computations, and the same for all continuous PDFs. 
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TYPING TOOLS IN THE CONTEXT OF CHOICE EXPERIMENTS 

LECH KOMENDANT 
IQS 

INTRODUCTION 

Choice data is a generally acclaimed excellent source for obtaining preference information. 

Especially MaxDiff enjoys the status of being almost the perfect method for preference 

elicitation in segmentation studies. CBC data could provide great segmentation material as well, 

even though usually conjoint studies are run for different purposes. 

In many segmentation projects one of the main deliverables is a typing tool—a short length 

questionnaire that could be used for predicting segment membership outside the main 

segmentation study. Strategies for building such tools in choice based segmentation must 

embrace the fact that every person potentially had been given a different questionnaire. That is 

the reason why some people find it intimidating. But it does not have to be so. 

In this article I will demonstrate that simple principles can help us to build an efficient typing 

questionnaire. And well known classification models can be used for segment prediction even in 

real time classification. 

Building a typing tool for a choice-based segmentation study comes down to 4 interrelated 

parts: 

 Decision on the type and number of questions, 

 Selection of particular questions (feature selection), 

 Selection of the classifying model, and 

 Quality assessment. 

I will elaborate on each of those elements during an analysis of the three basic approaches to 

typing tool construction. Those approaches were meant for MaxDiff-based segmentations but, as 

will be seen, they can also be successfully used in CBC and ACBC segmentations. 

Basic Typing Tools in Choice-Based Segmentations 

I will describe two solutions for a typing tool problem using the MaxDiff data structure as 

examples. Then I will introduce a possible extension to canonical Naïve Bayes approach. Next, I 

will cover conjoint data structure as well. Three basic options are as follows: 

Option 1: Pairwise classifier as suggested by Thomas Eagle in 2012 on the Sawtooth 

Software LinkedIn group—this option lends itself to numerous implementations. 

Option 2: Extensive regression search suggested by Kevin Lattery in 2012 on the 

Sawtooth Software LinkedIn group. 

Option 3: Naïve Bayes + greedy search classifier tailored for MaxDiff (Orme & 

Johnson—Marketing Research 2009). 

Options 2 and 3 represent specific combinations of the predictive model and the feature 

selection algorithm as used by different researchers. Of course, parts of those models can be 
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replaced to a certain degree as we will see in the next part, namely a review of their classification 

efficiency. 

PAIRWISE TYPING TOOL 

Let’s assume that we have run a simple MaxDiff study on the characteristics driving 

preferences for muffins. We used 6 items: fluffiness, moisture, flavor, crust, taste, color. We ran a 

clustering and got 2 segments: gourmands and aesthetes. 

After HB estimation, a sample of our data will look like Table1: 

Table 1 

ID fluffiness  moisture  flavor  crust  taste  color Segment 

1 3.46 -2.09 4.28 2.42 -0.32 -0.41 1 

2 2.05 -3.94 -0.97 0.89 -0.19 1.12 2 

3 2.85 -3.53 -1.85 1.98 -0.34 0.13 1 

4 1.19 -4.26 -1.34 1.50 0.48 -1.12 1 

5 0.85 -4.15 -1.52 3.06 0.99 2.01 2 

The question format for a “Pairwise typing tool” is a Pairwise trade-off using the wording of 

the original question. Firstly, we have to identify which pairs work best for our tasks. To do this 

we put together all possible pairs of utilities (in our example we would only have 15 such pairs). 

For every person in each pair we decide using the First Choice rule the winning item: 

Table 2 

pair 1 pair 2 pair 3 etc. 

fluffiness  moisture  fluffiness flavor  fluffiness crust  etc. 

3.46 -2.09 3.46 4.28 3.46 2.42 etc. 

2.05 -3.94 2.05 -0.97 2.05 0.89 etc. 

2.85 -3.53 2.85 -1.85 2.85 1.98 etc. 

1.19 -4.26 1.19 -1.34 1.19 1.50 etc. 

0.85 -4.15 0.85 -1.52 0.85 3.06 etc. 

Next, we take each pair and make an indicator variable from it. After adding a segment 

membership flag (Table 3), it becomes our dataset on which we could run any possible classifier 
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with any possible feature selection algorithm. I will not go into classifier and feature selection 

choice here. Later on, I will discuss some possible approaches. After selecting features, we 

should have a list of pairs which serves in our optimal classifier. It is based on those pairs that we 

will build our typing questionnaire. 

Table 3 

Pair 1 pair 2 pair 3 
pair 4 

etc. 
Segment 

1 2 1 etc. 1 

1 1 1 etc. 2 

1 1 1 etc. 1 

1 1 2 etc. 1 

1 1 2 etc. 2 

REGRESSION USING RANKINGS 

Sometimes we might decide that using pairs is not efficient enough—based on the general 

MaxDiff experiments we know that using larger sets of trade-offs offers us more information and 

greater efficiency. We can use a very similar approach to the one given above to build a tool 

based on triplets, quads, quints, and so on. The only difference with the larger sets is that we do 

not build indicators of choice, but use sets of indicators of ranking instead (Tables 4 and 5). In 

our questionnaire, we can either use sets of rankings or best-worst exercises. 

Table 4 

triplet 1 triplet 2 etc. 

Fluffiness  moisture  flavor  fluffiness  moisture  crust  etc. 

3.46 -2.09 4.28 3.46 -2.09 2.42 etc. 

2.05 -3.94 -0.97 2.05 -3.94 0.89 etc. 

2.85 -3.53 -1.85 2.85 -3.53 1.98 etc. 

1.19 -4.26 -1.34 1.19 -4.26 1.50 etc. 

0.85 -4.15 -1.52 0.85 -4.15 3.06 etc. 
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Table 5 

triplet 1 triplet 2 etc. Segment 

fluffiness  moisture  flavor  fluffiness  moisture  crust  etc.   

2 1 3 3 1 2 etc. 1 

3 1 2 3 1 2 etc. 2 

3 1 2 3 1 2 etc. 1 

3 1 2 2 1 3 etc. 1 

3 1 2 2 1 3 etc. 2 

The original approach, that Kevin Lattery suggested, used the stepwise algorithm with an 

exhaustive search on each step and logistic regression as classifier. That means that we have to: 

1. Build all possible 1 triplet models, 

2. Choose the best one on some criterion (e.g., minimal deviance), 

3. Build all 2-triplets models with the first triplet set from the previous step, 

4. Choose the best 2-triplets model. And so on. 

For our simple 6-attributes study only 20 regressions are required for each step. But as the 

number of items grows, the number of models grows very fast as well. Given 20 items, 1,140 

triplet regressions are required for each step. Except for the small problems, making all the 

required computations consumes a lot of time. 

ADAPTIVE NAÏVE BAYES FOR MAXDIFF 

The typing tools we use are usually static—i.e., all people are given the same questions/ 

exercises and are classified according to the same model. On the other hand, in a “conjoint 

community,” we are used to the notion of adaptiveness of questionnaires as a way to provide 

better results in a shorter time (and possibly a better experience for our respondents). The same 

premises stand behind an idea of the adaptive Naïve Bayes Classifier. 

The concept is very simple: let us give a respondent a very short set of exercises to assess his 

vague segment membership. Having done that, we can proceed with giving him only exercises 

which probe his most probable segments. As this adaptive step is beyond what Sawtooth 

Software NB classifier does, we have to address certain issues at each step. 

1. We have to use an adaptive questionnaire with real time computation of membership 

probabilities. It means that our survey software has to have this capability. 

2. The preliminary part—which is the same for each person—should be efficient and 

unbiased. What this means is that we should optimize the model to have high overall 

accuracy and minimal differences between accuracies for segments. 

3. The feature selection problem is “branched”—optimally we want to know which sets to 

show basing on both the probabilities of segment membership and the questions asked. It 

means that we have to prepare optimal questionnaires of a given length for many 

situations. Alternatively, we could use a simpler filtering strategy—e.g., choosing several 
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sets which differentiate the probability of the best-worst choices in the given pair of 

segments to the greatest extent. 

4. The previous point becomes more complicated if we decide that we want to probe more 

than two segments—which could be a good idea if we have obtained many segments and 

possibly flat probabilities after the preliminary part. 

From the perspective of the Naïve Bayes MaxDiff typing tool, the classification itself is 

straightforward. All we need to do is combine the preliminary and adaptive parts and compute 

likelihoods as with the use of the standard tool. 

EXTENSION FOR CBC STUDIES 

Any of the above described tools can be used for typing CBC-based segmentation as well. 

One difference is, needless to say, the format of the questions—here they constitute discrete 

choices between profiles. The other is much more important though, namely it is the way of 

arriving at our optimal questionnaire. 

In the conjoint HB data matrix we have utilities for every level of every attribute, but we will 

be showing full profiles to our respondents. The obvious solution would be to build all possible 

profiles from all of the attributes we have at our disposal, and then to proceed as if they were 

MaxDiff items. Unfortunately, it will only work for the simplest conjoint experiments. A Brand-

Price-Pack study with 4 brands, 3 pack sizes and 5 price levels translates into 60 possible 

profiles. This is doable with the Pairwise classifier and Naïve Bayes (1,770 pairs). It probably 

will not be possible with triplet Regression on Ranking approach since there are 34,220 possible 

triplets of the full profiles. And those numbers rise very quickly making an all possible profiles 

strategy unfeasible in general. 

For the Naïve Bayes tool we can leverage the strategy of greedy search. We simply add an 

additional layer to the search. We improve our randomly composed questionnaire swapping: 

Attribute levels 

 In all attributes 

  In all profiles 

  In all sets 

The criterion for improvement is the same, the classification model is also the same as for 

MaxDiff. 

The same selection procedure can be used with the pairwise typing tool and the Regression 

on Rankings typing tool. Otherwise, you can pre-filter attributes/levels and choose those most 

discriminating of your segments and then use them to build a subset of possible profiles. 

TYPING TOOLS ACCURACY REVIEW 

General Notes 

This section is devoted to the comparison of three specific approaches to building a typing 

tool for choice-based segmentation. Two of those approaches are certain combinations of feature 

selection and classification models. I must make a note of the obvious limitation of this review: I 

CBC specific part of the loop 
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am not going to assess the general usefulness of certain classification models and feature 

selection algorithms in choice data. What is also obvious is that some peculiarities of various 

datasets may lead to situations favoring different methods. That said, all MD and conjoint data 

share some attributes which can lead to a preference of some methods over others. Therefore, the 

core questions in this part are: 1) Are all those methods useful for typing tool construction? 2) 

Should we prefer some of them? If so, always or only in some cases? 

Below are the specifics of implementation of each approach: 

Standard and Adaptive Naïve Bayes 

Standard—Johnson & Orme’s (2009) greedy selection with Naïve Bayes classifier. 20 

replicates to avoid local maxima. 

Adaptive—based on above, 2 last item sets adaptive. Adaptive sets based on simple filter 

maximizing differences between probabilities for 2 most probable segments from preliminary 

exercises. 

Regression on Rankings 

Full rankings as input. Multinomial regression as a building block. Feature selection: forward 

stepwise algorithm with exhaustive search in all possible additions on each step. Feature 

selection outside the cross-validation. 

Pairwise Classifier 

Feature selection with recursive feature elimination based on boosted trees. 

Three different classifiers: simple classification tree, random forest, linear discriminant 

analysis. 

To provide a measure of classification efficiency, all the results were compared using average 

accuracy of classification across segments. To assure unbiased accuracy, I used 7-fold cross 

validation.
1
 

Before the model building and testing process, raw utilities were disturbed with a Gumbel 

error of the form: -ln(-ln(X)) where X is uniform random variable. The main purpose of this step 

was to provide more real life accuracy assessment. If this step was omitted, the accuracy levels 

would be much too optimistic. All approaches would suffer from it in the same degree, although 

I have not put this assumption to the test. 

MaxDiff 

The first and the most important type of data for our study should be MaxDiff. I decided to 

use three very different datasets to check the behavior of each strategy of building a typing tool: 

                                                 

 
1 The main dataset was divided into 7 parts and then the whole model building was done leaving out one of the parts. This left-out part was used 

for testing accuracy. 
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 20 items, 5 segment solution, N = 1081 which could be considered an average MaxDiff-

based segmentation. The number of items is modest and segments are quite well 

separated. 

 Extremely sparse data with 36 items and 5 segments, N = 700. Each of the items was 

shown only once during main study resulting in fuzzy borders between segments and 

potentially lots of uncertainty for classification. 

 4 very well separated segments on 12 items, N = 500. 

To provide a more condensed view on the results, accuracy was averaged for all datasets. 

This decision was made after examining the results separately for the potential interactions 

between classifier accuracy and data conditions—none were found. The main difference 

stemmed from cluster separation and resulted with up or down shifts in accuracy for all 

classifiers. 

Results 

The results presented below cover a comparison of typing tools built on pairs (Chart 1), 

triplets and quadruplets (Chart 2). The last two are examined only with Naïve Bayes and 

Regression on Rankings. For clarity, adaptive Naïve Bayes is compared only with standard 

Naïve Bayes (Chart 3). 

Chart 1 
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Chart 2 

 

The results clearly demonstrate that starting from even as little as 2 pairs we get a large gain 

in classification power compared to the baseline of random guesses. We also boost accuracy with 

every additional question, but those gains diminish as we approach longer questionnaires. 

Naïve Bayes and Regression on Rankings are best for any number of exercises explored and 

are very close to each other. The latter improves with the length of the questionnaire. 

With pairwise classifiers we clearly depend on the classification algorithm. Random forest 

performs nearly as well as the winners, while a simple classification tree performs poorly 

(starting low and getting the smallest gains). 

When we compare results for triads and quadruples exercises, the top position of Regression 

on Rankings is clear. Its gains are also much higher than in Naïve Bayes when more items are 

added to the set. 

There are two caveats regarding the dominance of Regression on Rankings. First—this is the 

only tool using exhaustive search at each step of building a typing tool. For reasons of speed, 

feature selection was not included the cross-validation loop, so we can have legitimate concerns 

about possible biasing on the feature selection step. The second issue is that for quadruples we 

assumed a full ranking of all alternatives (compared to the best-worst exercise). In the case of 

live respondents, this could be much harder than B-W or a best-only question, and results in 

larger response error then the latter options. In this work, we assumed a uniform error for all 

situations which is, of course, a simplification—possibly biasing up results for larger sets and 

especially for quads with ranking. 
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PROBING ADAPTIVE NB CLASSIFIER 

Given the work involved in reprogramming the Naïve Bayes classifier and adaptive 

questionnaire, results of the adaptive part were quite disappointing (Chart 3). We only got 1% 

over standard NB. Such gain could be an interesting route for some machine learning 

competition, but in practice, it is immaterial. Of course, we could go into details of our 

implementation and improve some elements of this algorithm such as the criteria for optimal 

adaptive questions. 

Chart 3 

 

CLASSIFYING CBC-BASED SEGMENTATION 

The exploration of classification accuracy of typing tools derived by examined methods was 

done on one data set only, which came from a quite standard brand-price-pack study. The 

specifics were as follows: 

 4 attributes (4x4x4x2 levels), 3 segment solution, 600 respondents. The segmentation 

itself was done with CCEA on zero-centered HB utilities. 

Since the main goal was to explore the adaptation of MaxDiff tailored algorithm to CBC data 

we experimented only with classifiers using pairs in discrete choice exercises, assuming that if it 

works with pairs it will work with larger datasets. That combined with a modest number of 

attributes and levels allowed us to follow the “all possible profiles” strategy for pairwise and 

regression algorithms. We got 128 profiles expanding into 8,128 pairs. As mentioned earlier, the 

Naïve Bayes algorithm added depth into the greedy search loop. 

40% 

50% 

60% 

70% 

2 3 4 5 6 7 8 

A
ve

ra
ge

 h
it

 r
at

e 

Number of pairs 

standard NB 

NB with adaptive part 



192 

 

Strikingly, the entire pattern of results is very similar to one observed for pairwise 

classification MaxDiff data. Classification of this particular segmentation proved to be quite 

simple with only one pair more than doubling the random guess. Regression on Ranking won 

over all other approaches with more than 3 pairs. Also, interestingly, HB was the winner with 

shorter questionnaires. This last observation leads to the conclusion that the NB approach can 

have a tendency for local maxima which is more pronounced with more exercises. The greedy 

search algorithm most likely has a problem with finding the global maximum when the space of 

possible solutions is very large. Running more random starts or looping the search several times 

for each random start could probably improve its results. 

ACBC AND USING BYO EXERCISES IN TYPING TOOLS 

For ACBC-based segmentation we can use standard CBC-like choice questions (like those in 

the ACBC tournament). Elicitation of the optimal classifier will be conducted in the same way as 

for standard CBC. Of course, most ACBC problems are much more complex, so some 

prescreening of attributes for approaches other than NB is a must. Any search itself has to take a 

consideration of prohibitions, conditional relationships and summed price, which are quite 

common in ACBC studies. 

What brings my exploration to the ACBC-based segmentation is a possibility of using a BYO 

question—which can be used in any typing tool but in ACBCs they are part of the estimation of 

utilities, so it seems more natural. A BYO question is generally liked by respondents, so it would 

be a bonus to break the routine of repetitive discrete choice questions and give them a more 

enjoyable task. As regards classification, it is expanded in the same way as for the standard 

estimation routine (to as many sets as there are attributes included in this question). 
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The study used here: 

 11 attributes with 6 variables in BYO part, 4 segments, 1040 respondents 

For simplicity, only NB with pairs was used. The BYO exercise was static and included 

all 6 variables used in the original study for this part. 

Chart 4 

 

It turns out (Chart 4) that the BYO exercise was of little value except for the shortest 

questionnaires. This result is disappointing, but we have to take one thing into consideration 

before we exclude the possibility of using BYO for typing tool building. 

As mentioned above, the original BYO task had only ½ of all conjoint attributes. What is 

more, those included were not the most important discriminators of segments. We could 

hypothesize that the impact of BYO could be greater if BYO attributes were more important in 

segmentation. 

CONCLUSIONS 

We found that each one of the explored options can work well for choice-based segmentation 

(MaxDiff-based, CBC-based alike). The “complete” approaches—joining specific feature 

selection and a classification algorithm worked best. Naïve Bayes with greedy search was 

tailored by its proposers (Orme & Johnson 2009) to work along the logic of MaxDiff. The greedy 

search can be seen as not optimal with more complicated problems—segmentations where the 

classifier must have many questions. However, it is the price to pay for excellent scalability—it 

works fast enough without any modifications for very large sets of items (and CBCs). This 

cannot be said about Regression on Rankings whose great results rely on stepwise exhaustive 

search. 
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On the other hand, logistic regression does not assume the features’ (subsequent B-W 

answers) conditional independence. Sometimes the segmentation by a latent class will give us 

segments which comply with this assumption, but much more often ones that do not. In such 

cases Regression on Ranking will stand a considerable chance of providing a better model. This 

could also be one of the reasons why NB loses against regression with more questions in the 

typing tool. Of course, we could remove this assumption from NB but it would no longer be 

naïve and simple. 

The pairwise classifier is more of an open framework than a ready solution. Given the right 

choice of the underlying classifier and algorithm for question sets it can produce excellent 

results. One of such choices is the pairing of a random forest with recursive feature elimination. 

But the main advantage of this approach is its simplicity—we can employ it with very basic 

analytical toolset. Just run some ranking of discrimination power of the items, build all the pairs, 

run a stepwise logistic regression or discriminant analysis and we arrive at a decent typing tool. 

In less than an hour and with no programming! 

As to numbers, more is better, needless to say. We still have to consider the burden of longer 

questionnaires and/or more items in each exercise. But on average we can delete one exercise 

from a typing questionnaire per one added item in set. The gain is more pronounced when we 

have more exercises. Of course, each data set is different and accuracy increments will diminish 

at a different rate, so the only way to find our practical optimum is by experiment. 
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SUMMARY 

Build-Your-Own (BYO) questions are quite common in CBC research. They are useful as a 

training/education tool prior to conjoint questions. Rather than throwing the BYO data away or 

encoding the responses into the choice data, BYO responses can be included as covariates in the 

upper-level HB model. 

Covariates are most useful if they are related to attribute preferences. BYO questions on the 

conjoint attributes fit that requirement perfectly. The use of BYO as covariates adds nuanced, 

subtle, yet meaningful variation to the respondents’ part-worth utilities; it captures greater 

heterogeneity and brings out the “full flavour” of HB. 

Does the use of BYO questions as covariates improve the predictive validity of the models? 

That depends on the sparsity of the data and the amount of heterogeneity (disagreement across 

respondents). The sparser the data, the more likely prediction can be improved. At the same time, 

the more disagreement, the more opportunity there is for predictive gain by employing BYO 

questions as covariates. 

The use of BYO questions in the upper-level HB model also provides a ready-made solution 

for generalization to future samples. The BYO questions themselves become the “golden” 

questions that can be quickly administered to new respondents—allowing researchers to apply 

the HB model to the new sample without the conjoint exercise. 

1. INTRODUCTION 

1.1 BYO 

Build-Your-Own (BYO) exercises have long been a favourite tool for product development 

research. Product features are chosen one at a time, but these choices are made in the context of 

the full product combinations. The additional cost associated with advanced features can also be 

included as part of the exercise. 

Sawtooth Software’s Adaptive Choice-Based Conjoint (ACBC) uses BYO exercises as the 

basis for near neighbor configurations presented in the conjoint tasks. These data are then 

included as additional choice tasks in model estimation. 

BYO exercises can also be used for respondent education. In earlier research, Tang et al. 

(2009) showed that when they are used as an introduction to a discrete choice exercise, BYO 

questions are useful in familiarizing respondents with the product features being tested and 

focusing each respondent’s attention on his most salient features. They can also potentially 

impact derived price sensitivity in the subsequent conjoint exercise. 
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1.2 The Upper-Level Model 

While useful for educating respondents, the BYO data itself is typically not used for 

anything. The question is, could it be? One option would be to code the BYO answers as 

additional choice tasks, as in ACBC. Alternatively, this research set out to determine if BYO data 

could be used effectively in the upper-level HB model. 

The upper model is what makes Hierarchical Bayes hierarchical. The lower model is what 

most researchers are familiar with, that is, the individual-level utilities, or the beta estimates. The 

means of these utilities are determined by a multivariate regression model—the “upper model.” 

In the simplest case, one with no covariates, a single intercept, is used to model the mean. 

This is an “uninformative” prior, one that assumes all respondents have similar preferences. 

Adding covariates to the upper model enables it to estimate different upper-level means given the 

covariate pattern. 

For example, if we include gender in the upper model, we are making the assumption that 

males and females have different preferences, that the means of the betas are different for each 

gender. These differences will appear in the alpha. To use an analogy, an HB model without 

covariates is an everyday meal. It is good and nutritious. However, if you want a really tasty 

meal, you will want something more elaborate. The covariates in the upper model are what give 

HB its full flavour. 

1.3 Previous Research 

It is important to consider which variables should be used as covariates. Upper-level 

variables can have an impact on lower-level parameters only if they are strongly correlated with 

the attribute preferences or purchasing behaviors being modeled. They are also more impactful 

with sparse data (Eagle 2016). However, it is not a good idea to throw everything into the upper 

model in the hopes of finding something useful. Spurious covariates can hurt the model. Badly 

fitting covariates can adversely affect lower-level parameters and overfitting can influence 

results. 

Other studies have looked at the use of covariates in the upper model. McCullough (2014), 

Sentis & Geller (2010), Kurz & Binner (2010), all produced similar results. McCullough 

summarized them succinctly, saying the purpose of covariates in the upper level of the HB model 

is probably not to improve model performance, as measured by hit rates, MAE, etc. The purpose 

probably is to better describe or understand respondent heterogeneity. 

It is important to note that in all three studies referenced here, potential covariates were used 

one at a time. McCullough (2014) was the only one to use BYO data—brand and price—but 

again, one variable at a time. Sentis & Geller (2010) used in-sample statistics to compare model 

performance based on holdout tasks. Kurz & Binner (2010) used both in-sample statistics and 

real market data. McCullough (2014) based his model performance comparisons on holdout 

sample, including hit rates. 

1.4 Prediction in Holdout Sample 

Evaluating model performance using the holdout sample is generally preferred over that of 

using “in-sample” holdout tasks (Eagle 2016). However, there are many different ways one can 

generalize from a Hierarchical Bayes model (Pachali et al. 2014). Perhaps the more theoretically 
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“correct” way is through the HB draws. However, for most practitioners, that’s often difficult to 

do. For our purposes, we generalized the results of our HB models through the posterior means. 

That is, we used the posterior alpha draws, calculated the average across the draws to create 

posterior means. We then run the holdout sample data through these means to create a pseudo 

“beta” like utility estimate for each respondent in the holdout sample. We use these pseudo 

“beta” values to make predictions for each respondent in the holdout sample. 

2. OBJECTIVES, DATA & RESULTS 

The purpose of this research was to determine the impact of BYO data specifically on 

respondent heterogeneity and on hit rates. We wanted to know, can BYO data bring out flavour? 

To this end, we compared models with BYO covariates to models with no covariates, as well as 

to those with other more traditional covariates, such as demographic data. 

We also wanted to know if the number of choice tasks is important. Does it make a difference 

if we have sparse data? 

And finally, how should we prioritize when we have too much BYO information realistically 

to run an HB model quickly. Is it better to pick the variables that matter, or to use segments 

derived from the BYO data? 

To answer these questions, we looked at three real world studies where BYO data was 

collected as part of an education section prior to the conjoint exercise: 1. a MaxDiff concept test; 

2. a CBC study about Congressional politics and; 3. a CBC study about women’s dating 

preferences. 

2.1 Study 1: MaxDiff Concept Test 

The first study we looked at was an Adaptive MaxDiff exercise involving 10 concepts, with 

binary anchoring to none to indicate purchase. An adaptive MaxDiff exercise is simply a 

MaxDiff exercise repeated in stages. Items chosen as worst are dropped off in each stage, and the 

later stages focus on the more preferred items. 

 

For example, here in stage one, nine of the ten concepts were randomized to three tasks, each 

with three options. Respondents were asked to choose the one they preferred the most and the 

one they preferred the least in each task. The least preferred concept from each task was 

discarded. In stage two, the remaining six concepts, plus the one not included in stage one (total 

seven concepts) were shown as three paired comparisons. The one concept not shown in the 

three pairs in stage two was carried forward to stage three. The three concepts not chosen as 

preferred in the paired comparisons were dropped. In stage three, the four remaining concepts 

(three preferred concepts from stage two and one concept carried forward) were ranked based on 

the respondent’s order of preference. 
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Respondents were introduced to the ten concepts in an education section prior to completing 

the MaxDiff exercise. As in many concept tests, each concept was given a descriptive name to 

help identify it in the MaxDiff exercise. However, it was important to be sure respondents had 

read and understood what each concept was about before completing the MaxDiff tasks. This 

was accomplished by showing the concepts one at a time and asking respondents whether or not 

they were interested in each one. 

From this simple exercise we obtained a set of binary variables—interested or not—for the 

ten concepts. Normally this data would not be used for anything—it was simply a means to 

engage respondents in the concept descriptions, to force them to read and think about them. 

However, we wondered, could this throw-away data be useful? Could it be used to improve the 

model? 

To answer this question, we first ran a simple model with no covariates and plotted the 

simulated purchase intent for each concept. In Figure 1-1 below, the “Total” on each line 

indicates the mean purchase intent. The “Yes” and “No” points show the means for two groups—

those who expressed interest in the concept in the education section, and those who did not. 

Figure 1-1 

 

A casual comment from the client when he saw this chart was, “Oh, I was expecting to see 

greater differences between the groups, based on their interest.” And while there were 

differences, they were not as striking as the client expected. Could this be because we assumed in 

the upper model that all the respondents come from a single, uninformative prior? 

Another way to see the differences between these two groups is to look at the distributions of 

the betas. Figure 1-2 below shows the distribution of the beta for one of the concepts, Concept D, 

grouped by initial interest in it. While there is good separation between the two groups, F=259 

with (1, 1500) degrees of freedom, there is also a large overlap. 
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Figure 1-2 

 

Figure 1-3 compares this simple model where we have no covariates to one that includes all 

ten BYO variables in the upper model. Again, looking at the distributions of the beta for Concept 

D, the impact is quite clear: BYO covariates allow us to more effectively separate those who are 

interested in Concept D, versus those who are not. The F statistics also support this conclusion, 

increasing from 259 in the model with no covariates to 881 in the model with covariates, both 

with (1,1500) degrees of freedom. 

Figure 1-3 

 

We see this pattern for all ten concepts in the table of differences in F-statistics in Figure 1-7. 

The result of including the BYO data in the upper model is more effective separation. The 

separation is meaningful—it is where you expect it to be—and it leads to higher overall variance 

of the betas. 
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Another way to show this increase in overall variance in the model with BYO covariates is in 

Figure 1-4, which plots the summary statistics for the inverse logit of the beta for each concept, 

and for each model. The inverse logit transformation was used to deal with the scale factor issue 

that is inherent in the logit estimate. 
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It is well known that the raw beta utility score from the HB process is tied to a scale 

parameter; the better the model fit, the larger the magnitude of the estimate. The transformed 

betas are much easier to work with, having a range of between 0 and 1. 

Figure 1-4 

 

The top half of the chart clearly shows that the means of the betas do not change when BYO 

covariates are included. However, as a result of better separation in the distributions of the betas, 

there is an increase in the variability across individual respondent’s beta estimates, which is 

evident in the standard deviation plot in the lower half of Figure 1-4. This increase in variance is 

a reflection of the heightened ability to capture individual heterogeneity using BYO covariates, 

compared to no covariates. 

While we will use this increase in variance of the betas as an indicator for meaningful 

separation throughout this paper, the best way to check for it is to plot out the distributions of the 

betas. Greater variance is not enough in itself—there needs to be real separation, not just greater 

variability—and the separation needs to be meaningful. 

Now we come back to our client, and his initial comment about the differences in mean 

purchase intent for the concepts, based on interest, not being as great as he expected. When we 

add the BYO data to the upper model we see a much more striking picture than what we saw 

initially (Figure 1-5). 
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Figure 1-5 

 

While the mean for each concept remains the same as it was in the initial model with no 

covariates, we now see greater contrast between respondents who are inherently interested in 

each concept, versus those who are not. Using the BYO data in the upper model adds nuance—

subtle, yet meaningful variation in the betas. The results are more palatable for the client, and 

easier for him to understand. It adds flavour to our HB model. 

One of the differences between this work and previous research into upper model covariates 

is that here we have introduced several variables into the upper model simultaneously. One 

concern with this approach is the possibility of overfitting. Sentis & Geller (2010) demonstrated 

evidence of overfitting in the increased separation between analysis groups by introducing a 

randomly scrambled segment variable in the upper model. Along this same line of thinking, we 

looked at whether initial interest in an unrelated concept, Concept F, would impact the utility for 

Concept D. Separation in the distribution of the beta for concept D for those interested/not 

interested in Concept F would be evidence of overfitting; it would indicate separation that is not 

meaningful. However, if there is no overfitting, the distributions should overlap completely. 
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Figure 1-6 

 

Figure 1-6 shows the distribution of the Concept D beta as before, but this time grouped 

based on interest in Concept F. There is no separation between those interested in Concept F and 

those not interested. The distributions overlap completely in the model without covariates and 

also in the model with BYO covariates. This is as it should be, since we would not expect 

interest in an unrelated concept to impact preference for Concept D. Additionally, the F statistics 

are very small, again with (1,1500) degrees of freedom, and do not effectively change with the 

addition of covariates. There is no evidence of overfitting despite the inclusion of the ten BYO 

covariates. 

Figure 1-7 

 

We found the same pattern for all the concepts in Figure 1-7. Separation occurs only where it 

should, and is meaningful. 
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2.2 Study 2: Congressional Politics 

Our second study is a dataset used in Tang & Grenville (2010). It used Choice-Based 

Conjoint to understand how respondents vote based on political policy platforms. Fieldwork was 

conducted in 2010 and included a BYO section as an introduction to the CBC, asking 

respondents to describe their ideal candidate’s policy platform. 

The CBC design included factors for five public policy areas: health care, foreign affairs, size 

of government, environment and education. Each had two levels describing the traditional 

Democratic and Republican party positions, as well as a third “no mention” level. A sixth factor 

described the federal tax implications of the policy platform, as below: 

 

The BYO questions were based on the five policy areas only. The questionnaire also included 

a holdout task. Other data collected in the survey included the most important issue facing the 

US today, performance of the President, Congressional approval, voting intent, past (2008) vote, 

party affiliation, and political leaning (conservative vs. liberal). 

The sample was divided into four cells. Cell A1 had 500 respondents, and each saw six 

choice tasks with three options. Cell B had a similar number of respondents (n=504) and 15 

choice tasks, each with three options. A1 and B were used as calibration samples. Cell A2 had 

712 respondents, and was set up the same way as Cell A1. Cell C had 308 respondents, and each 

saw 15 tasks with five options. A2 and C were used as holdout samples. 

We ran three versions of HB models for each of Cell A1 and B: one with no covariates; one 

with “demographic” variables—political leaning and Congressional approval—as covariates; and 

one with the BYO data—five public policy areas—as covariates. 

As we did with the MaxDiff example, we plotted the summary statistics for the inverse logit 

of the betas for each cell and each model, as shown in Figure 2-1. 
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Figure 2-1 

 

Again, the covariates did not affect the mean of the betas, but they did help to improve the 

variability among respondents for Cell A1, where the data is sparse. The impact on Cell B, where 

there were more choice tasks, was considerably less. 

As before, we are using the increase in variability as a shorthand indicator for “meaningful 

separation.” Adding covariates does not automatically increase variability/RLH/scale factor, as 

we see in Cell B. Covariates are only useful where it matters, that is, where the data is sparse and 

the covariates are meaningful. Notably, in Cell A1, where the impact of covariates is greater, the 

BYO covariates had a greater impact on variability than the demographic covariates. 

We designed a holdout task with balanced alternatives for this study that was identical for all 

cells. It included traditional Democratic and Republican party positions, both moderate and more 

extreme. Respondents were asked to choose their preferred candidate out of the four options 

presented, and then asked how likely they would be to vote for that candidate in a Congressional 

election. 
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Comparing in-sample hit rates on the holdout task for each model and each cell, we saw 

slight improvement for Cell A1, where the data was sparse, but little or no improvement for Cell 

B, where we had more choice tasks. 

 

However, when we looked at the results for holdout sample (Cell A2 and C), the 

improvement in holdout task hit rates were more dramatic. Here the addition of demographic 

covariates improved hit rates substantially. And BYO data offered even more improvement. 

  

No 

Covariates

Demo

Covariates

BYO 

Covariates

52% 53% 56%

57% 58% 58%

54% 55% 57%

54% 54% 55%

Hit Rate Holdout Task (Dual Response) In Sample

n=~500

Preference 

Only

Cell A1 (6 choice tasks)

Cell B (15 choice tasks)

Preference 

+ "No buy"

Cell A1 (6 choice tasks)

Cell B (15 choice tasks)
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It is also interesting to note that the model developed using less data (Cell A1, 6 tasks) did 

slightly better than the model developed using more data (Cell B, 15 tasks) when they were 

generalized to the holdout sample. 

However, the hit rate in holdout sample was still less than that of the in-sample hit rates for 

the constant holdout task, suggesting that despite the improvement brought on by the upper 

model, there was still some way to go compared to the in-sample prediction due to the 

contribution of the lower model itself. 

2.3 Study 3: Dating 

The dating study used in Tang & Grenville (2013), was fielded in 2013, to approximately 300 

respondents in each of Canada and the United States, and looked at women’s dating preferences. 

There were nine factors in the design, and nine corresponding BYO questions, shown below. 

 

No 

Covariates

Demo

Covariates

BYO 

Covariates

37% 48% 55%

34% 41% 51%

32% 39% 43%

36% 40% 46%

Upper model developed for Cell A1 

(In-sample data)

Hit Rate Holdout Task (Dual Response) Holdout Sample

Cell A2 Holdout Sample

Cell C 

Cell A2 Holdout Sample

Cell C 

Preference 

Only

Preference 

+ "No buy"

No 

Covariates

Demo

Covariates

BYO 

Covariates

34% 45% 55%

33% 40% 50%

31% 37% 42%

35% 38% 42%Cell C 

Hit Rate Holdout Task (Dual Response) Holdout Sample

Upper model developed for Cell B

Preference 

Only

Cell A2 Holdout Sample

Preference 

+ "No buy"

Cell C 

Cell A2 Holdout Sample

Attribute: Level: Level: Level: Level: Level: Notes:

Age Much older than me, A bit older than me About the same age A bit younger than me Much younger than me

Height Much taller than me A little taller than me Same height as me Shorter than me

Big & Cuddly Big & Muscly Athletic & Sporty Lean & Fit

images used at the 

BYO question only, 

not in conjoint task

Career
Driven to succeed and make 

money

Works hard, but with a good 

work/life balance

Has a job, but it's only to pay 

the bills

Prefers to find work when 

he needs it

Activity Exercise fanatic Active, but doesn't overdo it 
Prefers day to day life over 

exercise

Attitude towards 

Family/Kids
Happy as a couple Wants a few kids Wants a large family

Personality Reliable & Practical Funny & Playful Sensitive & Empathetic Serious & Determined Passionate & Spontaneous

Flower Scale
Flowers, even when you are 

not expecting

Flowers for the important 

occasions

Flowers only when he’s 

saying sorry
"What are flowers?"

Pretty low Low middle Middle High middle Really high

Under $50,000 $50,000 to $79,999 $80,000 to $119,999 $120,000 to $159,999 $160,000 or more Australia

Under $30,000 $30,000 to $49,999 $50,000 to $99,999 $100,000 to $149,999 $150,000 or more US/Canada

Under £15,000 £15,000 – £39,999 £40,000 – £59,999 £60,000 – £99,999 £100,000 or more UK

Body Type

Yearly Income
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Respondents completed eight dual response CBC tasks, each with three alternatives. The 

research showed that women in the two countries are largely similar in their preferences, with 

US women slightly more likely to date their preferred alternative. 

As there was no designed holdout task for this study, we randomly selected one of the eight 

choice tasks from each respondent to use as the holdout task. Additionally, since the two 

countries are largely similar, and arguably can be treated as being in the same market, we also 

used the US data as holdout sample to demonstrate the idea of generalizing the HB results to the 

market. 

We ran four versions of the model, with widely differing times to complete the HB runs. The 

first model, with no covariates, took seven minutes. The second model, using all nine BYO 

questions as covariates, took 58 hours. At this point it became evident that we needed a more 

efficient way to include this much BYO data in the upper model. 

The first alternative was to use six key BYO variables as covariates. These key questions 

were where we saw the most differentiation across the levels. They were selected using a simple 

counting analysis showing how often each level was chosen in each factor, and identifying where 

the largest differences appeared between the most and the least preferred levels. This model took 

six hours to run—quite a bit better than 58 hours, but still a fairly long run time. 

As a final alternative, we ran a latent class segmentation using all the BYO questions. Twelve 

clusters were derived and used as covariates in the upper model. This version took 65 minutes to 

run. 

Figure 3-1 compares the standard deviation of the inverse logit of the betas for each of the 

four models. Again we see increased variance for the models with BYO covariates, compared to 

no covariates. The model with all the BYO covariates has the most variability, and the model 

with the BYO clusters has the least of the three BYO versions. However, as discussed, an 

important trade-off must be made between “flavour” (variability) and efficiency (run time). 

Figure 3-1 
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Turning to model prediction, we see a different pattern from the Congressional politics study. 

We found virtually no improvement in hit rates in the models where BYO data is used. However, 

the hit rates for the holdout sample are comparable to that for the in-sample rates. 

 

 

Since there was no purposefully designed holdout task in this study, one of the eight CBC 

tasks was randomly selected in the Canadian sample to act as the holdout task in order to 

evaluate the in-sample hit rates for the no covariates model. All the choice tasks were used in the 

modeling for the various BYO data upper model runs. For those, no in-sample hit rate could be 

calculated. That being said, we do not expect notable improvement in the in-sample hit rate as a 

result of the inclusion of BYO data in the upper model. Neither Sentis & Geller (2010), nor Kurz 

& Binner (2010), observed improvements in the in-sample hit rates. In the politics data in section 

2.2, we observed only a moderate improvement in cell A1 (where data were sparse) and none in 

cell B. 

2.4 Dating vs. Politics 

So why the difference between the two studies in terms of the impact of BYO data on hit 

rates? When we compare them directly in Figure 4-1 and 4-2 (and overlook the issue that we 

don’t have a designed holdout task for the dating study), the data seems to be saying that the 

upper model can be beneficial to prediction for holdout sample, but you can only go as far as the 

in-sample prediction. 

In dating, the no covariate model itself already does a good job of predicting choice. We 

suspect this is because most women are in agreement about what they want—there is relatively 

less heterogeneity. So even a uniform prior (i.e., what the average woman wants) does a good 

enough job of predicting. Having a fuller upper model is a bit like eating organic vegetables: 

while there is no added nutritional value since we see no improvement in prediction, there is 

more flavour, as we can better describe and understand the individual woman’s preference. This 

is similar to what was found in earlier papers. 

No Covariates
In Sample 

(Canada)

Preference only 53%

Preference + "No Buy" 48%

In-Sample Hit Rates (Random Holdout Task)

HB Model: Canadian Women, 

Holdout Sample: US Women
No Covariates

Key BYO 

variables

All BYO 

Variables

Preference only 53% 52% 52%

Preference + "No Buy" 43% 44% 43%

Average Hit Rate on All CBC Tasks - Holdout Sample
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Figure 4-1 

 

Figure 4-2 

 

The politics study is different. Here there is little consensus on what makes an ideal political 

platform. A uniform prior (no covariates) does a poor job in predicting preferences in holdout 

sample. A respondent’s political leaning is informative in determining his (and others like his) 

preference. The BYO information is even more useful. In this case, the upper model is more than 

just ordinary organic vegetables. It not only tastes better, but also comes with additional 

nutrients—we have greater heterogeneity, as well as better predictive power (because it is needed 

here). 

3. CONCLUSIONS 

This analysis of three different choice studies confirmed our hypothesis that BYO data from 

the education section contains valuable information. Using BYO data in the upper model as 

covariates adds nuance—subtle, yet meaningful variation in the lower model estimates. By 

capturing individual heterogeneity, we bring out the full flavour of HB. 

The answer to our second question—does BYO data help to improve model prediction?—is 

less clear. Prediction may be improved, but only where it is needed. Our research found 

improvement where data is sparse, as well as in cases where there is little consensus and greater 

heterogeneity (lots of disagreement across respondents). The more disagreement, the more 

opportunity there is for predictive gain by employing BYO questions as covariates. 

The use of BYO questions in the upper-level HB model also provides a ready-made solution 

for generalization to future samples. The BYO questions themselves become the “golden” 

questions that can be quickly administered to new respondents—allowing researchers to apply 

the HB model to the new sample without the conjoint exercise. 

The BYO data can also be coded as extra choice tasks and be included in the model 

estimation. As pointed out by one of the audience members during the Q&A session at the 

In-Sample 

(Canadian)

No Covariates No Covariates
Key BYO 

variables

All BYO 

Variables

Preference only 53% 53% 52% 52%

Preference + "No Buy" 48% 43% 44% 43%

Average Hit Rates on Random Tasks

Holdout Sample

(US)

Dating

Holdout Task Hit Rate No Covariates
Demo 

Covariates BYO Covariates

Preference only 52% 53% 56%

Preference 
+ "No buy" 54% 55% 57%

Preference only 37% 48% 55%

Preference 
+ "No buy" 32% 39% 43%

Holdout Sample (Cell A2)

In Sample (Cell A1)

Congressional Politics



210 

conference, rather than comparing performance of models where BYO data are part of the upper 

model against models with no covariates, or demographic covariates, we could also have 

compared them to models that included the BYO data as additional choice tasks. This is indeed a 

good suggestion for future work on this topic. 

 

   
 Jane Tang Rosanna Mau Mona Foss 
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SIMULATING FROM HB UPPER LEVEL MODEL 

PETER KURZ 
TNS INFRATEST 

STEFAN BINNER 
BMS MARKETING RESEARCH + STRATEGY 

Motivation for this Paper 

Today many practitioners in market research conduct conjoint analysis or discrete choice 

modeling (DCM) studies in their day-to-day research work. Since HB became available many 

years ago to the research community, simulations are quite accurate and therefore many 

researchers simply base their estimations on standard HB settings and use standard simulation 

tools. This means that “point estimates,” also known as “posterior means,” are used in most 

simulation models. Posterior means are the individual respondents’ part-worth utilities, 

calculated by taking the mean value for each parameter from a certain number of random draws 

from the posterior distribution after the convergence phase of the HB estimation process. Using 

posterior means is the standard in Sawtooth Software simulation tools. The disadvantage of this 

popular simulation method is the risk that due to the averaging of the draws, distribution 

uncertainty information gets lost. Therefore, simulations based on posterior means might 

calculate artificial or too simplified preference shares. 

In order to account for both heterogeneity and uncertainty at the individual level, some 

researchers use individual random draws from the lower level model of the HB estimation after 

convergence is reached and apply those in simulations. Random draws should provide more 

insights into the uncertainty of respondents’ choice behavior and therefore provide more accurate 

preference shares. One disadvantage of using random draws is that most current standard 

simulation tools do not support random draw simulations and therefore such simulation tools 

need to be created individually (e.g., in Excel). Furthermore, the large number of random draws 

in such tools (e.g., 100 draws for each respondent) leads to very large data sets which might 

make the simulation tools slow, difficult to operate and sometimes even hard to distribute (e.g., 

to clients, due to their size). 

Figure 1. HB Model 
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Both simulation methods, posterior means and random draws, simulate from the lower level 

model of the Hierarchical Bayes (HB) model, thus neglecting the upper level model. However, 

some well-known scientists and research experts emphasize the relevance and impact of the 

upper level model of HB. 

Figure 2. Expert Quotes 

 

As there are concerns about losing uncertainty at the individual data, the motivation of this 

paper is to understand whether simulation results can be improved by using the upper level 

model as the simulation method. 

HOW HB WORKS 

HB “shrinks” individual-level utilities towards the means of all respondents. This is 

necessary because often it is impossible to estimate individual respondents—simply because 

there is not enough information in the data for each single respondent. It is the hierarchical 

“prior” of HB that pools information across respondents at the population level and allows the 

calculation of pseudo-individual values and simulations. Therefore, the weaker the individual 

data, the stronger is the resulting “shrinkage” or smoothing effect of the population level and the 

results are actually more based on the prior (see Figure 3). The use of posterior means—

aggregated mean values of the draws—further strengthens this “shrinkage” effect as it ignores 

the uncertainty information within individual-level posterior draws (green line in Figure 3 misses 

the greater variance in the black line). 

Figure 3. HB Shrinkage Effect 

 

At the upper level, we assume individuals are distributed in some specified way, usually as 

multivariate normal, with means and covariances to be estimated. In the lower level, we assume 

that each individual’s answers conform to a separate model, such as logit or regression. 

Hierarchical Bayes determines the optimal degree to which the upper level model and the lower 
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level model influence the parameters for each individual. The lower level model only dominates 

if a lot of information per respondent is available. 

By applying these hierarchical models, we estimate the population means and covariances at 

the upper level as well as the part-worths (betas) of each individual at the lower level. The 

information about the population means and covariances strengthens our estimation of individual 

results for each respondent. The payoff is that HB permits more precise estimation for each 

individual, often permitting individual-level estimation where previously only aggregated or 

segment-level estimation (such as latent class) was possible. 

Due to the lack of individual information and the subsequent shrinkage effect, the individual 

estimates of the lower level model represent “avatars” rather than real respondents. On the other 

hand, the upper level model allows us to create “agents” or “sims” based on the aggregated 

functional form which is derived from the respondents in the lower level. The mean values over 

the avatars and the mean values over the agents are more or less the same. 

Figure 4. Model Characteristics 

 

The upper level model usually makes the invariant assumption that the data follows a 

multivariate normal (MVN) distribution (see CBC/HB technical paper, Sawtooth Software 

2009). The upper level population means and variance-covariance of the estimates follow that 

multivariate normal distribution. These parameters are updated in every iteration of the sampler 

based on draws. The upper level captures the variance as well as the correlation structure in 

draws at an aggregate level. It is sensitive to the assumption about the functional form (MVN). 

The covariance matrix characterizes the extent of unobserved heterogeneity. Large diagonal 

elements, for instance, indicate more (preference) heterogeneity across consumers. Off-diagonal 

elements indicate patterns in the evaluation of attribute levels (the covariance structure of the 

part-worth coefficients). For example, positive covariations indicate pairs of attribute levels 

which tend to be evaluated similarly across respondents. The off-diagonal values can be 

translated into correlation coefficients. Figure 5 illustrates a model with good representation of 

the individual heterogeneity by draws and only a small shrinkage effect through the posterior 

means (the green and blue lines are relatively similar to the black). 
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Figure 5. Good Representation of the Individual Heterogeneity 

 

It is the combination of upper level and lower level models that allows us to estimate the 

part-worth values. In HB, a part-worth (beta) follows a distribution over respondents. The upper 

level model contains this full distribution over all respondents. The lower level model identifies 

the best spot for each individual within that distribution. 

Figure 6 shows a different picture: Posterior means, upper level model and draws show 

similar results which indicates a good overall model fit. However, the plots of single 

respondents’ posteriors show a rather poor representation of individual heterogeneity, especially 

on the right side of the distribution. This could lead to misinterpretation of the results, if we 

were—for example—looking at niche segments which are actually not sufficiently covered by 

the model. 

Figure 6. Shrinkage of Individual Heterogeneity 

 

UPPER LEVEL MODEL—RESULTS 

When estimated with the HB sampler, the upper level model has the following aggregated 

results: 

 The “mean value of alphas”—these values are often called the Bayesian logit model, 

because the alpha values usually come very close to the aggregate logit model. The 

alphas are the mean values of the population for each attribute level. Mathematically 

speaking, they are the mean values of the normal distribution of the upper level model. 

 The variance and covariance structures—these structures describe the captured 

heterogeneity and the correlation between the different attribute levels. 
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Using the above measures offers an adequate representation of the underlying normal 

distribution of the parameter estimates. (See the blue lines in Figures 3, 5 and 6.) 

The described results are part the summary file of CBC/HB: 

Figure 7. Example of a Summary File with the Estimation Results 

 

By extracting the estimated variance-covariance matrix from the summary file of the 

estimation results, one could analyze the information contained in the matrix much better. 

Figure 8. Upper Level Variance-Covariance Matrix 

 

The variances of the attribute level alphas are represented in the main diagonal and explain 

the heterogeneity of the attribute level, which is the spread around the mean value of the 

underlying normal distribution. The off-diagonal values reflect the correlation between the 

attribute levels. For example, the value “7.0241” in above table indicates that Level 3 has a 

higher preference together with Level 1 compared with for example Level 2. This means that 

Level 2 is less frequently chosen when Level 1 appears than Level 3. 

The hierarchical prior aggregates the information provided by individual-level draws. This 

“aggregation,” however, is sensitive to the specification of the hierarchical prior unless flexible 
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semi-parametric models were considered. This means we capture the overall heterogeneity in 

general, but not necessarily the functional form of its distribution. As long as we capture most of 

the heterogeneity, this is only a small loss. However, if the individual draws capture a lot of 

uncertainty for individual respondents, we lose some of that information about the parameter 

uncertainty in our model. 

Individual draws can be one little step away from a mis-specified model even though they 

strongly depend on the hierarchical prior if the data is sparse. Among the three, posterior means 

are least sensitive to the functional form assumed in the hierarchical prior and may produce 

better aggregate results too, as the following Figure shows: 

Figure 9. Capturing Individual Uncertainty through the Lower Level 

 

SIMULATING FROM THE UPPER LEVEL 

Under the assumption that our upper level model parameters are a good representation of the 

data, simulation from the upper level model would miss a small extent of uncertainty—at the 

respondent level only. This could be easily compensated for by adding a small extreme value 

distributed error term. To build a simulator one can simply apply the alphas and the 

variance/covariance structure, together with this extreme value distributed error term, in order to 

create a certain number of new “respondents” (or better, “agents”) based on the resulting normal 

distribution. Based on these new created agents, logit or first choice simulations can be 

performed with the model. Each agent is used for simulation in the same way as posterior means 

or random draws would be used. 

If the model is based on sparse data and therefore doesn’t capture enough individual 

respondent behavior (as illustrated in Figure 9), one can add the average within-respondent 

standard deviation of the draws, instead of the extreme value distributed error term, in order to 

restore the individual uncertainty—at least approximately. 

Remember that each agent comes from the same prior, same scale (variance), same shape 

(covariance) and same functional form (assumed MVN). However, each agent has a different 

combination of those—a different random location under the normal distribution. 

In contrast to posterior means, both random draws and upper level model agents account for 

parameter uncertainty caused by sparse data on the individual level. Both depend on the 

assumption about the functional form of the hierarchical prior. A better understanding of the 

problem-specific combination of these parameters therefore improves both. The only difference 
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is that random draws are relatively less dependent on the functional form and if data is sparse 

they show a lot of spread (uncertainty) in the data. Sometimes this information could improve the 

results, sometimes it could make them worse. 

EMPIRICAL COMPARISON OF SIMULATION METHODS 

In order to understand the impact of the different simulation techniques we analyzed six real 

studies (all estimated with standard settings via Sawtooth Software’s CBC/HB) and compared 

the preference shares resulting from these different simulation methods: 

1. Posterior Means 

2. Random Draws 

3. Upper Level Model 

For this purpose we randomly selected six real market studies. These empirical studies differ 

in their complexity (e.g., number of parameters, tasks, concepts per task) as well as sample size, 

so that one can assume different degrees of sparseness in these datasets. 

Furthermore, these studies are different in their research objectives—which could also have 

an impact on the complexity of the choice tasks. Our sample of studies consisted of: 

 3 product configuration studies 

 2 pricing studies 

 1 assortment study 

As an indication for expected complexity and sparseness of data we used two measures: 

1. Measure of Sparseness 1 (MoS1): MoS1=                                    

           
 

2. Measure of Sparseness 2 (MoS2):   MoS2=     

              
 

The MoS1 of the six studies ranged between 0.93 (Study 1) and 4.55 (Study 4); MoS2 

between 0.15 (Study 4) and 0.75 (Study 2). 

Figure 10. Overview of Six Empirical Studies 

 

First we compared the within-sample prediction performance of the three simulation 

methods. As benchmarks for model performance, we used aggregated hit rates and RLH. 
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In order to calculate comparable hit rates in each study we used random tasks, which were 

not included in the estimations. 

In regard to random draws, we considered two ways to derive hit rates: 

“0/1 Method”: If more than 50% of the draws of one respondent fit with the random 

holdout task, this respondent is counted as a hit (if </=50% not). 

“100% Method”: Each draw is individually counted as a hit if there is a fit with the 

random holdout, so one respondent’s hit rate might be 0.6 if, for example, 60 out of 100 

draws fit with the random holdout. 

As the 100% method provides a higher likelihood to reach hits, hit rates for Random Draws 

are usually higher when the 100% method is applied. Therefore, we used the 0/1 approach to 

derive hit rates from random draws simulations. 

Figure 11. Within Sample Prediction—Hit Rates 

 

As Figure 11 shows, posterior means and upper level model simulations often lead to very 

similar results. In the three complex studies focusing on product features (studies 2, 5 and 6), the 

upper level model simulation performed slightly better than the other two. However, these 

improvements are quite marginal (and in case of studies 3 and 4, certainly not significant). 

Nevertheless, a first hypothesis is that the upper level model might improve in-sample 

predictions compared to posterior means if there is a lot of individual level uncertainty. The 

rather poor performance of random draws might be caused by the 0/1 holdout method. 

The comparison of RLH results shows a quite similar performance between the different 

simulation methods: 
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Figure 12. Within Sample Prediction—RLHs 

 

In contrast to the holdout results, the RLH scores showed that the random draws perform 

slightly better than posterior means in Studies 1 and 3, which were both pricing studies. This is 

in line with the practical perception of random draws being the simulation model of choice for 

price-only discrete choice models. 

How do the three simulation methods perform in regard to the more relevant measure, the 

ability of the models to predict out-of-sample choice behavior? To provide an indication for out-

of-sample validity we used a bootstrapping process: For each of the 6 studies we drew 1,000 

different samples, where in each sample 15 respondents were randomly excluded from the 

estimation and used as holdout respondents. The simulation of these holdout respondents allows 

us to use both out of sample hit rates and out-of-sample RLH as measures of performance. 

Figure 13: Out of Sample Prediction—Hit Rates 

 

In the out-of-sample holdout prediction the posterior means performed best only in Study 4 

(the one with smallest number of choice tasks and an assortment objective). As expected, random 

draws performed best in the two pricing studies. The upper level model clearly produced the best 

results for the product configuration studies and outperformed the other two simulation methods. 

Similar results can be observed looking at the RLH values: 
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Figure 14: Out of Sample Prediction—RLHs 

 

Again, RLH results are quite close between simulation methods. As in the hit rate results, 

posterior means performed best in the assortment study, random draws performed best in the two 

pricing studies and the upper level model clearly produced the best results for the product 

configuration studies. 

To summarize the performance of different simulation methods in out-of-sample prediction: 

1. Posterior means only performed best in the assortment study, which had the lowest 

number of choice tasks and highest number of levels (thus, the highest sparsity of data, 

with MoS1 = 4.55). Our hypothesis is that there is lot of uncertainty in the lower level 

which is not real heterogeneity, but rather a reflection of how little we know about the 

individual respondent. Therefore, the upper level model has no chance to learn much 

from the respondents and is up to that point mis-specified. 

2. Random draws performed best in the two pricing studies (even using the 0/1 method). 

Our hypothesis is that posterior means throw out too much uncertainty here. In the price-

only studies we have enough individual information so that the lower level can capture 

real respondents’ heterogeneity and therefore performs better. The simple upper level 

model we used in this paper was not able to represent the information we captured with 

the draws. 

3. The upper level model showed the best results for the studies dealing with product 

configuration. Here our hypothesis is that there is a lot of uncertainty on the individual 

level due to the large number of parameters (complex choice tasks). Therefore, posterior 

means performance is inferior compared to the upper level model. The performance of 

random draws depends on the way the hit rate is computed (0/1 vs. 100%), but the upper 

level at least represents the heterogeneity of the respondents in a better way than 0/1 

draws. 

DIFFERENCE BETWEEN POSTERIOR MEANS AND UPPER LEVEL MODEL 

The main difference between posterior means and the upper level model is that the upper 

level model describes a functional form (the model) of the data while posterior means describe 

the data by mean values created from a statistical model of the data. The upper level model is 

therefore more flexible and can be used to sample new agents whenever needed. The only 
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problem is that the upper level model has to be specified more carefully if one wants to use it to 

build a simulator. Usually the standard HB approach (as in Sawtooth Software’s CBC HB) 

assumes only a single multivariate normal distribution on the upper level model. This could be a 

significant limitation in estimating the best upper level model, as Figure 15 illustrates: 

Figure 15. Model Comparison 

 

The three rows show three different lower level model coefficients, the first column the real 

data (simulated), the second column the posterior means and the third and fourth column the 

upper level model with two different functional forms. The upper level model is determined by 

the functional form we have decided to use. As one can clearly see if we use a single MVN for 

the upper level model, we can capture the normally distributed beta coefficent (first row) very 

well. The beta coefficient representing a bi-modal distribution with two small peaks (second 

row) is not recovered very well with the a single MVN upper level model, but a mixture of 

normals does better. The beta coefficient with a sttrongly bi-modal distribution (row 3) is 

captured very poorly. Compared to the single MVN upper level model, the posterior means fit 

the the two bi-modal beta coefficients much better. If we use a more sophisticated upper level 

model—in this example a mixture of three MVN distributions—the simulation fits very well to 

all three shapes of beta coefficients. 

This underlines that it’s really worthwhile to invest more in the proper selection of the right 

upper level model if one attempts to build a simulator based on it. A proper specification of the 

upper level model is not just a question of the right functional form. Including meaningful 

covariates could make the upper level model even more powerful. But, we must use really 

meaningful covariates, otherwise the model could be distorted more than improved. Useful 

covariates are usually exogenous variables, which are related to the attributes and level. 

CONCLUSIONS 

Upper level model simulators performed very well—in some cases better than random draws 

or posterior means, especially when the functional form fits well. In our practical studies this was 

most often the case in product optimization studies with more attributes when we do not have 

clear compromise alternative in the choice tasks (Dhar & Simonson 2003). Additionally, in 

complex studies some attributes or attribute levels may not be taken into account by the 
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respondents. In these cases we assume that the uncertainty captured by the individual respondent 

draws is due to “attribute non-attendance” (Chrzan & White 2016) and is not useful for 

predicting the respondents’ choice. 

Posterior means ignore parameter uncertainty and are shrunk towards the sample mean. This 

especially leads to poor out-of-sample predictions. In the case of a high “parameters-to-tasks 

ratio” (sparse data) the upper level model and random draws are superior. 

In two-attribute cases (e.g., price-only DCMs), where we usually have clear compromise 

alternative in our choice tasks, the random draws and upper level model are superior. 

The upper level model could be a solution for complex objectives or small sample sizes such 

as we often find in small markets (e.g., B2B). In such cases the upper level model, which only 

specifies aggregate parameters and a functional form, often results in more stable and meaningful 

estimates. An additional advantage of the upper level model approach for such small samples is 

the ability to resample and rebalance the simulated agents. When it’s not possible to have 

samples that are representative for the market, as is often true in B2B contexts, one can use the 

upper level model to generate agents that represent the market structure in order to build a better 

simulator. 

In order to cope with high model complexity, investment in the upper level model could be a 

better solution than longer interviews (Individual Choice Task Threshold, Kurz and Binner 

2012). Furthermore the application of meaningful covariates and more complex distributions 

(such as mixtures of normals) instead of using a standard MVN MNL-HB program could 

minimize the risk of simulating from a mis-specified hierarchical prior. Working with the upper 

level model will create a need for HB estimations for choice based conjoint with more 

customizable computer programs that can vary for each new study. 

Although HB methods do not converge to a closed form solution—in the way most of our 

classical statistical methods do—we should be comfortable with the fact that the variance 

stabilizes after a few thousand iterations, but there will be still considerable variation in the 

averages of the parameter estimates. This means that we end up with a distribution of estimates 

for each individual rather than a single point estimate for each part-worth value. 

While the random draws (representing this distribution) are powerful in terms of 

understanding uncertainty, they add complexity to the analysis. Random draws adequately 

account for parameter uncertainty but may become impractical for large N data files because we 

multiply the size of our data files by 100 or even 1000. A well specified upper level model can 

represent the functional form nearly as accurately as random draws, and is relatively easy to 

handle because one needs only the aggregate parameters and can easily sample as many agents 

as necessary on the fly. 

SUGGESTIONS FOR FUTURE RESEARCH: 

We often talk about “sparse data” but without a clear understanding of how to define 

sparseness. Some researchers even talk about sparse data when simulating 2 parameters with 12 

choice tasks and 500 respondents, which would mean a MoS1 index of 0.25 (Pachali, Kurz, Otter 

2014). It is important to develop a formula or heuristic in order to determine sparse/not-sparse 

data (similar to the MoS indices) that could be used as a common indicator in the research 
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community. Such a measure could also include parameter/information ratio which would 

facilitate comparisons among different studies. 

Most practitioners use experimental designs which are tested with aggregate logit 

calculations for d-efficiency only. However, most studies are estimated with HB techniques that 

take individual respondents into account. Especially if we want to use the upper level model, we 

should pay more attention to how to optimize the experimental designs for HB techniques. 

Should the upper level model be used more often, covariates will become more important for 

model estimations. Therefore we need good guidance on how to determine meaningful covariates 

in practice. Up to now, there have been very controversial discussions as to which covariates are 

meaningful and which ones are not, or could even harm the estimations. 

Up to now simulators based on upper level models have been used mainly in the academic 

world and only a few practitioners have tried to work with them so far. Therefore, we believe that 

more research has to be done in developing sophisticated but practical upper level model 

simulators that also take advantage of the resampling and rebalancing capabilities. 

 

  
 Peter Kurz Stefan Binner 
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Respondents completing Choice-Based Conjoint (CBC) surveys can process attributes in 

different ways. They may consider all attributes simultaneously, weighing them in their minds, 

making compensatory tradeoffs and so on, as in the standard random utility theory embodied in 

the multinomial logit (MNL) model. Other choice theories suggest that respondents consider 

attributes sequentially: either through multi-step lexicographic models or elimination-by-aspects 

models or through two-stage models involving a conjunctive or disjunctive whittling of 

alternatives prior to making a final choice through a compensatory tradeoff decision. Recently 

attribute non-attendance (ANA) has been suggested as yet another attribute processing strategy 

respondents may adopt: they may opt to ignore some attributes altogether and to attend only a 

subset of attributes a researcher shows them (Hensher, Rose and Greene 2005). 

ANA has spawned an exploding literature in the fields of transportation economics, health 

economics and environmental economics, while it has been virtually ignored in the field of 

marketing research. After reviewing different methods used to identify ANA and after briefly 

illustrating the practical reason researchers should care about ANA, we re-examine several 

existing data sets to test how design decisions we make as researchers affect the incidence of 

ANA among respondents. Finally, we investigate whether using ANA indicators as covariates 

can improve models built from hierarchical Bayesian MNL analysis. 

WHY ACCOUNT FOR ANA? 

By far and away the dominant reason researchers worry about ANA is that it affects 

willingness-to-pay estimates. Almost all published investigations find that failing to account for 

ANA can alter conclusions about WTP and most of them find that failing to account for ANA 

biases WTP upwards (Hensher and Greene 2010, Hensher and Rose 2009, Shen et al. 2014). To 

illustrate this, we took a current project and computed WTP for attributes when we ignored ANA 

and when we took it into account. To report results for a typical attribute in this is study, storage 

capacity measured in gigabytes, we found a WTP dollar value of $46/GB when modeled without 

respect to ANA that reduced to $29/GB when we took ANA into account—a 37% reduction! In 

our experience WTP calculations often result in exaggerated dollar values and taking ANA into 

account tends to move WTP estimates in a more realistic direction. 

MEASURING ANA 

The earliest papers on ANA measured it with simple respondent self-reports of which 

attributes, if any, they ignore when making choices (Hensher, Rose and Greene 2005, Hensher 

2006). This method, “stated” ANA, raises a variety of questions; for example do we ask the 
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question before respondents complete the CBC exercise, such that that they answer in a vacuum, 

or do we ask it after they complete the CBC questions? Some researchers have even suggested 

asking the stated question after each individual CBC question (Scarpa et al. 2009a) or asking it 

about specific attribute levels (Erdem et al. 2013). Moreover, the wording of the stated question 

can make a difference, as asking about which attributes “guide” the decision can yield different 

results than asking respondents about which attributes they ignore (Scarpa et al. 2011). 

Regardless of how one measures stated ANA, the next step is to account for it in modeling by 

removing the effect of attributes a respondent ignores from the utility model for that respondent. 

When using Sawtooth Software's CBC one would manually recode the design matrix by using a 

0 code to denote non-attended attributes.  After utility estimation one would also manually 

recode an individual's non-attended attributes with zero utilities for each level.  If using the 

ACBC software, you could ask the stated ANA question before the ACBC experiment and then 

prevent non-attended attributes from even entering a respondent's questions by using constructed 

lists (in which case the 0 coding of dropped attributes for the design matrix and setting the 

utilities to zero can be handled automatically by the software). Ideally, removing unattended 

attributes from the analysis in this way eliminates the bias in WTP that ANA can cause. 

One can also identify non-attended attributes analytically, based on the choices respondents 

make. Two methods, one based on latent class MNL and one on mixed logit, account for most 

models of “inferred” ANA. Campbell et al. (2011) propose a latent class model to identify ANA. 

Assuming an experiment with K attributes which respondents may attend or ignore implies 2
K
 

possible combinations of attribute attending and ignoring. The Campbell et al. method uses a 

latent class model with 2
K
 classes where each class constrains a unique subset of the attributes to 

have utilities of 0.0. For example, a study with variables Q, R and S would have one latent class 

where all of Q–S are attended, one in which they are all ignored (i.e., set to 0.0), three latent 

classes with but a single attended attribute and three latent classes with two of the three attributes 

attended. The highest probability class for each respondent indicates which attributes that 

respondent ignored and these can be zeroed out as described above before final model 

estimation. Unfortunately, the latent class estimation becomes very time consuming when there 

are more than a handful of attributes, or even when any of the attributes have part-worth rather 

than linear utility functions. The only commercial software package that has automated this 

approach caps it at a very limiting K=4 parameters. 

A mixed logit approach for inferring ANA described by Hess and Hensher (2010) uses the 

coefficient of variation (CV) from respondent-level logit coefficients and standard deviations 

(CV is the standard deviation of a parameter divided by the mean parameter estimate). Using 

CV=2 as a cutoff any coefficients larger than half the size of their standard deviations would 

count as attended. Selecting CV=2 as the cutoff may seem a little arbitrary but it is easy to 

describe and implement. This approach will also work for hierarchical Bayesian (HB) MNL. 

Yardley (2013) uses a different empirical method to identify ANA in HB models, computing 

cutoffs as percentages (10%–50%) of the largest range for any attribute for a given respondent 

and finds that larger percentages (at least through 50%) produce better predictions to holdout 

choice sets. A drawback of either empirical approach to identifying ANA in HB analyses is that it 

confounds ANA and preference heterogeneity (Hess et al. 2013). Using either the Hess and 

Hensher or the Yardley cutoff methods involves ignoring the distinction between unattended and 

unimportant attributes. If “non-attended” just means “not very important” then ANA just gives a 

new name to an old fact (indeed, a white paper posted to the Sawtooth Software website in 2001 
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notes that respondents with very small price utilities may show impossibly large WTP estimates 

[Orme 2001]). 

Eye-tracking technology provides a third approach for measuring ANA—“visual” ANA. 

Observing which attributes a respondent’s eyes scan should provide a credible, observable 

measure of ANA (van Loo et al. 2014). Eye-tracking suggests that the attributes which 

respondents attend are the important attributes that make their profiles attractive (Meissner et al. 

2016). Model fit improves and WTP estimates increase when one accounts for visual ANA (van 

Loo et al. 2014). Curiously, some attributes that do not receive measurable visual attention still 

end up being important predictors of choice: Olsen et al. (2016) report an eye-tracking study 

where respondents seem able to evaluate levels at which they do not even take a fleeting glance, 

suggesting that visual ANA may also be problematic. 

As one might expect, stated and inferred measures of ANA disagree about which respondents 

attend which attributes (Campbell and Lorimer 2009, Hess and Hensher 2010, Carlsson et al. 

2010, Alemu et al. 2011). Moreover estimation of ANA from visual ANA differs again from both 

stated and inferred methods (Balcombe et al. 2015, van Loo et al. 2014). 

PREVIOUS RESEARCH ON SURVEY DESIGN FACTORS AFFECTING INCIDENCE OF ANA 

As the different definitions of ANA change our conception of which attributes are ignored by 

which respondents, ANA appears to be a labile construct, one potentially affected by researcher-

controllable decisions about study design. Previous empirical studies bear this out. Hensher 

(2006) finds that the number of choice sets and of alternatives per choice set affect the incidence 

of ANA (though Weller et al. 2013 find that they do not). Partial profile designs reduce ANA 

relative to full profile designs (Yardley 2013). Design factors like orthogonality and similarity of 

attributes can reduce ANA (Cameron and DeShazo 2010) while Bayesian D-efficient designs 

have higher levels of ANA than do orthogonal designs (Alles and Rose 2014), as do labeled 

designs compared to unlabeled designs (de Bekker-Grob et al. 2010). Finally, designing research 

to mitigate hypothetical bias through cheap talk scripts or honesty priming can reduce the 

incidence of ANA (Bello and Abdulai 2016). 

Note that we do not suggest that high levels of ANA cause detriment or that low levels 

provide benefits: ANA may reflect an appropriate simplifying strategy, not an inherently bad 

thing at all (Nguyen et al. 2015). The incidence of ANA does vary quite a bit across studies, 

however, so in the next section we want to revisit some existing CBC data sets to examine on 

what other researcher-controllable dimensions ANA may vary. 

EMPIRICAL COMPARISONS—SURVEY DESIGN FACTORS AFFECTING 

INCIDENCE OF ANA 

We start our empirical exploration by considering the impact of experimental design 

decisions on the prevalence of ANA. Specific considerations include Level Overlap, Partial 

Profile, Best-Worst DCE, Best-Worst Case 2, as well as ACBC relative to standard minimal 

overlap DCE strategies. Each of these alternative strategies is in one way or another designed to 

elicit a more thoughtful choice process and consideration of a greater portion of the design space, 

and as such have potential for reducing ANA. 
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In what follows we consider a coefficient of variation (CV) of 2 to determine if an attribute 

was attended or not. Recall from above that CV is simply the standard deviation of a parameter 

divided by the mean parameter estimate. The CV is calculated using standard output files from 

Sawtooth Software’s CBC/HB application. As noted earlier, the choice of CV is arbitrary, so we 

chose 2 to be consistent with the literature. The story is invariant with respect to CV choice. 

The first strategies we consider are Level Overlap and Partial Profile. ANA and dominant 

preferences or choices are very much related, and in the extreme if there is a single dominant 

attribute or level in a design, lesser preferred attributes will be completely ignored, which is to 

say they are not attended. In the case of level overlap, the inclusion of ties on a dominant 

attribute should force the decision down to the lesser important factors, thereby eliciting 

attendance by design. In the case of partial profile this effect is maximized as hidden attributes 

represent complete overlap and decisions must be made on remaining factors. Through the 

experimental design therefore, we expect PP to draw attendance to more of the attributes in the 

design space. 

The two studies we have revisited for the level overlap and PP designs are both tablet studies. 

The design specifications are: 

 Tablet Study 1: 6 attributes, balanced versus minimal overlap, presented as triples 

 Tablet Study 2: 8 attributes, full profile versus partial profile with 4 attributes presented 

per task, both FP and PP presented as triples 

Attribute Attendance 

 Minimal Overlap/FP Level Overlap/PP 

Tablet Study 1 91% 92% 

Tablet Study 2 72% 88% 

The results suggest that level overlap may have a small impact on overall attendance, but this 

may simply be a result of having such a high degree of attendance to start. Because of this the 

impact of level overlap on ANA is inconclusive in this study. However, in our full versus partial 

profile strategies we see a very large and significant increase in the percentage of attributes 

attended. 

The next design considerations were Best-Worst DCE and BW-Case 2. Best-Worst DCE is 

simply a choice experiment where we ask for both the most and least preferred option from a set 

of alternatives. The idea here is that it is quite possible that what drives preference is different 

from what folks might avoid. So including the least preferred alternative may entice individuals 

to consider attributes and levels not playing a role in the identification of the most preferred 

option. 

BW-Case 2 asks questions more like a MaxDiff exercise than a typical CBC task. 

Respondents are presented with a product profile and then asked to identify which feature/level 

is most and which is least appealing. Below is an example task. 
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Considering the Tablet PC described below, please 

indicate which one feature you find least appealing and 

which one feature you find most appealing 

  Least Most 

Brand Samsung 

Galaxy 
  

Screen 10"   

Storage 32GB   

Memory 2GB   

Battery Life 6 hours   

Price $199  

In this example our respondent finds the 2 GB of memory to be least appealing and the price 

of $199 to be the most. Because we ask people to directly identify the most and least appealing 

feature of a single profile it is expected that the nature of the task will result in greater levels of 

attendance. 

We looked at two different studies for BW-DCE and BW-Case 2 versus First Choice/CBC, 

summarized as follows: 

 Airline Study: 4 attributes, BW-DCE and BW-Case 2, minimal overlap efficient design 

 Refrigerator Study: 4 attributes, CBC and BW-Case 2, also minimal overlap efficient 

design 

The first choice only was used from the Airline Study as our CBC baseline model, from 

which we then added the worst choice for BW-DCE. Attendance levels are reported in the table 

below. 

Attribute Attendance 

 First 

Choice/CBC 
BW-DCE BW-Case 2 

Airline Study 82% 88% 97% 

Refrigerator Study 57% N/A 76% 

In our airline study, we see an increase in attendance by including the worst portion of the 

task, so it appears folks are paying more attention when required to identify a more complete 

ranking. In this case we presented triples, so best and worst provide a complete ranking. 

However, the big improvement is seen when we move from the standard CBC to BW-Case 2. In 

the airline study BW-Case 2 virtually eliminates non-attendance, and dramatically increases 

attendance in the refrigerator study. It is worth emphasizing that BW-Case 2 is a different kind of 

exercise, and results in different parameter estimates, so we do not necessarily recommend its 

use to counter ANA effects, especially if willingness to pay is important. 

The final design strategy explored was Adaptive CBC. Adaptive CBC consists of three 

phases; build your own, screening, and tournament. In the first stage respondents identify their 

preferred product. The screening phase consists of questions designed to identify levels of 

attributes that respondents would not consider, thereby creating choice tasks that are more 
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relevant to the individual, i.e., an appropriate consideration set. Finally, respondents go through a 

series of choice tasks similar to a normal CBC study (except that it is a tournament design where 

winning concepts return in subsequent choice tasks and losing concepts are dropped, until an 

overall winner is identified). 

A housing study was conducted with both Adaptive CBC and CBC design cells. The design 

space consists of 10 attributes, with resulting impact on ANA presented in the following table. 

Attribute Attendance 

 CBC Adaptive CBC 

Tablet Study 2 81% 90% 

As expected, we see a substantial increase in the percentage of attributes attended. Through 

ACBC’s adaptation to a respondent’s preferences, it is likely that a more thoughtful and complete 

processing of the design space is encouraged. 

FORM FACTOR IMPACTS ON ANA 

Two of our studies captured the device type that a respondent used to completed the survey. 

The relatively small screen size of many smartphones and some tablets may encourage 

respondents to implement screening rules or otherwise simplify the decision-making process. 

Simplification rules in turn would likely result in fewer attributes being considered. 

The Tablet Study 2 from above along with a hospitality study captured device type. The full 

profile data for the tablet study were used because of the greater likelihood to observe ANA. The 

hospitality study was partial profile with 12 attributes displayed 5 at a time as triples. Attendance 

results are presented below. 

Attribute Attendance 

 PC Tablet Mobile 

Tablet Study 2 74% 70% 76% 

Hospitality Study 77% 76% 79% 

Mobile responders are no more likely to exhibit ANA in our two studies than other 

responders, and are at least directionally more attentive. The odd result is the low level of 

attribute attendance for tablet responders in our tablet study. However, this is likely topic related; 

tablet owners are less likely to consider alternative brands. These are encouraging results as 

another piece of evidence that we do not need to worry about the quality of data collected on 

mobile devices. 

ANA INDICATORS AS COVARIATES IN HB ANALYSIS 

As noted, accounting for ANA can have a big impact on willingness to pay estimates. One 

way to account for ANA is to identify non-attended attributes and zero out the effects in the 

design matrix. Another possible way to account for ANA is to include a set of indicators as 

covariates during the HB estimation. One would think that these should be informative 

covariates, either stated or implied. Again we use CV = 2 for implied indicators, and report the 

impact on RLH below for implied and stated where available. 
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Aggregate Root Likelihood 

  
ANA as Covariates 

Study Design None Implied Stated 

Tablet FP-CBC 0.667 0.675 0.674 

 

PP-CBC 0.567 0.575 0.571 

Hospitality FP-CBC 0.571 0.585 N/A 

Airline Best only DCE 0.681 0.687 N/A 

 

BW-DCE 0.681 0.685 N/A 

 

BW-Case 2 0.603 0.604 N/A 

Housing CBC 0.553 0.568 N/A 

  ACBC 0.634 0.639 N/A 

While we do see some lift in RLH when we include ANA indicators as covariates, the 

improvement in internal consistency is truly marginal, and likely not worth the effort. It would 

likely be better, and more theoretically sound, to leverage the indicators to zero out the 

corresponding effects coding at the respondent level. 

CONCLUSION 

The literature identifies ANA as a potential problem for researchers to address, especially 

when willingness to pay estimates are among their objectives. Our studies agree with the 

literature in finding a fair amount of non-attendance, more than a trivial amount for sure: it is 

clear that some respondents just ignore some attributes. We also find that design decisions can 

affect attendance rates, particularly the use of partial profile designs and ACBC. 

As well we saw that in the studies for which we captured device type there was no impact on 

attendance based on form factor. This is an encouraging addition to the evidence that mobile 

responders reliably complete our surveys even when presented with more complex experimental 

designs. 

While the main purpose of this paper is to identify those choices within the control of the 

researcher that can impact attendance rates, we also considered the inclusion of indicators as 

covariates. In all cases the inclusion of indicators as covariates does nothing to help the model, at 

least from an internal consistency perspective as measured by RLH. A practical use we hoped we 

might be able to make of attendance information turns out not to have been helpful at all. 

Finally, it is worth revisiting the potential confound between importance and attendance. 

While accounting for ANA can have a real impact on WTP estimates, it may well be that non-

attendance is only a problem if the attribute not being attended would have an impact on the 

decision had it been considered. When an attribute is simply unimportant, then we would expect 

and want the parameters to be consistent with non-attendance. Because of this, it is important to 

think about the impact of leveraging design strategies aimed at increasing attendance to 

attributes. Are we inflating the importance of attributes by forcing decisions to be based on 

uninfluential factors in real world choices? If so, then perhaps non-attendance is not so much a 

problem that needs to be corrected for in modeling as it is a reflection of perfectly rational 

decision making processes. 
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ABSTRACT 

Given the recent rise in demand for creating customer segments based on customer lifetime 

value (CLV), we helped a professional sports team to segment and type their database into CLV 

tiers by incorporating actual customer data alongside a discrete choice model to project future 

spending behavior. 

DEFINITION OF THE PROBLEM AND THE PROPOSED SOLUTION 

The ultimate goal of calculating Lifetime Value is to quantify the value individuals represent 

to an organization over a given period of time. The idea has been largely promoted by Peter 

Fader. Traditionally it is used in a contractual relationship, but more and more clients are 

interested in the future value of other customer groups. Market segmentations often focus on 

attitudes and behaviors, but one of the key questions that is often left unanswered by a 

segmentation is the actual value a segment represents in the future. 

The traditional formula for CLV is as follows: 

 

                                       
                  

                                        
 

 

The CLV formula has only three parameters: (1) constant margin (contribution after 

deducting variable costs including retention spending) per period, (2) constant retention 

probability per period, and (3) constant discount rate per period. Furthermore, the model assumes 

that in the event that the customer is not retained, they are lost for good. Finally, the model 

assumes that the first margin will be received (with probability equal to the retention rate) at the 

end of the first period. 

Customer Lifetime Value has an intuitive appeal in marketing because it provides a baseline 

for each customer that determines how much a marketing department should be willing to spend 

to win that individual’s business. The CLV calculation in a contract scenario is benefited from 

having a consistent margin of revenue over time. We can also naturally assume that the retention 

rate and discount rates are constant year over year. One of the questions we have to consider 

once that constant margin assumption, specifically, disappears is how to develop a framework in 

which we can estimate the margin for each of the years in question. The solution to this question 

that we settled on was to use a Discrete Choice Model to calculate yearly margins. We are then 

able to rewrite our formula to account for yearly changes and potential variability in behavior. 
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CASE STUDY 

Recently a professional sports team requested that a lifetime value calculation be 

incorporated into a segmentation study. The goal was to provide their marketing and sales team a 

more powerful resource in all their marketing activities. 

Since sports fans have no contractual agreement with their favorite sports teams their yearly 

spend can vary greatly year over year, so to calculate the lifetime value we rewrote the CLV 

formula and developed a Discrete Choice task to explore fan spending. The actual financial 

benefit of a given respondent will be realized through multiple different channels and their actual 

expenditures with the team could change dramatically based on a variety of factors. The power 

of the discrete choice model is that we can explore all of these possible scenarios and see how 

each individual will respond to the different factors that could come into play. 

The factors that were considered in the discrete choice task itself are attributes relating to 

season expectations and game day experience as well as everything related to tickets. Questions 

were also asked outside of the choice task to establish demographics, preferences and behaviors 

as they relate to the team. Combinations of all these factors are used to create a plausible future 

season. The full list of attributes is contained in Table 1. 

Table 1. Case Study Discrete Choice Attributes 

Attribute Name Level1 Level2 Level3 Level4 Level5 Level6 

Price per Ticket 70 55 40 30 20 
 

Package Type 
Single 

Game 

Half 

Season 
Full Season 

   

Typical Days of Week 

Wednesday, 

Friday, 

Saturday 

Friday & 

Saturday 

Thursday & 

Friday 

Thursday, 

Friday, 

Saturday 

Saturday & 

Sunday 

Friday, 

Saturday, 

Sunday 

Strength of Schedule Low Medium High 
   

Promotion 1 13 11 7 4 2 
 

Promotion 2 12 8 6 4 2 
 

Promotion 3 15 11 9 7 0 
 

Using these attributes we are able to present various potential season configurations to the 

respondents and gauge their response. Figure 1 below shows an example of the task. 

The task revolves around a stadium map. The key question put to a respondent is given the 

various levels of the attributes for this potential season, they must choose where in the stadium 

they will sit, the type of tickets they would buy and how many. We are able to present various 

ticket prices that are all scaled up or down based on the seating area, as well as a variety of 

promotional and event information as well. Knowing the number of tickets that any given 

respondent will purchase is key to calculating the lifetime value, especially because there are 

different tiers of ticket pricing as well as different ticket packages to choose from. 

Once the data is gathered we used a volumetric model to predict percent of maximum spend. 

Essentially we are predicting how much of the maximum they would be willing to spend given a 

season with a certain combination of the attributes and levels. Their favorite season offering 

where they would spend the most money would be coded to a response of 1 or 100% of their 
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maximum and all other tasks would be coded to be a percent of this maximum spend number. 

The goal in the volumetric model is to not only gauge which season configuration is most 

preferred, but also which configurations would in fact result in the greatest revenue. In our case 

our task was very focused on tickets, but in every case it is important to consider what the 

potential revenue sources are to adequately capture all the sources of revenue. Missing individual 

level revenue sources will result in less accurate predictions that will trickle down to every 

application of the Lifetime Values after they are calculated. 

Figure 1. Example Choice Task 

 

The simulation output of the model can be translated back to actual dollar figures. The 

maximum they indicated they would be willing to spend is multiplied by the percent of 

maximum predicted by the model for each of the 10 years that we look at. This of course factors 

in all the possible sources of revenue that we studied. These amounts of spend are ready to be 

used in the restructured Customer Lifetime Value calculation. There are a few changes that need 

to be made from the original formula for it to work in this framework. 

In order to incorporate the Discrete Choice data into the Customer Lifetime Value calculation 

it needs to be rewritten in a general format. The new general format no longer assumes margin, 

retention rate or discount rate are constant per time period. Instead it is written as follows: 

 

                                                           

 

    

                   

 

“N” indicates the number of years, or number of time periods in question. Margin becomes 

the revenue projected from the DCM simulator for each year represented by “i.” This figure is a 

dollar figure predicted by the model for yeari based on how the season will be configured. In the 
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rewritten formula it’s important to note that unlike the simplified formula where retention rate 

and discount rate are a compounded figure to calculate value in years further out, the rates in this 

formula are slightly different. They are per year estimates of rates that are used to calculate a net 

figure for a given time frame. In order to determine reasonable retention rates we gathered a 

variety of information that we then used to calculate per year estimates of how likely a 

respondent was to remain a customer of the team. The retention rate is variable, because each 

successive year into the future a fan becomes less and less likely to stay. Since the factors that 

influence a fans likelihood to stay are many, just like with sources of revenue, it is important to 

consider what factors might influence that likelihood and gather the appropriate data to make the 

appropriate projections. One final piece of this equation is that since data projections get less 

certain the further into the future they are projected it is important to work with the client to 

determine a reasonable discount rate for each year going forward. Once we know the margin, 

retention rate and discount rate for each year, we can then solve the equation and sum up the 

years to get the lifetime value for a respondent. 

This equation is the key to the whole process. This is what gives us the power to estimate 

lifetime values for any specified timeframe. We may not have the non-varying numbers that 

provide a simpler framework like we do when we work with contracts, but with our simulator in 

hand we can project out a lifetime value for our given time frame, in this case 10 years. Having 

this input on an individual level means that for any possible combination of the levels tested we 

can predict on an individual level what value that customer represents to the team. This opens the 

door for a variety of next steps we can take to provide greater value in understanding the 

customer base. 

The lifetime value of each respondent can be used as an additional input to the segmentation. 

The benefits of the segmentation are that not only will it be clear what value a certain group 

represents to the team, but the team will also have in-depth profiles informing them on a wide 

variety of variables to help them understand who the group contains. This segment can also be 

used in a simulator to look at the discrete choice data to study what motivated this particular 

segment’s decisions and how to maximize revenue from the group. The team could even make 

decisions about promotions and events based on what will prompt the largest gains from their 

target segments. 

Another benefit that is gained from adding the Discrete Choice data into the Customer 

Lifetime Value calculation is that the team also has the ability to plan future seasons. Since the 

appeal of each of the attributes and levels is known, it is easy to determine the best season 

configurations for different potential customer segments. It’s even possible to return and design 

specific season configurations geared around the segments that were created based on the 

Customer Lifetime Value. Doing that, the team can even further maximize their ability to target 

each group. 

One final step that we took was to create a typing tool that can be used in the team database 

to classify everyone they have gathered information about. The team boosts their ability to find 

and target key customer groups even further. The team can continue to leverage the vast amount 

of information provided to them by the Discrete Choice Model and subsequent segmentation as 

they look at new potential customers and understand what will motivate each group to bring in 

more revenue to the team. 
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These are only three analyses we provided to our client, but there are likely many more 

possible applications for the Customer Lifetime Value calculation when it is based on data from a 

Discrete Choice Model. 

Discrete Choice models provide a wealth of power in understanding future spending habits of 

individuals as opposed to an aggregate view. The team’s future plan provides clarity into 

expected retention in the future. Individuals can be divided into clearly defined groups by 

incorporating estimated value represented to the organization over the given time. The profiles of 

these segments provide the organization with an actionable database that will guide marketing 

activities to be more customer specific and focused on the right customers. 

 

   

 Michael Smith Michael Remington Michael Drago
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Academics and businesses are increasingly using crowdsourcing platforms (e.g., 

CloudFlower) to obtain inexpensive survey responses. Amazon Mechanical Turk (“MTurk”), 

with more than a half million registered “Turkers,” dominates this space. Founded in 2005 and 

named after the “The Turk,” an 18th century “machine” that was apparently doing human tasks 

(i.e., playing chess) without human involvement (which was eventually discovered to be a hoax 

given there actually was a person secretly moving the pieces), Amazon’s launch was an attempt 

to farm out machine-like tasks (e.g., image categorizing) to people who could actually do it 

better than computers. While not originally intended to be a survey participant pool, its large 

base of potential respondents (mainly US residents due to tax laws) makes it extremely attractive 

to researchers. Despite the massive number of registered users, it is estimated that approximately 

7,300 survey takers are active at any given time (Stewart et al. 2015). Not surprisingly, these 

online participants tend to be younger than the general U.S. population and have lower 

household incomes. However, researchers often use MTurk over other web-based participant 

pools because of the price and speed advantages it offers. A 10-minute survey, paying $1.00 per 

respondent, typically takes less than four hours to obtain 150 responses. 

Figure 1. Turkers Tend to Be Younger and Poorer than the Typical US Population 

  
Sources: U.S. Census Bureau, 2014 Population Estimates MTurk: Authors’ MTurk Panel Surveys 

The increase in crowdsourcing participant pools has also led to an increase in professional 

survey takers. Numerous papers have demonstrated that the quality of data from MTurk is 

comparable to more expensive panel services (Weinberg, Freese, & McElhattan 2014). However, 
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other research has found reduced effect sizes amongst nonnative respondents on MTurk 

(Chandler et al. 2014, 2015), suggesting that research conclusions may not significantly differ, 

but the level of significance will be reduced, hence requiring a greater sample size to obtain the 

same level of significance. 

Much of the research that has examined the quality of MTurk data is based on a general 

sample without the need to screen or target a specific segment of the population. We will show 

that given the opportunity to do so, anonymous respondents in crowdsourcing marketplaces 

deceive on screening requirements to monetarily benefit, and that this deception can distort 

market research results. We first identified this problem when we ran two health related 

surveys—one which screened for athletic people under the age of 35 and the other which 

screened for cigarette smokers over the age of 50. We found that 17% of our respondents passed 

the screeners in both surveys, an impossible outcome if these respondents were honest and 

paying attention. Since it is not uncommon that a market researcher may want to qualify 

respondents based on a specific demographic or behavior, we were interested in systematically 

measuring the extent of impersonation on MTurk. Most importantly, we wanted to determine if 

the data obtained from those who deceive differed statistically from those who honestly 

qualified. 

To meet these objectives, we created a panel of Turkers who would serve as the basis for our 

research. These 1,109 panelists filled out an extensive survey where they indicated basic 

demographics, personality measures, and possible correlates to deception such as religious 

practices, materialism, political bent, and responses to moral choices (Graham & Haidt 2012). 

We also asked a series of questions about current ownership of sports equipment, pets, and 

technical devices, and their participation in specific online MTurk chatrooms. Because in the 

panel creation survey there was no financial benefit for respondents to answer in any particular 

manner, the Turkers’ responses to the demographic and product ownership questions in the panel 

creation survey served as a benchmark to evaluate impersonation in follow-up surveys. 

DECEPTION EXPERIMENTS 

We ran four experiments which were only open to our pre-surveyed panelists. These 

experiments tested both the degree of impersonation and whether those who impersonate provide 

different responses to subsequent questions compared with legitimately qualified respondents. 

Our first survey paid 75 cents for those who owned a kayak (as indicated in the screener 

question) and completed the survey. In the initial panel survey, 7.6% of the 1,109 panelists stated 

that they owned a kayak. In this screener survey, two months later, 88% of the paid participants 

(who passed the screener) contradicted their earlier statement (that they did not own a kayak). 

While 6% stated that they had purchased a kayak in the last six months, this left 82% of 

respondents who indicated a clear discrepancy between their panel survey response (claimed to 

not own a kayak) and this screener survey response (claimed to own a kayak). For comparison 

purposes, we relaunched the survey without screening out any respondents (but excluding those 

who had previously taken the screener version of the survey) and found that only 4% were 

inconsistent between their panel survey responses and future responses when there is no 

incentive to lie. Thus, we do not believe that the 82% inconsistency (in the screener survey) is 

just due to careless responses or measurement error. 
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Our second survey screened participants on pet ownership before a relatively lengthy pet 

food survey for $1.25. To pass the screener, respondents needed to have both a dog AND a cat. 

Of our panelists, 19% had reported in the original panel survey that they had both. Comparing 

the response on the screener to the information provided in the panel survey, 71% of Turkers 

who stated that they had both types of pets had previously disclosed in the panel survey 

otherwise. Of these probable deceivers, 32% had reported not having either a dog or a cat; 

whereby, the remaining 68% had either a dog or cat, but not both. 

These two studies demonstrate that participants will falsify answers to screener questions in 

order to financially gain. It is unclear, however, if deceivers statistically differ from those who 

honestly qualify in their responses to the questions in the main body of the survey. We 

investigate this issue in the next two surveys. 

Our next survey screened on age, paying 60 cents to anyone 50 years old or older to be a part 

of a survey about dietary fiber supplements. Additionally, participants were asked to make a 

product choice based on a set of fiber brands (Metamucil, Benefiber, or Fiber Well at $14.99, 

$15.99, and $25.99, respectively). The product choice task also included a “none” option for 

those who would not choose any of these product offerings. In this survey, 40% of our paid 

respondents, claimed to be 50 years old or older but had reported being under 50 years old in the 

original panel survey (as indicated by stated age as well as year and month of birth). These 

impersonators (average age of 33 years old) significantly differed on the fiber choice task 

compared to the target group of respondents (those who consistently reported being over 50 

years of age). In particular, the shares of Fiber Well, a fiber supplement in the shape of gummy 

candies, were chosen by 36% of the impersonators, compared to only 22% of the sample who 

were actually over 49. Furthermore, impersonators were less likely to choose the “none” option 

(7%) compared to the older respondents (25%). Both of these differences were statistically 

significant at a p<.05 level. 

Figure 2. Fiber Survey Choice Screenshot in Study 3 

 

To test whether some of the probable impersonators may have simply made a mistake in 

answering their age in the original panel survey or in the screening question, we ran an additional 
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survey similar to the survey described above but did not screen out anyone (although a priori, we 

excluded those panelists who had already completed the screener version of the survey). When 

there was no monetary incentive to impersonate, ALL respondents provided the same age bracket 

as reported in the panel survey. This result is important, as it indicates that 40% of respondents 

claimed a different age when they could gain from it, but none did so when there was no 

motivation to lie. Interestingly, the respondents in the relaunch (average age of 34) chose the 

gummy candy fiber supplement 47% of the time, which was statistically different from the 

deceivers and those legitimately 50 years old or older. 

The final test of the extent of character impersonation and its implications for market 

research results included a conjoint analysis study which examined gender impersonation. The 

announcement indicated that the 75 cent survey is only for females. Respondents were assigned 

randomly to either a control condition where there was no screener (but a gender question as part 

of the survey) or a treatment condition which included a gender screener. In the screener 

condition, males were disqualified unless they lied in the screener question about gender. Thus 

the control condition had males and females and the screener condition had males (pretending to 

be females) and females. In both conditions, respondents completed a 12 Choice-Based Conjoint 

(CBC) task based on cell phone case designs. The attributes (levels) for these cases, shown in 

Figure 3 included color (pink, black, or navy), style (slim design, ultra slim profile, or easy 

on/off of the case), drop protection (included or limited), radiation protection (included or 

limited), and price (ranging from $29.99 to $59.99). 

Figure 3. Example Choice Task from Conjoint Exercise in Study 4 

 

In the screener condition, 25% of the respondents claimed to be female but reported to be 

male in the panel survey. By contrast, in the control condition, all respondents reported the same 

gender in the conjoint study as in the panel survey. In analyzing the conjoint estimates, we found 

that males posing as females statistically differed from males in the control condition. 

Navy Pink Black 
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Specifically, males impersonating females tended to express their preferences in stereotypical 

ways by over-emphasizing their preference for attributes that they believed that females would 

like (i.e., color and design). They significantly preferred pink cell phone cases (average part-

worth of 29.2) with an ultra-slim profile (average part-worth of 15.5) more than their male 

counterparts in the control condition (average part-worths of -127.1 and 2.5, respectively) and 

females overall (average part-worths of -9.0 and 6.0, respectively). For less stereotypical 

attributes such as drop and radiation protection, there was no statistical difference between males 

in the control condition and males posing as females in the screener condition. However, male 

and female utilities did significantly differ on these attributes, but this was not apparent to the 

deceivers. The same was true for the “none” option. Deceivers chose the “none” option just as 

often as their male counterparts in the control condition which tended, on average, to be more 

often than females. 

As it relates to task consistency, the individual level “root likelihood” measure which is an 

output of the CBC Sawtooth Software, did not significantly differ between deceivers and non-

deceivers. Similarly, the responses to the two fixed conjoint tasks (same choices, but different 

placement and order of the choices), showed no significant differences in consistency between 

the deceivers and non-deceivers. Deceivers did, however, spend slightly less time on the conjoint 

exercise and on an attitudinal scale statement section than non-deceivers, but did not statistically 

differ on the total time spent on the survey. 

These results are important and potentially troubling for market researchers who utilize 

MTurk as a participant pool. We find in the fiber survey that impersonators project a youthful 

desire for fiber with gummy candies. In contrast, for cell phone cases, men who pretended to be 

women overcorrected in projecting women’s desires for thin, pink phone cases. Worse, for other 

products, there was no distortion. Thus, it is very hard to know before the fact which way 

character impersonation will bias the results. These results, from a market research perspective, 

are simply unacceptable. 

Now that we have repeated evidence of deception, we are able to observe across all four 

surveys if deception is an enduring trait (i.e., same people repeatedly deceive) or if most of our 

panelists are dishonest occasionally. Given the general finding in previous research that everyone 

(across a wide range of domains) basically cheats a little (Mazar, Amir, & Ariely 2008), we 

expected the latter. Our results, however, showed otherwise: about a third of our active panelists 

(35.8%) are consistently dishonest on 100% of the studies they took, about a quarter (25.2%) are 

dishonest on some of the studies, while the remaining panelists (38.9%) never deceive on 

screener questions. Thus we can conclude that a sizable proportion of our panel population will 

deceive some or all of the time. This makes our jobs easier (than if we found that everyone 

cheats a little all of the time), because we can exclude respondents who have evidence of 

deception from our panel in order to decrease the likelihood of deception in future studies. 

Given we have the data about who consistently cheats, we are able to test if certain 

respondent characteristics are associated with cheating. In doing so, we found that persistent 

deceivers tend to be extroverted and male. Those who perceive themselves to be low on the 

socio-economic ladder are also more likely to deceive as well as those who perform poorly on 

the moral foundation sacredness scale (Graham & Haidt 2012). This latter scale measures one’s 

tendency to engage in immoral behavior for money (e.g., how much would have to be paid to 

“kick a dog in the head, hard” with respondents stating how much they would have to be paid to 

do this or forgoing the money so as to not engage in the act). However, given the knowledge that 
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certain characteristics are correlated with cheating, we do not suggest that researchers filter 

people out based on these attributes given one’s likelihood of cheating on a study is not perfectly 

deterministic. Instead, filtering out respondents who consistently cheat (regardless of their 

respondent characteristics) is a better way to avoid future cheating behavior. 

ONLINE TURKER COMMUNITIES 

Given the significant proportion of our panel deceiving, we explored whether deception is 

acceptable amongst online Turker communities. These online forums tend to be Turker created 

and managed for the purpose of sharing advice about making money on MTurk. For example, 

TurkOpticon is a third-party site where Turkers rate researchers (“Requesters”) on the speed of 

payment [FAST], compensation [PAY], communication [COMM], and fairness [FAIR]. These 

ratings along with qualitative comments serve as warnings (or approvals) of specific market 

researchers. Lower ratings can lead to Turkers being less willing to take future surveys from 

specific market researchers. 

Figure 4. TurkOpticon Example 

Requester Name* 

A2___________M*  

Averages »  

HIT Group »  

Review Requester » 

FAIR: 1 / 5 

FAST: 3 / 5 

PAY: 1 / 5 

COMM: 1 / 5  

 Be careful! They check every single HIT and 

will easily reject you, if one single thing is 

wrong. Not worth the effort or time. Very low 

pay for rejects. Not worth it. 

 

* eliminated market researcher identification. 

Another site, Hits Worth Turking For (HWTF), announces opportunities where the Turker 

can make at least 10 cents/minute based on the actual time taken rather than the estimated time 

posted by the market researcher. In MTurk terms, “Hits” (“Human Intelligence Tasks”) are how 

someone refers to an MTurk task whether that task is a survey or some other activity (e.g., 

transcribing, categorizing websites, tagging photos, etc.). When posting on HWTF, fellow 

Turkers often warn their peers about the presence of a screening question (sometimes with the 

“correct” answer, see Figure 5 for an example) as well as any “trick” questions such as memory 

checks (MCs) or attention checks (ACs, see Figure 6 for an example). 

Figure 5. Example of a Screening Question Warning on Hits Worth Turking For  

 

 

  
Source: Reddit Forum: Hits Worth Turking For 

In general, memory checks are used by market researchers who are interested in catching if a 

person is paying attention to information provided earlier in the survey. Attention checks often 

include tricky wording or encourage impossible answers to those who are not paying sufficient 

attention to the survey. Respondents can be dropped from a survey for failing such tests, thus the 

motivation for Turkers to warn their peers. In general, experienced Turkers, with more than 1,000 

completed tasks, know to be on alert. We find that our panelists, who are largely experienced 

users, are relatively immune to the standard attention and memory checks. Indeed, those who 

survey researcher’s name removed 

study link is presented here 
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impersonate to get into a survey are generally careful respondents. In the conjoint cell phone case 

study for example, those who impersonate were not less or more likely to fail the included 

memory check or attention check (adapted from Goodman, Cryder, & Cheema 2013). The point 

here is that it is hard to identify qualification cheats from patterns or inconsistency of their 

responses per traditional quality measures (e.g., time, attention checks, memory checks, etc.). 

They are in a performance sense, ironically good respondents. 

Figure 6. Attention Check (AC) Warning Example from Hits Worth Turking For  

 

 

  

  

Source: Reddit Forum: Hits Worth Turking For 

It was in observing this online behavior that caused us to wonder to what extent these online 

forums promote dishonesty. While we have personally observed numerous examples where 

warnings could lead to deception, we were interested in understanding if the repeat offenders in 

our panel were more likely to be active on one or more of these sites. Thus as part of our panel 

survey, we had given participants the option to self-disclose the communities in which they 

participate (see the list in Table 1). Of our panel respondents, 66% mentioned that they 

participated in at least one of these MTurk-related online communities. 

Table 1. Online Turker Communities 

Name 

(website) 

 

Purpose 

proportion of 

panelist* 

Hits Worth Turking For (HWTF) 

(https://www.reddit.com/r/ 

HITsWorthTurkingFor) 

 

To notify Turkers about tasks that pay at least 10 

cents/minute and warn fellow Turkers about tasks 

which include screening questions, attention checks 

(AC), and/or memory checks (MC). 

 

34% 

MTurk Grind 

(http://www.mturkgrind.com/) 

 

To help Turkers be successful on MTurk. Additionally, 

much of the chatroom discussion involves venting 

about Turking or daily life in general. It provides its 

users with a sense of community. It is also the place 

where scripts (browser tools that make finding good 

HITs easier and faster) are announced. 

 

23% 

Turk Opticon (TO) 

(https://turkopticon.ucsd.edu/) 

 

To rate “Requesters” (i.e., market researchers or anyone 

requesting “work” to be done by a Turker) in regard to 

pay, fairness, speed, and communicability. 

 

20% 

MTurk Forum 

(http://www.mturkforum.com/) 

To give advice and brag about one’s success (e.g., 

money made, HITs completed, etc.) on MTurk. 

 

17% 

Turker Nation 

(http://www.turkernation.com/) 

 

To “benefit the [Mturk] workers—allowing freedom of 

discussion of HITs, rating of requesters, talking about 

how to make more money, etc.” Registration is required 

to read or participate and Requesters are permitted to 

join, but with limited access to forums. 

 

9% 

* based on optional self-report in our panel survey. Participants can be a part of multiple communities. 

survey researcher name is presented here 
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Given this information, we compared those who consistently deceive with those who do not 

to see if impersonators were more likely to participate in one of these online communities. We 

were surprised to find that those who engaged in these sites, were actually less likely to be 

dishonest. Admittedly, it is possible that those who deceive are less likely to report frequenting 

these sites which would bias our results. Still, in our panel surveys, we have little evidence that 

participants deceive (or hide information) when there is no incentive to do so. Regardless, we 

recommend that market researchers monitor in real time these sites when a survey is live in case 

there is any information shared amongst respondents which could potentially harm the data. 

That said, we do not believe that these online communities are the primary source of 

deception, but that instead, deception is an inconspicuous action taken by a subsection of 

individual Turkers (e.g., by clearing cookies in a browser and making multiple attempts at a 

screener question on a survey). Indeed, Turker communities largely serve to help fellow workers 

identify jobs that will not be too onerous and will provide a reasonable economic return for work 

from home. 

Accordingly, we recommend that market researchers develop and test their own panel of 

Turkers as we did and remove any respondents who prove to be problematic over time by 

repeatedly deceiving. Doing so allows researchers to pre-qualify respondents based on certain 

characteristics (identified in the panel survey); thus, only make a survey available to those who 

would otherwise qualify. Like professional panel companies, this is done by keeping a database 

of respondents and flagging suspicious activity. In this way, researchers can benefit from the 

inexpensive participant pool that MTurk provides while limiting exposure to deception. 

IN BRIEF 

Not unlike other online participant pools, Turkers tend to be substantially younger than the 

general US population and have slightly lower household incomes. From this participant pool, 

we found that deception rates (lying about their qualifications in screener questions) to get into 

studies ranged from 25%–82% which is likely a function of how difficult it is to qualify for the 

screener (i.e., the harder it is to qualify, the higher the rate of cheating). While deception can 

occur through online user sites, it appears that active deception is more inconspicuous. 

Unsurprisingly, Turkers will not lie when there is no benefit of doing so (like in our original 

panel survey where respondents did not know that we were going to use the information for 

future surveys). They are conscientious and consistent when there is no motive to deceive. 

For those interested in using MTurk as a relatively inexpensive participant pool, we 

recommend building your own panel. It is easy and relatively cheap to build this panel, but must 

be tested for consistency so respondents who deceive can be quietly removed. An added benefit 

of this panel is that it would serve well for those needing a longitudinal sample. If creating a 

panel is not feasible, screening on MTurk should be done outside of the primary survey (in a pre-

survey) without announcing that it is a screener. 
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In recent years, the forces that impact healthcare decision-making have come under 

increasing scrutiny. Advances in clinical investigation, data analysis, and rapid dissemination of 

information have led to the development of standardized guidelines and treatment algorithms in 

many therapeutic categories. At the same time, physicians are under ever-increasing time 

pressure and are flooded with daunting amounts of new information on a daily basis. HCP 

diagnostic and treatment decisions are one of the most important influences on patient outcomes. 

New technologies and electronic medical records support evidence-based medicine and use of 

standardized algorithms for both diagnosis and treatment decisions—yet evidence suggests that 

physicians regularly deviate from published guidelines in some therapeutic categories, relying on 

personal experience and heuristics to make decisions (Groopman 2008). From a marketing 

perspective, research on HCP decision-making provides important insight on the drivers of 

market share for pharmaceutical brands. From a public policy perspective, research on HCP 

decision-making may provide clues to misdiagnosis and suboptimal treatment recommendations 

in challenging therapeutic categories. 

In this paper, we discuss a new market research tool—process tracing—that can be used to 

identify and investigate physician treatment algorithms in today’s rapidly changing 

pharmaceutical markets. Process tracing is a method for investigating how physicians and other 

healthcare providers make diagnosis and treatment decisions. Originally developed for consumer 

market research on choice processes conducted in the 1970’s, process tracing investigates the 

steps physicians take to acquire information about their patients, as well as their ultimate 

diagnosis or treatment decisions. The process tracing approach can be conveniently implemented 

in an online survey environment as a relatively simple modification of a traditional choice 

exercise. 

To illustrate the application of these methods, we provide a detailed case study involving a 

survey of 200 physicians in the US and EU. We provide details on survey design, model 

specification, and post-survey analysis. In the case study, we show how raw data from the survey 

provides information regarding the choice process that is not available with the traditional choice 

modeling methods. In particular, the process tracing exercise provides detailed information on 

the depth of information search—how much information is required to make a treatment 

decision—as well as the sequence of patient attributes investigated (a proxy for attribute 

importance). The new choice model can be used to summarize an algorithm for the market as a 

whole, or to develop a physician segmentation based on the algorithms they use for treating 

patients. Results from the process tracing approach are also compared and contrasted with a 

traditional discrete choice modeling approach. 

Our paper begins with a brief introduction to process tracing and the information board, 

comparing and contrasting this approach with other methodologies. Section 2 describes the 
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PT/IB choice model. Section 3 presents the case study. Section 4 concludes and makes some 

suggestions for future research. 

BACKGROUND—PROCESS TRACING AND THE INFORMATION BOARD 

Stedman’s Medical Dictionary defines an algorithm as . . . 

A systematic process consisting of an ordered sequence of steps, 
each step depending on the outcome of the previous one. In clinical 
medicine, a step-by-step protocol for management of a health care 
problem. 

In pharmaceutical markets, there are many reasons to suggest that healthcare professionals 

use algorithms to make diagnosis and treatment decisions. Perhaps most importantly, regulatory 

authorities often produce guidelines for managing patient care. Guidelines are systematically 

developed statements designed to assist practitioners and patients in making decisions about 

appropriate healthcare for specific clinical situations. They typically represent a consensus on the 

best information medical science has to offer in specific clinical situations, and in many 

situations these guidelines are delivered in an algorithmic format. This behavior is reinforced by 

payers who often require that physicians follow guidelines for reimbursement of medicines and 

healthcare services. 

Traditional preference models that are regularly used in marketing research assume that 

individuals evaluate and weigh/trade-off attributes to make a choice. Discrete choice experiments 

and stated preference methods using this framework are now commonplace, clearly evidenced by 

the large number of papers presented and referenced at Sawtooth Software conferences over 

many years. There is also an established literature considering alternative non-compensatory 

theories of choice—models with screening rules (Gilbride and Allenby 2004, 2005), 

lexicographic preferences (Kohli and Jedidi 2007), and other modifications have also been 

investigated. Many of these alternative approaches can be viewed as heuristics—short, simplified 

decision rules that may be optimal in some contexts. 

A related literature investigates theories of choice by asking market participants to report on 

how and why they make their decisions while they are making them—these process tracing (PT) 

methods have been used in marketing research to investigate information processing in choice 

experiments (Lohse and Johnson 1996, Zhu and Timmermans 2010). More generally, they have 

been utilized in many research contexts to investigate the “hows” and “whys” of decision-

making; these methodologies are summarized in the Handbook of Process Tracing Methods for 

Decision-Making (Schulte-Mecklenbeck et al. 2010). 

Information boards (IB) were originally developed for investigating choice processes and 

measuring attribute importance in consumer research (Payne 1976). In a typical application, the 

names of product attributes were placed on cards arranged on a large board. Consumers were 

asked to turn over the cards sequentially to reveal underlying product attributes and to 

subsequently make a purchase decision when enough information was displayed. Information 

boards provide detail on the depth and direction of information search strategies, as well as the 

impact of specific information on decisions. The PT/IB choice task is described in Figure 1 

below, and can be easily implemented in an online survey. 
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Figure 1. PT/IB Choice Tasks 

 

Not surprisingly, IB methods have also been used to investigate healthcare treatment and 

diagnosis decisions as part of the process tracing methodology (Chinburapa et al. 1993). In 

healthcare applications, HCPs turn over cards to reveal specific patient characteristics, and are 

then asked whether they are confident in making a prescribing or diagnosis decision, or would 

like to see more patient information. 

MODELING WITH PT/IB DATA 

The PT/IB model simultaneously investigates two choices: 

1. Information search—which patient characteristic is uncovered next? 

2. Should I prescribe or acquire more information? 

The model structure is described in Figure 2 below: 
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Figure 2. PT/IB Model Structure

 

It is possible to estimate the model components jointly as sequential multinomial logit 

choices via HB. It is also possible, under certain assumptions, to model each component 

separately via HB MNL. Generating a simulation from the model is not trivial. Since we are 

investigating both the order in which attributes are investigated as well as the impact of revealed 

attribute levels on choices, with even moderate numbers of patient attributes there are billions of 

possible algorithms to consider. However, as with standard decision trees, relatively simple 

heuristics can be used to generate algorithms that are useful. For the case study we describe in 

the next section, we use a simple first choice heuristic to develop algorithms. Research for 

additional approaches to quickly generate algorithms for these models is ongoing. 

CASE STUDY 

As an illustration of the PT/IB approach, we present a case study investigating the impact of 

patient attributes on prescribing for a new drug in development to accelerate fracture healing. 

The study involved an online survey of 200 orthopedic surgeons in the US and EU, and included 

a novel application of the information board and a comparison of results with traditional discrete 

choice methods. 

More specifically, the study considered patients with tibia fractures. The tibia (or shinbone) is 

the larger of the two bones in the leg below the knee, and is the most frequently fractured “long” 

bone in the body (long bones include the femur, humerus, tibia, and fibula).  The tibia has poor 

blood supply because it is surrounded mostly by skin and fat, instead of muscle; poor blood 

supply inhibits fracture healing. Typical healing problems include malunion (the bone heals in 

the wrong place), nonunion (the fracture never heals), and delayed union (healing takes longer 

than expected). Many clinical trials have investigated the use of osteoporosis drugs (e.g., 

bisphosphonates, parathyroid hormone [PTH] therapy) to accelerate fracture healing, but results 

have not been successful to date. In this therapeutic area, the PT/IB approach was viewed as 

potentially quite useful because there is no standard clinical definition for characterizing a healed 
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fracture (Morshed et al. 2008), there are no benchmark pharmaceutical standards of care, and 

approaches to treatment with the new therapy could vary widely across physicians depending on 

their evaluation of patient characteristics and interest in the new therapy. 

For the PT/IB exercises, patients were defined using patient attributes that included fracture 

characteristics, patient background variables, and other characteristics, such as length of hospital 

stay. Hypothetical patient cases were generated by experimental design. Physicians evaluated 8 

different patient cases in the PT/IB choice tasks. For each case, physicians were instructed to 

select patient attributes in order of their importance for making a treatment decision regarding 

use of the new product, Product Y. After selecting a patient characteristic, physicians were asked: 

“Are you . . .” 

 Confident in prescribing Product Y for this patient. 

 Confident in NOT prescribing Product Y for this patient. 

 Undecided, would like to see more patient characteristics. 

Physicians continued selecting patient attributes until they were comfortable making a 

prescribing decision (Yes/No) for Product Y. If a physician continued without making a choice 

through 10 patient attributes, they were asked to make a final decision at that time. 

Figure 3 below shows the raw choice data summarized across all PT/IB tasks. Patient cases 

in Figure 3 are identified by the number of patient attributes selected when physicians made their 

definitive prescribing decision. Across all choice tasks, Figure 3 suggests that physicians made a 

prescribing decision in 36% of patient cases with 3 attributes selected; allowing physicians to 

select up to 9 attributes resolved the majority of uncertainty, with prescribing decisions made for 

93% of patient cases. 

Figure 3. Raw Choice Data Summary by Number of Patient Characteristics Selected 
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Figures 4a and 4b provide additional information on the choice exercises. While physicians 

evaluated 8 different patient cases, the experimental design was blocked, so different physicians 

saw some of the same patient cases. The average number of patient characteristics selected for 

each fixed case in the design is shown in Figure 4a. Figure 4b provides a frequency distribution 

for the average number of characteristics selected per physician. 

  Figure 4a                                                               Figure 4b 

    Average Number of Patient Characteristics     Average Number of Patient Characteristics 

Selected Across Fixed Patient Cases                               Selected Per Physician 

 

These figures illustrate that the depth of information search varies by physician and across 

patients. Not surprisingly, some physicians make decisions more quickly than others, and some 

patients are more “difficult” to treat than others—so more information is required to make a 

treatment decision. 

The case study also included a comparison of the PT/IB approach with traditional discrete 

choice exercises. After completing the 8 PT/IB patient cases, physicians were asked to complete 

another 8 discrete choice exercises with different patient cases. In the DC exercises, all patient 

attributes were displayed and the physicians were simply asked whether or not they would 

prescribe Product Y for each patient. 

Figure 5 displays the average survey task durations for the PT/IB and DC exercises. For both 

methodologies, the initial tasks take the most time, and reductions in task duration occur as 

respondents complete more exercises. 
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Figure 5. PT/IB and DC Task Durations 

 

The initial PT/IB task duration—a whopping 150 seconds—stems from an extensive set of 

instructions provided to respondents to ensure they clearly understood the PT/IB task in the 

survey. In future research we plan to investigate if this can be shortened to some degree. A 

comparison across methodologies suggests the PT/IB tasks take 4 to 5 times as long as 

traditional DC tasks—the difference reflects the extra time associated with collecting the process 

information and the sequence of attributes investigated for each patient case in the PT/IB 

approach. 

With traditional DC exercises, reductions in choice task duration as the number of tasks 

increase have been associated with learning and task simplification in the survey environment 

(Allenby et al. 2005, Johnson and Orme 1996). We also investigated the number of patient 

attributes selected in the PT/IB approach as respondents completed more exercises. While PT/IB 

task duration decreases with the number of exercises, the average number of attributes selected 

hovered around 6 across all exercises. At least for the PT/IB approach, these results suggest that 

it is not task simplification per se (i.e., looking at or concentrating on fewer attributes) so much 

as learning about the exercises within the survey environment that produces the reduction in task 

duration as the survey progresses. 

We also compared results from the PT/IB exercises and modeled choices with results from 

the traditional DC choice exercises. Figure 6a reports the percentage of patient cases where 

Product Y was prescribed for the two approaches. While individual respondents evaluated 

different patient cases for separate sets of exercises, the designs were balanced across exercises, 

so we should expect roughly the same rates of prescribing under each approach if PT/IB truly 

captures all of the relevant information for each patient. Figure 6a suggests overall prescribing 

rates are very similar across methodologies. 
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Figure 6a                                                    Figure 6b 

            % of Patient Cases Where             % of Out-of-Sample Patient Cases Where 

            Product Y is Prescribed                  Modeled Selection = Hold Out Selection 

     

Figure 6b compares out-of-sample forecasting performance for PT/IB versus DC. For this 

analysis, we removed one of the choice tasks at random from the choice sets for each approach 

for each respondent, estimated the model with the remaining 7 exercises, and then generated a 

first choice forecast based on the estimated models and the held out patient cases. The DC choice 

model is estimated via HB using a standard binary logit. To generate a forecast for the PT/IB 

model, we use a simple first choice heuristic. 

1. Select the attribute with highest probability of being selected in model 1. 

2. For each patient case in the sample, compute prescribing probabilities for Model 2, 

conditional on the levels of revealed attributes. In each terminal node, if P (Yes or No) 

(i.e., the probability of making a decision) >P, some minimum threshold, stop. 

3. Otherwise, continue and, select the next attribute with the highest probability of being 

selected in Model 1. Repeat step 2. 

After the heuristic has stopped for every patient case, we compute the predicted choice for 

each case as the highest predicted probability (Yes or No) and compare it with response from the 

holdout task. These results are displayed in Figure 6b. 

In Figure 6b, results for the traditional discrete choice approach are slightly better than PT/IB 

with individual estimates. The PT/IB model where all physicians use the same algorithm fares 

poorly—heterogeneity is clearly a characteristic of physician prescribing in this market, and one 

should not expect an aggregate model to perform well in this situations. 

We also compared traditional estimates of attribute importance from the DC exercises/model 

with those from the PT/IB approach. For the latter, we estimated attribute importance using the 

percentage of times the attribute was selected across all PT/IB tasks. Table 1 displays the 

importance rank (1st is more important) for each methodology. 
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Table 1. Comparison of Attribute Importance Estimates 

Category Attribute 

Attribute Importance Rank 

PT/IB DC 

Fracture 

Characteristics 

FC1 4 5 

FC2 7 8 

FC3 2 1 

FC4 3 3 

FC5 6 7 

FC6 5 4 

Patient Background 

PB1 9 6 

PB2 11 12 

PB3 8 10 

PB4 10 13 

PB5 13 12 

PB6 12 11 

Other O1 1 2 

Overall, the attribute importance ranks appear to be quite consistent when averaged across 

respondents and patient cases. 

CONCLUSIONS 

Process tracing is a method for investigating how physicians and other healthcare providers 

make diagnosis and treatment decisions. Originally developed for consumer market research on 

choice processes conducted in the 1970’s, process tracing investigates the steps physicians take 

to acquire information about their patients, as well as their ultimate diagnosis or treatment 

decisions. 

The process tracing approach can be conveniently implemented in an online survey 

environment using the information board, a relatively simple modification of a traditional choice 

exercise. 

Research suggests that the PT/IB approach provides new information concerning: 

 Patient attribute importance 

 Patterns and depth of physician information search 

 Stopping rules 

 Physician treatment algorithms 

Results of process tracing modeling with heterogeneity compare favorably with traditional 

discrete choice results. Future research will further investigate modeling approaches and 

different heuristics for generating algorithms and predictions for the PT/IB approach. 
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ABSTRACT 

Choice deferral, the “none” alternative in a discrete choice task, has traditionally been asked 

in a single stage free choice task, where “none” is another alternative, or in a dual-response 

forced choice task, where selection is followed by evaluation as a way to estimate the “none” 

utility. Some researchers treat the “none” alternative only as a way of allowing respondents to 

opt out of a difficult choice scenario while other researchers also view the “none” alternative as a 

means of estimating likelihood not to purchase, thus, gaining insight into product or service 

demand. Since it is not always possible to calibrate choice deferral with secondary data, as in the 

case of new products or services, we further examine the outcome regarding different approaches 

of asking the “none” option. While some researchers favor the traditional “none” over the dual-

response approach, it is argued that the dual-response approach, where selection precedes 

evaluation, is predisposed to reduction of cognitive dissonance and a reversed dual response, 

where evaluation precedes selection, is proposed as an alternative. 

INTRODUCTION 

The traditional rating based conjoint (Green & Rao 1971), where a single product or service 

profile is rated in terms of willingness to purchase, was a good beginning to the tradeoff task but 

not ideal since a rating is further removed from a behavior and an estimation of respondents who 

would not prescribe to the offering could not be derived. The work of McFadden (1974), 

utilizing the conditional logit as an econometric model of population choice behavior based on 

the decision rules of individuals, was later combined with an experimental design within a 

multinomial logit framework in choice modeling by Louviere and Woodworth (1983), commonly 

known as discrete choice analysis. The introduction of discrete choice modeling was an 

improvement to the rating based conjoint because a discrete choice was closer to a behavior, a 

behavioral intent rather than a rating. 

In discrete choice analysis the “none” option was offered as another alternative, thus 

providing the benefit of the respondent to opt out of making a choice as well as allowing for an 

estimation of the proportion of respondents who would not be interested in the current product 

line. But the value of the traditional “none” option is debatable because selecting the “none” 

alternative during the choice task could be an escape strategy to make the exercise less 

burdensome but it can also serve to balance the utilities in situations where alternatives are either 

high or low on features, making the decision more difficult. It has been suggested to estimate the 

“none” parameter but not to include the “none” alternative in market estimations because it is not 

clear why respondents choose “none” during the discrete choice task (Sawtooth Software 2013). 

It is therefore suggested that a better understanding of why and when respondents choose the 

“none” alternative during the tradeoff task will make the “none” parameter useful during 

simulations as a way to estimate choice deferral. 
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According to Karty and Yu (2012), the estimation of the “none” option as a means of 

determining the proportion of respondents not interested in the combination of offerings could be 

biased, in most cases overestimating the likelihood of purchase. Researchers are often interested 

in the estimation of the “none” utility in a discrete choice model as a means of estimating share 

of preference for those not interested in the offering. Any bias in the deferred choice response 

(the “none” option) will cause the model to either over-predict or under-predict the likelihood to 

purchase the product or line of products. It is often the case that the “none” option has 

traditionally been under-selected, thus, overestimating willingness to purchase (Breidert, Hahsler 

& Reutterer 2006, Karty & Yu 2012). 

Overestimation of willingness to purchase when “none” is another alternative in the choice 

set has evolved into the dual-response approach (Uldry, Diener & Severin 2002, as cited in 

Brazell, Diener, Karniouchina, Moore, Séverin & Uldry 2006). The dual-response technique 

initially presents the respondent with a forced choice of alternatives, without the “none” option. 

Upon making a selection, the respondent is then presented with a follow-up question regarding 

willingness to purchase the product just chosen. This follow up question allows for the 

estimation of the “none” utility in the multinomial logit model. The dual response increased the 

proportion of “none” over the traditional single-stage technique where “none” was another 

alternative in the choice set. In addition, the dual response provided more data for estimating the 

feature levels than the single-stage approach, especially in cases where the “none” alternative 

was overly chosen. Although the dual response has increased the choice share for “none” and 

allowed for more data to estimate the feature levels, there was still the plaguing issue of 

overestimating willingness to purchase when compared to real-world data. 

Differences in the proportion of choice deferral as a function of either the traditional “none” 

or dual-response methodology is further confounded by the number of attributes in the study. 

Choice deferral is treated differently in studies with two attributes, such as product and price, 

versus studies with a larger number of attributes. Tradeoff studies with fewer attributes often 

have a clear compromise alternative, whereas studies with more attributes do not have clear 

compromise alternatives. The lack of a clear compromise alternative in multi-attribute studies 

suggests that “none” has a lower disproportionality in drawing preference from the other 

alternatives as compared to the presence of “none” in a study with fewer attributes (Dhar & 

Simonson 2003). In studies where the focus is on fewer attributes it is assumed that there is a 

larger disproportionality when adding or deleting the “none” option due to a clear compromise 

option in the choice tasks. 

To reduce the likelihood of purchase that is often an overestimation in survey research, the 

dual response was converted from a binary yes/no scale of purchase intent to a 5-point scale, 

where the researcher was able to further calibrate willingness to purchase by considering top box 

as purchasing the selected product and the remainder of the scale as indication of non-purchase 

(Karty & Yu 2012). However, manipulating the cutoff of purchase intent is subjective and does 

not address the underlying issue of measurement validity of choice deferral. 

Acknowledging that stated choices (from a choice task) are different from revealed 

preferences (real-world behavioral data), another option to fine tuning the “none” option in a 

choice task (either the traditional single-stage none or dual-response methodology) has been 

proposed by Ben-Akiva, Bradley, Morikawa, Benjamin, Novak, Oppewal, & Rao (1994) through 

combining revealed and preference data. Combining multiple sources of data (revealed 

preference, stated intention, stated choice, stated judgment ratings, attribute ratings, similarity 
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ratings, attitudinal ratings, background characteristics of the respondents) allows for a more 

accurate estimation of choice models for both the features as well as the “none” alternative. 

The unifying framework of Ben-Akiva et al. (1994) is a reasonable approach to correct for 

biased survey responses by calibrating all model parameters, including the estimation of the 

“none” utility. However, this modeling framework that increases the external validity of the 

predictive models has limitations. According to Ben-Akiva et al. (1994): 

[I]t is not possible to use revealed preference data to estimate 
alternative-specific variables in the case of a new alternative that 
does not currently exist in the marketplace. Since predicting 
demand for new alternatives is one of the major reasons for 
collecting stated preference data, this situation arises quite often. In 
such cases, we have no choice but to rely on stated preference 
data for attributes or constants specific to the new alternatives. 
(p. 347) 

Given that the “none” option does not draw proportionately from all alternatives, especially 

when the new alternatives do not exist in the marketplace, the unifying framework of combining 

revealed and stated preference data to calibrate the “none” alternative is not a viable option in all 

cases, suggesting the need to further examine the most ecologically valid approach towards 

measuring choice deferral. 

Choosing the “none” alternative is not only a function of how it is asked, either as another 

alternative in a free-choice task (traditional “none”) or after making a selection in a forced-

choice task (dual response), it is also influenced by the alternatives offered in the competitive set. 

Tversky and Shafir (1992) have examined the implication of choice under conflict on deferred 

decision, the decision to choose the “none” option. Students were presented with two apartment 

options varying in distance from campus and monthly rent. They were given the option of 

choosing either apartment or continuing to look for apartments at the risk of losing one or both of 

the apartments. The results show that choice deferral in search of additional alternatives depends 

not only on the best available options but also in the difficulty of choosing among the existing 

options when they are equally attractive. When the selection decision among the competitive set 

of alternatives is difficult because there are at least two attractive options people would rather 

defer their decision as a way to reduce their current state of conflict. 

On the basis of this reasoning, that choosing the “none” alternative is a choice deferral 

strategy to reduce the state of conflict, we suggest that “none” will be chosen less often when it 

proves not to be a choice deferral strategy. We present respondents with the traditional “none” 

discrete choice task, however, in scenarios where “none” is selected, the respondent is then 

presented with a forced choice. Forcing the respondent to choose a product as a follow-up when 

the “none” alternative is selected suggests that conflict is not reduced because product selection 

is still required. Hence, we propose the first hypothesis: 

H1: Traditional “none” (a free choice task with “none” as another alternative) with a follow 

up forced-choice when the “none” alternative is chosen will have a lower proportion of choice 

deferral than the traditional “none.” 

Furthering the research on decision making, Dhar and Simonson (2003) introduced Leon 

Festinger’s (1964) theory of Cognitive Dissonance suggesting that a respondent is under conflict 
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when making a choice. When under conflict, respondents are more likely to select the no-choice 

option that takes shares from the other alternatives. “Free choice (having the no-choice option) 

provides an alternative route for reducing the psychological discomfort associated with forced 

choice under preference uncertainty. If the option not to choose is unavailable consumers resolve 

the forced choice problem by selecting other options that are associated with the least potential 

for significant error” (Dhar & Simonson 2003, p. 148). 

Dhar and Simonson (2003) researched the difference in the no-choice option between a 

single-stage free choice task, where “none” is another alternative (traditional “none”), and a two-

stage task, where a forced choice is followed by no-choice option (dual response). Respondents 

in the single-stage condition were presented with two or three product alternatives and also 

presented, as another alternative, the option to defer their product choice and go to another store. 

Conversely, respondents in the two-stage condition were first asked to choose between two or 

three products, without the no-choice option, hence a forced choice. After making the forced 

selection they were asked if they would remain with their choice or prefer to go to another store, 

hence, deferring their option. Across all the tested product categories 31% more respondents 

chose to defer choice in the two-stage condition than in the single-stage condition. For example, 

in the microwave oven category 10% of the respondents deferred choice in the single stage free 

choice task compared to 35% who selected to defer choice in the two-stage task. Although this 

trend is consistent across all product categories, the magnitude difference in choice deferral 

between the two conditions varies, most likely as a function of product involvement. 

To replicate the results of Dhar and Simonson (2003), the second hypothesis is proposed: 

H2: Dual-response (a forced choice is followed by a no-choice option) will have higher 

proportion of choice deferral than the traditional “none” (single-stage free choice task where 

“none” is another alternative). 

When comparing the traditional “none” to the dual-response task, Dhar and Simonson (2003) 

explained the greater degree of choice deferral in the dual-response task as the respondents’ 

strategy of alleviating the psychological discomfort caused by a forced choice. They propose that 

this assertion might appear inconsistent with the endowment effect where selected options are 

overvalued because this effect does not apply to psychological discomfort generated by forced 

choice. Although this is a plausible explanation when compared to the single-stage free choice 

task, cognitive dissonance theory would predict that respondents would choose to overvalue their 

selection as a means of reducing the discrepancy between a behavior and subsequent evaluation, 

hence, reduce choice deferral. The assertion by Dhar and Simonson (2003) that there is no 

reduction of cognitive dissonance in a forced choice task followed by evaluation suggests the 

need further investigation. 

Given respondents’ strategy of choosing the no-choice option as a means of alleviating 

discomfort when not fully committed to a selection in a forced choice task suggests that this 

effect of discomfort should dissipate with time, hence the respondent being more likely to 

support the forced selection after a time delay. Dhar and Simonson (2003) assigned respondents 

to either a single-stage or two-stage stage decision task. Those in the two-stage decision task 

with time delay chose among the items in the forced choice task, then participated in a filler task 

that took five minutes and then returned to the original task, evaluating the items chosen to 

decide if to remain with these items or go to another store to purchase another product. As 

expected, choice deferral was greater in the dual-stage task, when respondents were given the no 
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choice option immediately after being forced to choose, than in the single stage decision where 

the “none” option was another alternative. However, the results show that time delay in the dual-

response task decreased the level of deferral to the degree that the share of the “none” alternative 

was not significantly different than the single stage task. A plausible explanation is that given 

enough time to distance the selection from the context of the competitive set, respondents no 

longer experience discomfort from a forced choice. Hence, the two-stage forced choice task with 

time delay is analogous to the single-stage task with free choice in terms of choice deferral. 

So far the single-stage free choice, where “none” is another alternative (traditional “none”) 

has been compared to the two-stage forced choice, where forced selection of an alternative is 

followed by a willingness to purchase question (dual response). According to Dhar and Nowlis 

(2004), in the real world, the consumer might be faced with a buy/non-buy decision followed by 

a selection decision regarding which option to buy. 

Specifically, when the buy/no-buy decision is the initial focus 
(referred to as buy/no-buy response mode), consumer decision 
processes are more likely to be characterized by alternative-based 
evaluations (whether an option is acceptable). In contrast, 
consumers who are in an unconditional brand-choice response 
mode (the consumer has the option not to choose) are more likely 
to compare rival brands with each other, a process that results in 
more attribute based evaluations. (p. 423) 

It is our interpretation that the sequence of evaluation and selection within this two-phase process 

could be context dependent or due to the level of category involvement, each yielding a different 

cognitive strategy with different results regarding choice deferral as well as the weight assigned 

to the features of the product alternatives. 

To illustrate that different decision processes yield different outcomes of choice deferral, 

Dhar and Nowlis (2004) offered two items, each option had three unique good features and three 

shared bad features. These items were offered across three between-subject conditions: The 

buy/no-buy condition presented the willingness to purchase option (choice deferral) before the 

selection. The unconditional brand choice option offered the option not to choose as another 

alternative (traditional “none”). The modified buy/no-buy condition is a delayed dual response in 

which respondents were forced to choose between two items in each of the three categories and 

after a time delay they evaluated their selections in terms of keeping the item or going to another 

store or location. Averaged across three categories (restaurants, vacations, apartments), 53% of 

respondents deferred choice in the buy/no-buy condition, 37% of respondents deferred choice in 

the traditional “none” condition, and 32% of respondents deferred choice in the modified buy/no-

buy condition (delayed dual response). As in the previous study by Dhar and Simonson (2003), 

the delayed dual response did not differ from the traditional “none.” Of particular interest is that 

the respondents in the buy/no-buy condition had the greatest degree of choice deferral. Dhar and 

Nowlis (2004) proposed that the buy/no-buy condition, where evaluation precedes selection, 

facilitates the use of a category reference to evaluate the options. Conversely, in the traditional 

“none” condition the focus is on the differences among the options and the category reference 

information is less relevant on selection. 

Dhar and Nowlis (2004) further tested the category reference effect in both the buy/no-buy 

condition and single stage with none option (traditional “none” condition) by providing 
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respondents with either a superior or inferior category reference scenario before conducting the 

choice task. The results of the first study indicate that when provided with a superior category 

reference (when the options are inferior to the reference category), 39% of respondents deferred 

choice in the traditional “none” condition while 62% of respondents deferred choice in the 

buy/no-buy condition. Furthermore, when the category reference is inferior to the alternatives 

respondents in the buy/no-buy condition are less likely to defer choice than respondents in the 

traditional “none” condition. This finding supports that in the buy/no-buy condition, when 

evaluation precedes selection, the respondents are using category reference as a baseline for 

choice deferral. 

Dhar and Nowlis (2004) show that choice outcomes are affected by the order of the buy/no-

buy decision and selection. Interestingly, their study did not compare the buy/no-buy condition to 

the dual-response condition in which the only difference is the sequence of the forced selection 

and evaluation (choice deferral question). It has been shown that the respondent utilizes category 

reference when the buy/no-buy decision precedes selection, however, an opportunity of 

additional research is to further examine the implication of a traditional dual-response task where 

selection precedes the choice deferral question. Before expanding upon the research of Dhar and 

Nowlis (2004), it was first necessary to replicate their findings, however, the relationship of the 

reference category to the scenarios was not controlled such that an overt category reference was 

not offered. 

Based on the strategy of category reference in the buy/no-buy dual task condition (we refer to 

this condition as the reversed dual response), we propose our third hypothesis: 

H3: Reversed dual response, where evaluation precedes selection, will have higher 

proportion of choice deferral than the traditional “none” (single-stage free choice task). 

Drawing upon the research of Leon Festinger (Festinger 1955, as cited in Brehm 1956) on 

“the relation between cognition and action,” Brehm (1956) further examined “post decision 

changes in the desirability of alternatives” as it applied to consumer research. Specifically, 

Brehm (1956) hypothesized the following: 

1. Choosing between two alternatives creates dissonance and a 
consequent pressure to reduce it. The dissonance is reduced by 
making the chosen alternative more desirable and the unchosen 
alternative less desirable after the choice than they were before it. 
2. The magnitude of the dissonance and the consequent pressure 
to reduce it are greater the more closely the alternatives approach 
equal desirability. (p. 384) 

In the context of consumer behavior, Brehm (1956) had respondents rate 8 products (an 

automatic coffee-maker, an electric sandwich grill, a silk-screen reproduction, an automatic 

toaster, a fluorescent desk lamp, a book of art reproductions, a stop watch, and a portable radio) 

in terms of usefulness (desirability). To manipulate the degree of dissonance, subjects were 

presented with two products from which they can keep one. In the high dissonance condition the 

second product was as highly desirable as the first, in the medium dissonance condition the 

second product was moderately lower in desirability than the first, and in the low dissonance 

condition the second product was much less desirable than the first. After making a choice 

between the two products, respondents were asked to rate the products again, hence, allowing to 
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measure the change of desirability for the chosen and unchosen products as well as the products 

not involved in the choice. Change in dissonance was measured by comparing the change 

between the first and second rating of the chosen and unchosen products. As expected, there was 

a reduction of cognitive dissonance by increasing the desirability of the chosen product and 

decreasing the desirability of the unchosen product. Furthermore, the degree of dissonance 

reduction was greater when both products were equal in desirability. 

It has always been the case that to reduce discomfort within the individual there needs to be 

agreement between thoughts, emotions, and actions. An advancement since Festiner’s (1957) 

original work is that dissonance reduction has been found to be multi-faceted and rather complex 

throughout the decision process. Sweeney, Hausknecht, and Soutar (2000) have improved the 

traditional desirability measurement by identifying three dimensions of dissonance, one 

emotional and two cognitive (wisdom of purchase and concern over deal) in the development of 

a multidimensional scale to measure cognitive dissonance after purchase. Additionally, Sweeney 

et al. (2000) cited purchase criteria that must exist for dissonance to occur with an important 

criterion being “the consumer must feel free in making the choice. That is, the decision must be 

made voluntarily” (p. 374). It could be argued that a forced choice task, not giving the 

respondent the “none” option, is indeed a free choice because the consumer chooses freely 

among the provided options. That is, the respondent is engaging in cognitive process to evaluate 

the merit of the selection such that there is personal responsibility towards justifying the choice. 

In addition, it is suggested that in a real-world situation, where the consumer has the option to 

defer choice, the choice is still forced, hindered by financial, time, and availability constraints. 

Acknowledging previous work concerning the role of cognitive dissonance in consumer 

decision making towards high involvement products, where the person has more investment in 

the decision, Nordvall (2014) focused on low involvement purchase such as grocery shopping for 

organic food. Theoretically, regardless of product involvement, the same underlying mechanism 

should apply where attitudes and behaviors should be in agreement to avoid a state of stress. 

Participants were presented with equal numbers of organic and non-organic items on a computer 

screen. Each item was rated on a Likert scale from “never buy” to “buy sometimes” to “buy very 

often.” For each pair of items the rating of each item indicated which items participants 

purchased to the same extent, to be considered equally attractive. Cognitive dissonance would 

result when both items are equally attractive, and there would be disagreement between attitudes 

and behavior. The participants chose between pairs of products rated similarly attractive and 

preferable, with each pair having one organic and one non-organic similar product. Participants 

were told to choose a product into the shopping basket from each pair. After selection the 

participants rated each product again. Along with the product was a reminder to the respondent if 

the product was chosen or rejected. The results show significantly higher score changes for the 

non-organic item after it was chosen, hence supporting dissonance reduction by raising the 

desirability of the chosen item. However, there should also be lowering of the desirability of the 

rejected item. No tendencies for dissonance reduction was found for the organic item when 

choosing the non-organic option. Basically, the organic items were not diminished in rating when 

rejected in favor of the non-organic items. Although not all hypotheses were supported for this 

low involvement product, in agreement with Brehm (1956), this study shows an inclination of 

the consumer to indicate an increased preference towards the chosen product as compared to 

preselection. 
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Research showing increased product favorability, hence the tendency to reduce choice 

deferral, after a selection has been made extends towards the traditional dual-response 

methodology in discrete choice analysis where selection precedes evaluation of willingness to 

purchase. It is suggested that traditional dual response creates a situation of cognitive dissonance 

within the individual that is diminished by reducing choice deferral, hence increasing willingness 

to purchase the product just selected. Drawing upon reduction of cognitive dissonance theory 

(Brehm 1956, Festinger & Carlsmith 1959) as a mechanism of reducing stress by changing 

thoughts to be consistent with behaviors, specifically as it applies to consumer behavior, we 

propose the fourth hypothesis: 

H4: Reversed dual response, where the opportunity to defer choice precedes selection, will 

have higher proportion of choice deferral than the traditional dual response, where selection 

precedes the opportunity to defer choice. 

PARTICIPANTS AND PROCEDURE 

A nine-minute online study was conducted with 1,201 respondents. Respondents were 

primary grocery shoppers age 24 to 65, who buy aluminum foil at least once every six months. 

Two attributes were tested, product and price, with each product having five unique price points 

(alternative-specific design). We used discrete choice methodology with different versions of the 

“none” alternative (four conditions with each condition having approximately 300 respondents). 

Respondents rated 13 scenarios, with one of the scenarios used as a holdout to test the accuracy 

of the model. Figures 1 through 4 illustrate the respondent task in each condition. 

Figure 1. Traditional Dual Response with forced choice followed by 

willingness to purchase question. 
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Figure 2. Reversed Dual Response with Buy/No-Buy question followed by forced choice. 

The second grid appears on the same screen after the first question is answered. Regardless 

if the answer is yes or no, the follow up grid will always appear. 
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Figure 3. Traditional “None” where the “None” alternative is another option. 

 

Figure 4. Traditional “None” with follow up product selection when “None” is chosen. 

The second grid appears on the same screen only when the “None” alternative is selected. If 

“None” is not selected, the follow up grid is skipped. 
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RESULTS AND DISCUSSION 

To evaluate the effect of how the “none” alternative is asked in a discrete choice task on 

choice deferral, for each respondent the mean aggregated “none” response across the twelve 

scenarios was entered into a one-way analysis of variance. An alpha level of .05 was used for all 

statistical tests. There was a significant main effect for choice deferral condition, F (3, 1197) = 

19.47, p = .001. 

Consistent with previous research, Hypothesis 1 has been supported (Table 1). Further 

planned pairwise comparisons using the Bonferroni procedure revealed a significant difference 

(p = .02) between choice deferral in the traditional “none” with follow-up (Mean (M) = 3.9%, 

Standard Error (SE) = .0138) compared to choice deferral in the traditional “none” (M = 7.9%, 

SE = .0138). When choice deferral was followed by a forced choice, respondents adopted the 

strategy of choosing a viable product thereby treating the free choice task as a forced choice and 

avoiding the follow-up question. Given that choosing the “none” alternative is a choice deferral 

strategy to reduce discomfort in the presence of a difficult decision between alternatives 

(Tversky and Shafir 1992), when choice deferral did not show to be a viable way of resolving 

this difficult decision due to a follow-up forced choice question, the respondents abandoned the 

choice deferral strategy in the free choice task and treated the task as a forced choice. 

Inconsistent with previous research, Hypothesis 2 has not been significantly supported but 

the results are in the correct direction (Table 1). Further planned pairwise comparisons using the 

Bonferroni procedure revealed that choice deferral in the traditional dual response (M = 9.6%, 

SE = .0138) was not significantly different than choice deferral in the traditional “none” (M = 

7.9%, SE = .0138). Dhar and Simonson (2003) believe that in the free choice task (traditional 

“none”), consumers experience a greater degree of commitment to an option when viewed as 

chosen freely in the presence of a no choice option. Conversely, when forced to make a choice 

and then given the opportunity to defer that choice, consumers are more likely to take advantage 

of this offer when compared to the free choice task. In could be that not being able to replicate 

the results of Dhar and Simonson (2003) is due to the use of a low involvement product in the 

current study that results in a smaller effect size for choice deferral. The result being in the 

correct direction with a low involvement product is promising. In a high involvement category, 

where choice deferral is assumed to be more pronounced, it would be easier to identify 

significant differences. It is important to note that a greater degree of choice deferral in the dual-

response task than the single stage free choice task, as a way to reduce psychological discomfort 

generated by forced choice, is not contradictory to reduction of cognitive dissonance theory 

because free choice can be viewed as a more efficient path towards reduction of cognitive 

dissonance, as evidenced by greater willingness to purchase when the choice is made freely, in 

the presence of a “none” alternative. 

Consistent with previous research, Hypothesis 3 has been supported (Table 1). Further 

planned pairwise comparisons using the Bonferroni procedure revealed a significant difference 

(p = .001) between choice deferral in the reversed dual response, where the buy/no-buy decision 

is made before forced choice, (M = 14.3%, SE = .0138) compared to choice deferral in the 

traditional “none” condition (M = 7.9%, SE = .0138). Dhar and Nowlis (2004) explain this 

finding in terms of alternative based evaluations relative to a category reference when the 

buy/no-buy decision is made prior to selection. More specifically, when the category reference is 

better than the choice alternatives, choice deferral is greater in the buy/no-buy condition than in 
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the traditional “none” condition. Conversely, when the category reference is worse than the 

alternatives, choice deferral in the buy/no-buy condition is lower than in the traditional “none” 

condition. It should be noted that in the current study of a low involvement product a category 

reference was not provided to the respondents as a primer to the reversed dual response. Thus, 

the higher proportion of deferred choice in the reversed dual response compared to the traditional 

“none” condition could mean that, on average, respondents referenced a better category than the 

alternatives or another cognitive process can be at play in the absence of a predefined reference 

category. 

Hypothesis 4 has been supported (Table 1). Further planned pairwise comparisons using the 

Bonferroni procedure revealed a significant difference (p = .004) between choice deferral in the 

reversed dual response (M = 14.3%, SE = .0138) and choice deferral in the traditional dual 

response (M = 9.6%, SE = .0138). The only variable manipulated between the reversed dual 

response and the traditional dual response was the order of selection and choice evaluation. 

Given the findings of a lower degree of choice deferral in the traditional dual response than in 

the reversed dual response, it is suggested that a possible explanation is the reduction of 

cognitive dissonance in the traditional dual response condition where selection is made prior to 

choice evaluation (Brehm 1956, Festinger & Carlsmith 1959). In a situation of forced choice, 

when a selection is made, a respondent is more likely to rationalize the selection with an 

increased level of willingness to purchase, hence, a lower level of choice deferral. Such a 

dissonance between selection and evaluation is suggested not to exist when evaluation precedes 

selection, hence, a higher level of choice deferral. 

Table 1. Means of Means of Deferred Choice in Each Experimental Condition. 

 Traditional Dual 

Response 

Reversed Dual 

Response 

Traditional 

“None” 

Traditional 

“None” with 

follow-up 

Proportion of 

Deferred Choice 

9.6% (.179) 14.3% (.216) 7.9% (.169) 3.9% (.087) 

Note: Standard deviations are in parentheses. 

Table 2 shows that for traditional dual response, reversed dual response, and traditional 

“none” there is an increase in choice deferral as the exercise progresses. This pattern of increased 

choice deferral as a function of scenario order is not as evident for traditional “none” with 

follow-up product selection. The explanation regarding a somewhat stable proportion of choice 

deferral in the traditional “none” with follow-up condition is that respondents are likely to have 

adopted a strategy of not deferring choice because when choosing the “none” alternative there 

was always a follow-up forced choice. The pattern of a steady and lower proportion of choice 

deferral across scenario order for traditional “none” with follow-up compared to the other three 

experimental conditions is further accentuated in Figure 5. 
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Table 2. Proportion of Deferred Choice among the First and Last Three Scenarios 

between Conditions. 

 Traditional 

Dual 

Response 

Reversed 

Dual 

Response 

Traditional 

“None” 

Traditional 

“None” with 

follow-up 

Proportion of Deferred Choice 

Earlier Tasks (first 3) 

6.3% 10.3% 3.7% 3. 3% 

Proportion of Deferred Choice 

Later Tasks (last 3) 

10.7% 16.9% 11.6% 4.0% 

Figure 5. Proportion of Choice Deferral as a Function of Scenario Order 

between Experimental Conditions. 

 

For each experimental condition, the duration of time to complete the discrete choice task 

was measured (Table 3). Both dual-response tasks took longer to complete compared to the 

traditional “none” tasks. The completion times of the tasks are as expected since a two-stage task 

has an additional follow-up question. However, reversed dual response is more enjoyable, on par 

with traditional “none,” when compared to traditional dual response and traditional “none” with 

follow-up. It is suggested that the two most enjoyable tasks caused the least degree of stress to 

the respondent. The reversed dual response, where evaluation precedes selection, did not create a 

state of cognitive dissonance in the respondent and the traditional “none” was a free choice task 

since the respondent could readily choose the “none” alternative. 

As seen in Table 3, we also evaluated the predictive accuracy of the models using holdout 

tasks and comparing each model’s hit rate and mean absolute error (MAE). Moreover, although 

reversed dual-response model is slightly less predictive when compared to traditional “none” 
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with follow-up, it performs on par with dual response and traditional “none,” which are the most 

widely used methods today. While these finding are just directional, clear patterns can be 

observed. 

Table 3. Additional Measures between the Four Experimental Conditions. 

 

Condition 1: 

Dual 

response 

Condition 2: 

Reversed dual 

response 

Condition 3: 

Traditional 

“none” 

Condition 4: 

Traditional “none” 

with follow-up 

Time to complete 5.6 min 5.9 min 4.2 min 4.6 min 

Top box enjoyment 

(4 point scale) 
32% 36% 37% 34% 

Hit Rate 52% 55% 54% 58% 

MAE 5.4 5.2 6.3 4.5 

Ideally, the utility estimates for attribute levels should be equal in different exercises 

regardless if using the traditional “none” or a dual-response “none” alternative. That would be 

true if creating a forced-choice from the traditional free-choice task by deleting the “none” 

option did not impact the relative probability of choosing the remaining alternatives, and the 

addition of the “none” alternative in the second stage of the dual-response task drew 

proportionately from each alternative. But there is some evidence, as mentioned earlier, that 

especially in two attribute studies (product and price) adding and deleting the “none” does not 

draw proportionately from the other alternatives of the choice task due to compromise 

alternatives. This means that in some choice situations deleting the “none” option systematically 

violates the independence of irrelevant alternatives (IIA property), as suggested by Dhar and 

Simonson (2003). 

When estimating the utilities using a multinomial logit, there is the assumption of IIA, 

however as noted, this IIA assumption is violated during the actual tradeoff task, especially as a 

function of methodological details during the tradeoff task. Since the “none” option does not 

draw proportionally from all alternatives, choice deferral could not be isolated from the violation 

of the IIA assumption. This results in similar but not identical utilities when deleting the “none” 

option for different “none” alternatives. As such, in accordance with differing proportions of 

deferred choice between the four experimental conditions, it also warrants that the feature 

utilities of the products will differ as well. Due to the ordinal nature of product specific pricing, 

the price attributes were not included in the correlation of the utilities between the experimental 

conditions. As can be seen in Table 4, correlations among the 17 product utilities, with and 

without the “none” utility, between each of the experimental conditions suggests a fair degree of 

similarity, most likely between the most and least preferred products. However, a less than 

perfect correlation suggests that preference shares between simulated results will not always 

agree, depending on how choice deferral is phrased and, of course, sample differences as well. 
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Table 4. Correlation among the Utilities between the Experimental Conditions. 

 Condition 1 vs 

Condition 2 
Condition 1 vs 

Condition 3 
Condition 1 vs 

Condition 4 
Condition 2 vs 

Condition 3 
Condition 2 vs 

Condition 4 

With “none” .81 .86 .90 .84 .74 

Without “none” .83 .86 .92 .90 .81 

GENERAL DISCUSSION 

Decision making regarding a product or service, either low or high involvement, is a two-

stage process of evaluation and selection, with the sequence of these aspects varying depending 

upon the situation. In the real world the consumer has the option of selecting from the current 

alternatives or deferring choice at the risk of losing some or all of the available options. In an 

effort to mimic a real-world situation the tradeoff task has evolved from rating a particular 

scenario in terms of likelihood to purchase to an actual choice task where respondents have the 

option to defer choice if indecisive regarding the current offerings. 

The deferral option in the discrete choice task can be another alternative, as in the single-

stage free choice task, (referred to as the traditional “none”) or a separate stage in the dual-

response task that involves selection and choice evaluation. The buy/no-buy response can either 

precede or follow the forced selection stage. Hence, the “none” response used to estimate the 

proportion of consumers unwilling to purchase can be a result of a single-stage free choice task, 

a traditional dual-response task, or a reversed dual-response task, with each exercise yielding a 

different estimation of the proportion of choice deferral. 

It has been suggested that the traditional dual response, selection precedes evaluation, is 

prone to reduction of cognitive dissonance. In an effort to align thought and action, the 

respondent will be more willing to indicate product purchase after that product selection has been 

made than in a situation where the selection has not yet occurred. At this time there is no definite 

conclusion regarding the order of selection and evaluation, with each strategy occurring under 

different circumstances and resulting in a different degree of choice deferral (the “none” utility in 

a multinomial logit model). 

It has been found in this study and supported in the literature that not having identical utilities 

between the experimental conditions indicates that the “none” option impacts the utilities of the 

product or service feature levels disproportionately. This violation of independence of irrelevant 

alternatives, even in the absence of using the “none” alternative in simulations, suggests that 

choice deferral is not a trivial issue. 

The “none” alternative is used by certain researchers to accurately size share of preference, 

or market share with proper calibration, of those who are not interested in the product line. The 

estimate of willingness to purchase has traditionally been overestimated in survey research, 

hence, requiring calibration during the modeling phase. Although calibration using external data 

sources can prove to be reliable in adjusting the stated preference estimates of both the feature 

levels and the “none” proportion, this adjustment method cannot always be implemented due to 

unavailability of external data especially in situations of new product development where such 

data do not exist. Hence, it is the goal of this research to develop a better estimation of choice 

deferral, especially in situations where external data do not exist. 
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FUTURE RESEARCH 

 Our “none” alterative exploration in this study was conducted in a low involvement 

product category. Further research is warranted in a high involvement product category, 

where choice deferral is higher. We assume, that the cognitive dissonance effect is much 

greater in high involvement categories. 

 Additional research needs to be conducted with more than two attributes for the choice 

alternatives because with more attributes and levels there is usually no clear compromise. 

With less of a compromise effect in multi-attribute studies it should be possible to better 

isolate the choice deferral from the IIA violation than in studies with fewer attributes and 

levels. 

 More research is required to examine the impact of the range effect on choice deferral. 

Schlereth and Skiera (2016) show that attribute ranges have a large impact on the no-

purchase option in choice experiments. If, due to larger attribute ranges, multiple 

products are presented in a choice set then this increases the likelihood that an attractive 

product will be compared to the “none” option. Respondents with higher purchase 

probability in the product category will be more likely to choose the attractive product 

over the no-purchase option compared to respondents with lower purchase probabilities 

in the product category, whose preference of the attractive product is closer to the no-

purchase option. Without taking the range effect into account, it is questionable which 

way of presenting the “none” option results in more accurate utilities. 

 Dual response and reversed dual response will have higher proportion of deferred choice 

than the traditional “none” task. We should investigate this under the assumption that the 

“none” option does not draw proportionally from the other alternatives. This implies that 

we must address the IIA property by introducing a nested logit or mixtures of multivariate 

normal for the estimation of the part-worth utilities. 

 Reversed dual response (where the buy/no-buy is offered before selection) has been 

shown to have a higher proportion of choice deferral than the traditional dual response 

where selection precedes the opportunity to defer choice. It is necessary to test the 

reversed dual-response assumption under different conditions of the market reference 

category. For example, examining the degree of choice deferral in a situation where a 

better reference category is provided, a worse reference category is provided, and where 

no reference category is provided. 

 As the research industry is battling declining response rates, short attention spans, and 

struggling with attracting younger respondents, we need to continue creating smarter 

surveys. Surveys need to be short, feel intuitive, enjoyable, and free of discomforts such 

as cognitive dissonance. Surveys could be adaptive to avoid choice tasks dominated by 

one alternative. At the same time, we need to preserve predictive accuracy and produce 

purchase intent that is more in line with client expectations. 
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THE ART AND SCIENCE OF NESTED LOGIT: 

CASE STUDIES FROM MODELING MANY SKUS 

KEVIN LATTERY 
SKIM GROUP 

1.0 INTRODUCTION 

Consumers often make choices by grouping similar items together. For example, consumers 

at a quick service restaurant may group the French Fries and other sides together. As one changes 

the price of a medium size French Fry, it is likely to impact whether one chooses other French 

Fries or maybe switches to Onion Rings. In contrast, changing a medium French Fry probably 

has little impact on the choice of coffee. In general the more similar items are perceived to each 

other, the more likely they impact each other when changed. In a conjoint study we call these 

similar products correlated alternatives. 

The standard model in conjoint analysis is multinomial logistic regression (MNL). MNL 

assumes that there is no correlation among the alternatives. This is known as Independence of 

Irrelevant Alternatives (IIA). Obviously if we assume no correlation among alternatives when 

there is strong correlation, our models can be problematic. 

This presence of correlated alternatives is a widely recognized problem. Perhaps the most 

famous example of this is the Red Bus/Blue Bus problem. The idea here is that the Red Bus and 

Blue Bus are perfectly correlated. Assume we initially have only 3 alternatives: home, car, or a 

red bus. The exponentiated utility of those three alternatives is proportional to their share. 

 

When we introduce a blue bus, we assume it will have the same utility as the red bus—

people most likely do not care about the bus being blue or red. They are perfectly correlated 

alternatives. Adding the blue bus alternative we get these results: 
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We now have 40% of people riding a bus (20% red and 20% blue). We could keep adding 

different color buses and further increase the percentage of bus riders. If we had 20 different 

colored buses, almost everyone would ride a bus. 

In reality, we expect that the share for the blue bus would come solely from the red bus 

because they are correlated alternatives. In the above example this means red bus and blue bus 

should each be 12.5%. 

This kind of problem with correlated alternatives was especially prominent in the earlier days 

of conjoint when we developed aggregate models. With aggregate models the problem with 

correlated alternatives was clearly visible. Not accounting for correlation resulted in predictions 

that looked obviously wrong. In the early 2000’s, respondent-level models such as Hierarchical 

Bayes (HB) became prominent. This made the problem far less visible. In a respondent-level HB 

model, IIA happened at the respondent level, but was significantly reduced when aggregating 

over respondents. 

While respondent-level models reduce IIA in aggregation, in some cases the individual-level 

IIA trickles up to the aggregate level. We have seen this happen more frequently with conjoint 

studies showing shelf sets with many similar SKUs. Later we will show a detailed example. But 

the question remains as to what one should do when they are faced with sourcing that looks 

wrong. Some have suggested a duct tape post-hoc approach. That is we assume IIA during our 

estimation, but create predictions that take into account correlated alternatives. This means we 

estimate the model with one set of assumptions, and predict using another, which is clearly not 

ideal. Later we will see that this kind of mismatch between estimation and prediction lowers 

predictive validity. 

In this paper we show how nested logit can be used during estimation and prediction to 

model the correlation between alternatives. The next section (2.0) will describe what nested logit 

is and how it models correlated alternatives. Section 3 will give hands-on advice about how to 

build and test the nesting structure, using a specific case study. In Section 4 we describe how to 

estimate nested logit models. We first describe estimation at the aggregate level, and then show 

how to extend this to Latent Class and HB. 
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2.0 BASICS OF NESTED LOGIT 

Nested logit involves adding a tree-like structure to the alternatives. A simple example of 

such a tree is the following: 

 

One way to think about the tree structure above is as a sequence of decisions. The first 

decision is whether to take a plane (if traveling far) or slower (but more immediate) ground 

transport. Then within slow ground transport we consider public vs private. The diagram also 

shows two λ parameters. These parameters represent the degree of similarity between the items 

in the nest. So λ1 represents the degree of similarity between train and bus. 

We typically define the λ parameters in the interval [0,1]. When λ =1, there is no correlation 

between the alternatives. If all the λ parameters in a nest structure are 1, then the nested structure 

is equivalent to the standard MNL. So mathematically, nested logit extends MNL, with 

additional λ parameters to model the correlation between alternatives grouped together in a nest 

or bundle. As λ moves from 1 toward 0, the alternatives are more similar to each other. As we 

approach 0, we get the red bus and blue bus which are perfectly correlated. 

Section 2.1 is more technical, and will discuss the details of how nested logit computations 

are performed. Less technical readers may skip to section 3.0 without loss of understanding. 

2.1 Mathematical Details of Nested Logit 

There are a few variations of nested logit, but we will describe the most common version 

known as “Utility Maximization Nested Logit with Normalized Top Level.” The mathematics of 

nested logit works by estimating a utility for each nest and computing conditional probabilities. 

It is perhaps easiest to describe the calculations by focusing on a simple non-trivial example. 

Assume we have the following nested structure: 
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At the bottom we have 5 alternatives A1 thru A5, and a None option. Estimation begins from 

the bottom-up. To illustrate the computations assume we know λ1 = .5 and λ2 = .25. Also assume 

we know the standard linear βx utility for each alternative. This is shown in Step 1 in the 

following table: 

 

A1 A2 A3 

 

A4 A5 

 

None 

1) V=βx 0 0.5 1   0 0.7   -2 

2) V / λi  0 1 2   0 2.8   -2 

3) e^Step2 1 2.7 7.4   1 16.4   0.14 

4) Sum(Step 3) 11.1   17.4   0.14 

5) λi * ln(step4) 1.2   0.71   -2 

Note: Values rounded to 1 decimal. 

Step 2 simply divides each value in step 1 by its corresponding λ. So Nest 1 items are divided 

by .5 and Nest 2 items by .25. As λ goes to 0 this creates more extreme values, and for this 

reason we typically restrain λ to be at least 0.1. Step 3 exponentiates these utilities. These values 

replace the standard exponentiated utilities in MNL and are used for within-nest probabilities. 

Step 4 is also like MNL in that we sum the utilities, but only within each nest. So we have three 

separate sums corresponding to 3 base level nests. 

Note that a nest with only one item (like None above) should have λ fixed at 1. 

Mathematically any value of λ will cancel itself out since step 3 and step 4 will be the same and 

give a probability of 1. 

The ratio between step 3 and step 4 defines the probability within the nest. From the table 

above, the probability of A2 given Nest 1 is 2.7/11.1. So given Nest 1 we know the probabilities 

of each item in the nest. Likewise for Nest 2. We know the probabilities of each specific 

alternative A1–A5 given the nest. But what is the probability of Nest 1? Nest 2? None? 

This is where Step 5 comes in. We take the natural log of step 4 and multiply that by its 

corresponding λ. This is called the inclusive value. It represents the (non-exponentiated) utility of 

the Nest. So the utility of Nest 1 = 1.2, Nest 2 = .71, and None = -2. These values then become 

Step 1 for the next level up. We repeat steps 2–5 again using these 3 values. 

So given a set of base utilities V=βx for each alternative, a nesting structure, and λs for each 

nest we can compute utilities for each nest and corresponding probabilities. We then estimate the 

probabilities going down. So the probability of alternative A4 is the prob(Something) * 

prob(Nest2 | Something) * prob(A4 | Nest 2). 



285 

Obviously the calculations in a nested logit are much more involved than standard MNL. We 

have to estimate both the betas and λs. This also brings with it more difficulties in estimation. 

The preferred academic solution is to: 

1. Estimate betas in a standard MNL. 

2. Fix the betas and estimate the λs. 

3. Taking 1 and 2 as starting points, estimate betas and λs simultaneously. 

I find step 3 takes quite some time using optimization methods like BFGS or Newton-

Raphson without specifying the gradient (which is difficult to do in a nested logit). So my 

preferred approach is to iteratively cycle through estimating betas and λs, conditional on 

previous results. After the initial betas in standard MNL, I use Powell’s BOBYQA algorithm, as 

implemented in the R package minqa. It is fast and requires no gradients. I run this cycling 

between betas and λs until the log-likelihood converges. When running aggregate models I 

withhold sample from the estimation and base convergence on out-of-sample convergence. 

3.0 HOW TO DETERMINE THE NESTING STRUCTURE 

Nested logit requires a tree-like structure of the alternatives. But how does one develop this 

tree? Obviously one can specify any tree they like. But in this section we will suggest some 

specific data-driven methods to develop and test the tree. 

To clarify our approach we introduce the following case study. The conjoint design was a 

shelf set. There were a total of 57 SKUs in the study, but each shelf showed 38 out of the 57 

SKUs. Prices were varied and 1,157 respondents were allowed to choose multiple products. Each 

respondent evaluated 16 shelf sets. 

The SKUs contained many products that varied by size or design. Some products were 

clearly close substitutes for each other, and it seems likely that there is indeed some degree of 

correlation among alternatives. A marketing expert in the specific category may have a good idea 

what products tend to be more similar to others. Here I show one way to develop the structure 

with empirical data. 

3.1 Using Cross-Purchase Overlap to Develop Initial Structure 

In most conjoint studies respondents evaluate several screens. In our case, each respondent 

saw 16 shelf sets. For each respondent we can then list all the alternatives they chose across all 

16 tasks. For instance, let’s assume across the conjoint tasks the respondents below chose the 

following items: 
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For any given pair of items, we can compute what we will call the overlap matrix. Consider 

the pair of items A, B. We first consider all the people who chose either A or B. This is 4 

respondents, all but Lyon and Bearcub. Among those 4 respondents we then count the number 

who chose A & B. Three out of the 4 respondents did this, all but Keith. The ratio ¾ is the 

overlap percentage. It will always be between 0 and 1. More succinctly, the overlap is (Num of 

respondents who chose A&B)/ (Num of respondents who chose A or B). 

For every given pair of items, we can compute the overlap, and create a symmetric matrix of 

overlap percentages for each item. In our case we have 57 SKUs and a 57 x 57 overlap matrix. 

We then convert this symmetric overlap to a symmetric matrix of distances. We want items with 

higher overlap to be closer together. We used Euclidean distance of (1-overlap). In some cases 

other transformations may be helpful to create more discrimination. 

Once we have distances, we can do hierarchical clustering. In our experience Ward’s method 

works well. The R code looks like this, where overlap_p is the 57 x 57 overlap matrix: 

kldist <- as.dist(1 - overlap_p) 

klclust <- hclust(kldist, method = “ward.D2”) 

plot(klclust) 

This produces a dendrogram that can be exported to a PDF and looks like this: 
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This dendrogram is meant to be a diagnostic tool showing which items are closest together 

(highest overlap). It gives you some direction about how the nesting structure might look. To 

further explore this we sort the overlap matrix in the same order as the dendrogram. 

The first 8 SKUs are shown below. One can already see higher the overlap within these 

highlighted blocks. There is even stronger difference as we move further away. These two 

highlighted areas will be put into a nest higher up. 

Brand 

Sub-

Brand Size  Style Design 28 29 27 30 8 9 6 7 

Main 

Main 

w/New 6 R A 100.0% 51.2% 34.6% 39.6% 19.1% 15.8% 18.2% 16.7% 

Main 

Main 

w/New 6 L A 51.2% 100.0% 36.6% 41.0% 17.7% 15.4% 16.5% 17.3% 

Main 

Main 

w/New 3 G A 34.6% 36.6% 100.0% 38.1% 12.8% 13.4% 14.7% 12.9% 

Main 

Main 

w/New 6 L A 39.6% 41.0% 38.1% 100.0% 17.0% 16.6% 17.2% 16.1% 

Main Primary 6 SM A 19.1% 17.7% 12.8% 17.0% 100.0% 33.7% 25.2% 25.7% 

Main Primary 6 B A 15.8% 15.4% 13.4% 16.6% 33.7% 100.0% 23.5% 31.3% 

Main Primary 6 L A 18.2% 16.5% 14.7% 17.2% 25.2% 23.5% 100.0% 27.4% 

Main Primary 6 S A 16.7% 17.3% 12.9% 16.1% 25.7% 31.3% 27.4% 100.0% 

Viewing the overlap matrix sorted allows us to make decisions about which items belong in 

the same nest. If we take just the top 4 x 4 from above, we could put all 4 items together in one 

nest immediately like this: 
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Brand Sub-Brand Size  Style Design 28 29 27 30 

Main Main w/New 6 R A 100.0% 51.2% 34.6% 39.6% 

Main Main w/New 6 L A 51.2% 100.0% 36.6% 41.0% 

Main Main w/New 3 G A 34.6% 36.6% 100.0% 38.1% 

Main Main w/New 6 L A 39.6% 41.0% 38.1% 100.0% 

Or we could build the nest up with the first two and last two. Below are two examples of the 

nesting structures that could apply: 

 

So how are we to know which of these nesting structures to use? Of course one can make 

decisions based upon knowledge of the category. And indeed we would rarely build a nesting 

structure that is contrary to expert knowledge. But we do not have to rely upon expert judgment. 

We can actually test the different models to determine which is best. 

3.2 Testing Different Nesting Structures 

For the sake of simplicity we usually test these different models at the aggregate level. This is 

similar to what is typically done in menu-based conjoint. With menu-based conjoint, we take 

each specific item and specify which other items impact it. For example we might specify that 

French fries are impacted by other fries and sides, but not coffee. This is similar to specifying 

nests, and in fact some people have suggested that one should do menu-based conjoint with 

nesting. In any case, one typically tests menu specification at the aggregate level, and we are 

following the same strategy here. With nesting there are 3 criteria for evaluating any possible 

nesting structure: 
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1. Are Lambda’s much different than 1? 

2. 2 * (LL1 - LL2) is Chi-Squared with DF the difference in parameters 

3. Does the nesting make sense? 

When we apply a nesting structure and get lambdas near 1, then we probably don’t need the 

nesting. In general, we prefer lambda values less than .9. 

The second criterion is the official criterion for testing statistical significance. Adding nests 

should improve the log likelihood (since lambda = 1 means no nest). Two times the improvement 

in log likelihood is chi-squared where the degrees of freedom are the number of additional 

lambda parameters. As is the case with other significance tests, more sample is likely to make 

things more significant. 

The third criterion is just a reminder of using common sense, and expert knowledge to the 

extent that it is available. 

In our case study, with 57 SKUs, we built 22 nests at the bottom level. Note that 3 items did 

not go into a nest. Or more exactly each of the 3 items went into its own 1 item nest. The 

aggregate model showed that there is quite a bit of correlation among the alternatives. With one 

exception, the lambda parameters are all much lower than 1. 

0.516 0.632 0.363 0.380 0.259 0.753 0.760 

0.768 0.570 0.489 0.643 0.340 0.871 0.910 

0.618 0.692 0.671 0.723 0.780 0.780 0.739 

      

0.876 

In general the more items that go into a nest, the more likely the corresponding lambda will 

go toward 1. Part of the reason for the strong nesting here is that we have 2–4 items per nest. 

3.4 Continue Building the Nest Upward 

Having completed the bottom level of nesting, we can move up to the next level. Of course, 

the next level could simply consist of all 22 nests going into the final selection. But it is better to 

repeat the same testing at the next level up, combining some of these 22 bottom level nests. 

The process is exactly the same. We first compute the overlap matrix. Only this time we use 

the nests from the lower level. So given two nests A and B, we compute the number of 

respondents who chose an item in A&B divided by the number of respondents who chose an item 

in A or B. We use all 22 multiple item nests plus the 3 nests with only 1 item. We again run the 

dendrogram: 
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The brackets show the 2nd level nesting that we used. It is worth noting that nests 21–25 

consisted of Private Label brands. The SKUs to the left were branded but more economical. 

While on the right hand side we had higher quality premium brands. 

This kind of nesting structure can be shared with the client, and provide additional insight 

into which items compete most strongly with each other. 

3.5 Final Comments on Nest Building 

I want to conclude this section with a few comments about nest building. 

One crucial point is that an item can be in more than one nest. While we have not shown that 

in our case study, there is no mathematical requirement that an alternative be in just one nest. If 

an alternative is in more than one nest then we need to sum the probabilities for that alternative. 

For example, if we have an alternative in 3 different nesting structures, it would appear 3 times at 

the base level. We would then compute the nests as described and get 3 probabilities for the 

alternative conditional on each nest. 

Paired combinatorial logit is very similar to a covariance matrix, where the elements of the 

covariance are lambdas for each nest. For example, with 15 items we would have 15(14)/2 = 105 

lambdas as follows: 
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This is a symmetric matrix with 1’s in the diagonal. Computing lots of lambdas will likely 

result in overfitting. So we suggest something like a structured covariance approach, where each 

lambda is defined by a general function related to each alternative. See for instance the work on 

this by Jeffrey Dotson in the context of probit. 

4.0 EXTENDING NESTED LOGIT BEYOND AGGREGATE MODELS 

So far we have discussed nested logit at the aggregate level. But we know that accounting for 

respondent heterogeneity significantly improves our conjoint predictions. The two most common 

ways to do this are with Hierarchical Bayes and Latent Class. In our case study each of the 1,157 

respondents evaluated 16 conjoint tasks. For each respondent we removed two tasks from the 

estimation and used them as holdouts. We ran the following models, and computed the fit for the 

holdouts: 

 

Log 

Likelihood 

% Imp 

Over Agg 

Aggregate -7,614.6 

 Latent Class (30 Segment) -5,248.5 31.1% 

Hierarchical Bayes -5,164.2 32.2% 

Latent Class Ensemble (20)* -4,708.4 38.2% 

The last row shows results for Latent class ensembles, where we ran 20 Latent class 

solutions, each with 30 segments. For more details on this see Kevin Lattery’s paper in the 2015 

Sawtooth Proceedings. 

Estimating a nested logit at the aggregate level resulted in a log likelihood of -7,524.6. While 

this was statistically significant, it is only a 1.2% improvement over the simple aggregate model. 

One of the important points with nested logit models is that we should not expect big 

improvements in log likelihood. The improvement is in how the shares shift. We apply nested 

logit to improve sourcing computations, not because they dramatically improve respondent-level 

fit. 

The table above also shows that aggregate models, with or without nesting, are far less 

accurate than models that account for respondent heterogeneity. In the next sections, we will 

discuss how to extend nested logit to Latent Class and Hierarchical Bayes. 
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4.1 Extending Nested Logit to Latent Class 

The easiest and most direct way to extend nested logit models is using Latent Class. Since 

Latent Class estimates aggregate-level models using respondent weights, everything from earlier 

sections applies. 

The only real issue is time needed for estimation. Latent Class models involve iterative 

estimation, updating weights and estimating models again. For a standard logit this is not so bad. 

But estimating a nested logit takes much longer, especially when we have lots of alternatives and 

nests. With our case study, the aggregate level model took just over one minute on my personal 

PC, but the nested logit took 23 minutes. For 30 segments (and using parallel processing on my 4 

core machine), it took 7 hours and 30 minutes to compute one Latent class solution. 

Because ensembles of Latent Class models perform better, we also ran 20 LC models over 

the course of one week using two computers. While this produced the best results, clearly one 

must budget for time. Of course, since each ensemble member is estimated independently we 

could have rented 20 computers in the cloud to run 20 Latent class solutions in less than 8 hours. 

One alternative is to use the lambda parameters from the aggregate model. Since we 

developed and tested the structure in aggregate, we already have these aggregate level values. 

Obviously this is a compromise based on time. But it is theoretically justified. In a standard 

Latent class model we assume all lambda parameters of 1. Here we have estimated better lambda 

parameters and are using those in our Latent class solution. 

4.2 Extending Nested Logit to Hierarchical Bayes 

At first glance it might seem tempting to estimate nested logit with HB by simply changing 

the utility function and adding the lambda parameters as additional parameters. One could do this 

for instance using the R package RSGHB. This however proves to be disastrous. We strongly 

recommend against doing this. In our case study the fit gets much worse, lowering hold out log 

likelihood from -5,164.2 to -5,828.2. This in fact makes HB significantly worse than a single 

Latent Class solution without nesting. 

Part of the problem is that the lambda parameters don’t belong in the same covariance matrix 

as the other betas. While doing separate draws from 2 covariance matrixes would likely help, we 

still conjecture that we would likely overfit the data. Estimating respondent-level betas in the 

presence of many alternatives already has significant error, and in fact many are now turning 

away from respondent-level betas. Adding lots of respondent-level lambdas will significantly 

exaggerate this problem. We simply believe that respondent-level lambdas are not feasible unless 

potentially there are only a few lambdas to estimate via a separate covariance matrix. In cases 

like ours where we are modeling many SKUs with many nests and levels, respondent-level 

lambdas will not work. 

However, we can borrow our previous idea and use global lambdas. This can be done in two 

different ways. First, we can fix the lambdas to be the values discovered during the aggregate 

level modeling and testing. We then change the utility function and estimate betas only, assuming 

the fixed lambdas. 

A second way is to estimate the lambdas as fixed effects during the HB estimation. Details of 

the process can be found in section 12.7.3 of Kenneth Train’s book Discrete Choice Methods 
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with Simulation. The R package RSGHB allows one to specify both fixed (global) and random 

(respondent-level) parameters. 

We show the results of both methods in our table below, along with the Latent Class versions. 

 

No Nest 

Aggregate 

Lambdas 

Lambda as Fix 

Effect 

Latent Class 

Lambda 

Aggregate -7,614.6 -7,524.7 

  Hierarchical Bayes -5,164.2 -5,160.3 -5,091.4 

 LC (30 Segment) -5,248.5 -5,175.4 

 

-5,142.9 

LC Ensemble (20) -4,708.4 -4,667.7 

 

-4,656.3 

As noted before, the Latent Class ensemble with 20 LC models of 30 segments performed 

best, but took a week to estimate. In all cases, using the aggregate-level lambdas performed 

almost as well. It also gave us more predictable changes in sourcing that better aligned with our 

expectations. Unfortunately real market shares or even aggregate shares in the conjoint were not 

available. 

When we estimated lambdas (rather than using the aggregate level) we found significantly 

flatter lambdas. For the HB model with a fixed effect, we only had 11 lambdas (out of 37 total) 

that were less than .9, and only 3 less than .8. We also found that it gave very similar predictions 

to the standard HB model without nesting. The HB model where we estimate only betas 

assuming the aggregate-level lambdas gave us better sourcing effects. 

At this point we are not convinced that estimating lambdas beyond the aggregate level is 

worth the extra effort. Fixing the lambdas at their aggregate level is better than simply assuming 

all of them are 1 which we usually do. In addition, using aggregate-level lambdas also makes it 

an easier story to communicate. 

5.0 CONCLUSION 

For most models the assumption of IIA works fine, especially when we incorporate 

respondent heterogeneity with methods such as Latent Class or Hierarchical Bayes. But in some 

cases, violations of IIA at the sub-aggregate level trickle up and create noticeable problems with 

sourcing. In those cases, a simple solution is to do post-hoc fixes in the simulation. We can add 

correlation on the back-end. But that means we are modeling the data one way, and simulating a 

different way. Here we have shown how to bring the correlation of alternatives into our model. 

Nested logit is only one such approach, and we are open to other ideas. It is a classical 

workhorse that we have shown how to extend to Latent Class and HB models. There may be 

other models that capture sourcing even better. Nested logit is fundamentally an aggregate 

approach that extends rather easily to Latent Class. But it is not a natural fit with HB. Other 

approaches developed with HB in mind may work much better. 

In the meantime, our paper shows how to solve sourcing problems when they arise. We have 

seen this problem especially in cases where there are many SKUs on a shelf set. We showed how 

to develop and test the nesting structure. Again, we have revealed our approach using pairwise 

overlap matrices. But this is not the only method. It is a diagnostic tool that we have found works 

well in many cases. Nested logit is both a science of testing and an art of knowing what 

structures to test. That art can be guided but it is ultimately about exploring a subset of options 
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based on data and human skill. We may not find the absolute best nesting structure, but that’s 

okay. We can develop a nesting structure that improves our model, makes sense, and is validated 

with statistical testing. 

 

 

 Kevin Lattery
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ABSTRACT 

We investigate User-Generated Content (UGC) as a source of customer needs from which to 

identify attributes and attribute levels for a high-craft conjoint analysis study. Non-informative 

and repetitive content crowd out information about customer needs in a large corpus of UGC. We 

design a machine-learning hybrid approach to enhance customer-need extraction making it more 

effective and efficient. We use a convolutional neural network (CNN) to identify informative 

content. Using pre-trained word embeddings, we create numerical sentence representations to 

capture the semantic meaning of UGC sentences. We cluster sentence representations and sample 

sentences from different clusters to enhance the diversity of the content selected for manual 

review. The final extraction of customer needs from informative diverse sentences relies on 

human effort. In a proof-of-concept application to oral care, we compare customer needs 

identified from UGC to customer needs identified from experiential interviews. First, our 

analyses suggest that, for comparable human effort, UGC allows identifying a comparable set of 

customer needs. Second, machine learning enables analysts to identify the same number of 

customer needs with less effort. 

This paper summarizes results from Timoshenko and Hauser (2017). All copyrights remain 

with the original paper, which provides much greater detail. Non-exclusive permission is given 

to Sawtooth Software to publish this paper. 

MOTIVATION 

A conjoint analysis study is only as good as the attributes upon which the study is based. 

Missing important attributes lowers the quality of the study and leads to inefficient product 

development. Identifying new highly-valued attributes and attribute levels leads to major 

breakthroughs in product strategy. Consider “Attack,” a laundry detergent introduced by the Kao 

Group in the 1980s. At the time, the customer needs for laundry detergents were well established: 

cleaning, safe and gentle, good for the environment, ready to wear after drying, easy to use, 

smell fresh and clean, and value. To design new detergents, most manufacturers focused on 

combining attributes to address these customer needs. Perceived “value” played a major role in 

the market for detergents. For example, detergents were sold in large “high-value” boxes to 

enhance perceived value. Figure 1 compares a vintage Tide box with Attack’s packaging at its 

launch. 

Kao did not limit itself to established attributes and attribute levels. Japanese consumers did 

not have the space to store laundry detergent in their apartments and, as a result, they went to the 
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store often. Consumers commonly went by bicycle or by foot. Kao recognized an unmet 

customer need and the corresponding attribute level (the need for small package for the same 

cleaning power). Kao launched Attack, a highly-concentrated detergent in an easy-to-store and 

easy-to-carry package. Laundry customers were willing to pay a substantial price premium for 

this product and, within a year, despite the higher price, Attack commanded almost 50% of the 

Japanese laundry market (Kao Group 2016). Other firms, including US-based firms, were slow 

to identify this customer need and did not immediately include the “low-package-size” attribute 

level in their marketing studies, which gave Kao a competitive advantage. 

Figure 1. Vintage Tide Detergent Box and Attack’s Package at Launch
39

 

  

Examples of successful major innovations based on newly identified attributes and 

underlying customer needs include the touchscreen features in the smartphone category and 

Procter & Gamble’s Swiffer mop (Continuum 2016). Even point-of-care blood-gas testing in 

intensive care units of hospitals was revolutionized when the need for new attributes for these 

important medical instruments was recognized, analyzed, and satisfied. 

These examples come from product development, but conjoint analysis is also used widely to 

value patents and copyrights (Cameron, Cragg, and McFadden 2013). Accepted litigation 

practice pairs a marketing expert, who provides estimates of willingness to pay, with a 

“damages” expert, who handles the implications of WTP. The damages expert testifies about the 

value of the patent or copyright. Recently, Allenby et al. (2014) proposed that the marketing 

expert play both roles. Instead of computing WTP, the authors propose that conjoint analysis be 

used directly to estimate the change in market price that is due to the patent. They propose that a 

conjoint analysis simulator be used to determine the (Nash) market equilibrium prices at which 

all firms in the market simultaneously select maximum-profit prices, each assuming the other 

firms do not change their prices. Their proposed method requires a reasonably complete set of 

attributes, because equilibrium prices depend upon the error term in conjoint analysis which, in 

turn, depends on unmodeled attributes. See Eggers, Hauser, and Selove (2016) in this volume. 

The courts have intuited this dependence. When conjoint analysis is used for more than WTP (or 

willingness to buy, WTB), some courts have disallowed testimony from conjoint analysis experts 

because the courts perceive that the attribute description is inadequate (e.g., Alsup 2012). 

Whether a conjoint analysis is used to price a product, identify new product opportunities, 

estimate the impact of a change in attributes, or value copyrights and patents, it is important that 

the conjoint analysis study is based on a rich set of attributes for the product category. The 

                                                 

 
39 Tide image from https://www.pinterest.com/blacklab3/vintage-soap/. Attack image from http://www.kao.com/group/en/group/history_01.html. 

https://www.pinterest.com/blacklab3/vintage-soap/
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accuracy and relevance of the conjoint analysis study depends on the quality and completeness of 

the attribute-based description. 

TYPICAL APPROACHES TO IDENTIFY ATTRIBUTES 

Direct Approaches 

Often, the client provides a list of attributes and attribute levels and asks the analyst to design 

and execute the conjoint analysis experiment. This is a perfectly fine approach, but pushes the 

responsibility back to the client to specify an appropriate list of attributes. Alternatively, an 

analyst might search competitive websites, search websites that compare and contrast products, 

and search websites that make recommendations. Advertising claims complement these Internet 

searches. If the market is relatively stable, or if the conjoint analysis is used for WTP or WTB, 

then well-conducted Internet searches are an efficient means to identify the attributes for the 

conjoint analysis study. Internet searches are less useful if the market is in flux, or if the goal is 

to identify new innovations. “Unarticulated” needs and attributes might not be found in these 

Internet searches because no existing product has the attributes. New opportunities could be 

missed. Analysts must also be careful because comparison websites focus on points of difference 

among products. They might miss basic “must have” attributes. 

Indirect Customer-Based Approaches 

Indirect customer-based approaches begin directly with the customer. Focus groups and 

experiential interviews enable customers to articulate their needs and desires for the product 

category. The analyst experiences the experiences of the customers. Rather than asking directly 

about attributes, the analyst seeks first to understand the customers’ needs and then translates 

those customer needs into attributes (solutions) that address the customer’s expressed needs. 

Fortunately, there are a variety of proven methods to translate customer needs into attributes, 

including hedonic regression, Quality Function Deployment, and the Brunswik “lens” model 

(Brunswik 1952, Hauser and Clausing 1988, Sullivan 1986). 

The direct approaches are easier to implement and less expensive, but the indirect customer-

need-based approaches provide certain advantages. Indirect approaches identify a broad set of 

attributes with less functional overlap. This is particularly valuable because survey formats and 

respondent attention often limit the number of attributes and attribute levels. Furthermore, 

indirect approaches often identify unmet customer needs that lead to successful innovations. 

Our study focuses on identifying customer needs for an indirect approach. We rely on 

established methods to translate customer needs into attributes and attribute levels.  

Customer Needs versus Customer Solutions 

Customer needs, as used in this paper, are abstract statements that describe what a customer 

seeks to obtain from a product in the category. For example, in oral care, a customer need might 

be: “Easy to know the correct amount of mouthwash to use.” Customer needs are purposefully 

abstract so that they provide sufficient flexibility for the firm to design attributes that fulfill 

customer needs. With these definitions, attributes in conjoint analysis are solutions to customer 

needs. For example, a solution to the customer need might be to put “ticks on a cap that is used 

for dosage” or “pictures and numbers on the bottle to indicate dosage.” See Figure 2. 
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Figure 2. Attribute-based Solution to Customer Need to Know Easily 

the Correct Amount of Mouthwash to Use 

 

Voice of the Customer 

A structured set of customer needs is often called the “voice of the customer (VOC).” The 

most common VOC method consists of four steps: (1) experiential interviews with customers, 

(2) sentences highlighted by multiple human judges, (3) “winnowing” to obtain a reduced, non-

redundant set of customer needs, and (4) methods to organize the customer needs into an 

hierarchy of “primary,” “secondary,” and “tertiary” customer needs (Ulrich and Eppinger 2016; 

Griffin and Hauser 1993; Herrmann, Huber, and Braunstein 2000). There are at least two 

common procedures to organize customer needs into an hierarchy: (1) affinity groups where 

customers, themselves, sort the needs, and (2) card-sort methods where customers sort together 

customer needs that are similar and analysts cluster customer-need co-occurrence matrices. 

Figure 3 provides an example of the first two levels of a customer-need hierarchy that was 

delivered to an oral-care client. This VOC was produced by a marketing consulting firm with 

almost thirty years of experience in the voice of the customer. 
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Figure 3. Voice of the Customer for Oral Care Products 

 

USER GENERATED CONTENT (UGC) 

User-generated content (UGC) is text (and pictorial) content about products that customers 

themselves generate. For example, Twitter posts, customer blogs, and customer reviews are all 

UGC. UGC might also include customer complaint data or data collected from customer-help 

records. UGC is an exciting new source of information from which customer needs (and conjoint 

analysis attributes) can be extracted. UGC is often available quickly and at low incremental cost 

to the firm. UGC is updated automatically and never gets stale. 

However, UGC presents its own challenges. First, there are often too much data for human 

readers to process. For example, there are over 115,000 oral-care reviews on Amazon consisting 

of over 400,000 sentences. Human readers just cannot process that entire corpus. Second, much 

of the data in UGC are repetitive and not relevant. Sentences such as “I recommend Crest for 

oral care” does not express any customer need. We expect, and our analysis confirms, that most 

of the UGC on oral care concentrates on a relatively few needs. Third, UGC data are 

unstructured and mostly-text based. Identifying customer needs requires a thorough 

understanding of the content, and the unstructured nature of UGC complicates automatic 

analysis. 
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OUR GOALS 

UGC versus Experiential Interviews 

Our first goal is to compare in completeness and quality a set of customer needs, identified 

from UGC, to customer needs identified by standard methods as practiced by experienced 

analysts working from high-quality experiential interviews. Ideally, UGC-based customer needs 

should (1) have a substantial overlap with interview-based customer needs, (2) miss relatively 

few interview-based customer needs when limited to comparable analyst effort, and (3) include 

customer needs that were not identified from an exhaustive search of experiential-interview 

transcripts. We feel that if we confirm that customer needs from UGC satisfy these criteria then 

we validate UGC as a viable replacement for costly experiential interviews. 

Machine-Human Hybrid versus Human-Only Processing 

Our second goal is to use machine learning (deep learning) to streamline the identification of 

customer needs from UGC. In particular, we seek to use machine learning to eliminate non-

relevant content and organize the remaining content to minimize redundancy. 

For example, suppose that analysts, who are experienced in the use of VOC methods, have 

the capability of reading   sentences from UGC to identify customer needs. (Their capability 

might be limited by time, monetary budgets, or simply attention.) Not all   sentences will be 

relevant and many sentences will describe redundant customer needs. Let’s suppose that the 

analysts can identify    unique customer needs. A machine-human approach is more efficient if 

it can identify at least    customer needs with human effort that is less than or equal to that 

which would have been required for VOC experts to review   random sentences and identify    

customer needs. (Computational costs are trivial compared to human effort.) 

If we demonstrate that the machine-human hybrid is more efficient, then with continuous 

improvement through application the evolved method might be able to optimize the machine-

human hybrid and achieve the best human-effort cost per identified customer need. (We assume 

that the machine-learning method is fully programmed. The computation cost is a very small 

fraction of human effort.) 

Optimization of Human Effort 

In our scheme, there are multiple types of human effort that enter any analysis. In standard 

VOC methods, experiential interviews are extremely costly. UGC eliminates recruiting, 

interviewing, and transcription costs. In the machine-human hybrid method, there are two types 

of human effort required. Human analysts review sentences to determine whether the sentences 

are “informative” or “non-informative.” Then, human analysts review informative sentences to 

extract customer needs. The former is less onerous and time-consuming than the latter. For the 

purposes of this paper, we leave the optimization of human effort to future research. Such 

optimization requires that we quantify the value of additional customer needs and quantify the 

effort costs of interviewing, customer-need extraction, and informative vs. non-informative 

classification. 
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A PROPOSED MACHINE-HUMAN HYBRID FOR ATTRIBUTE IDENTIFICATION 

Why a Machine-Human Hybrid 

When machine-learning methods improve, we might be able to automate all stages in the 

identification of customer needs from UGC. To date, the final stage has defied automation. 

Formulations of customer needs must be precise for subsequent analyses. Moreover, the 

machine-learning methods are not sufficiently sensitive to semantic context to extract abstract 

customer needs from informative content. UGC is unstructured and not necessarily generated to 

articulate customer needs. Context matters and customer needs appear to be more than “buckets 

of words.” For example, bucket-of-word methods, such as Latent Dirichlet Allocation (LDA; 

Blei, Ng, and Jordan 2003) and LDA with hidden Markov models (LDA-HMM) (Griffiths et al. 

2004) do not seem to capture the semantic context necessary for identifying customer needs. But 

stay tuned. 

We have successfully automated two critical tasks in the analysis of UGC: identifying 

informative content and sampling a representative and diverse set of content for review. The 

resulting machine-human hybrid is more efficient, and equally as effective, as a pure human-

effort-based method. We feel this is substantial progress in a relatively short time. Analysts have 

had almost thirty years of continuous improvement to optimize human-effort-based VOC 

methods.
40

 VOC identification by experienced analysts is a challenging benchmark. 

Overview of the Machine-Human Hybrid 

Table 1 provides an overview of the four stages in our proposed method. The stages are: 

1. UGC. Rather than relying on expensive experiential interviews, we harvest readily 

available UGC from either public sources or propriety company databases. 

2. IDENTIFY INFORMATIVE CONTENT. We use a machine-learning classifier called a 

convolutional neural network (CNN) to filter out non-informative sentences so that the 

remaining corpus is rich in informative content. Because a CNN is a supervised learning 

method, it must be “trained.” Training requires human effort to classify a subset of 

sentences as informative vs. non-informative. In practice, the number of training 

sentences should be a small fraction of the corpus. 

3. SAMPLE DIVERSE CONTENT. We cluster “sentence representations” to select a set of 

sentences likely to represent diverse customer needs. Sentence representations are, in 

turn, based on dense numerical representations of words that capture semantic meanings. 

4. FINAL EXTRACTION OF REPRESENTATIVE CUSTOMER NEEDS. Analysts review the 

winnowed, informative sentences to identify customer needs. In the machine-human 

hybrid approach, this final stage is based on human effort and is the same task as that 

used in existing human-effort-based methods. 

We now describe the two machine-learning methods that we customized to the identification 

of customer needs. We then describe a proof-of-concept application to oral care. 

                                                 

 
40 Consulting firms, with experience in VOC methods, make human effort more efficient with software that makes it easy to highlight phrases in 

interview transcripts. Additional “bookkeeping-like” software makes it easy to keep track of redundant phrases during the winnowing process. 

Such proprietary software does not have the capabilities to be called machine-learning. These firms have also optimized human effort through 
training and experience. 
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Table 1. Automating Attribute Identification—Machine-Human Hybrid 

Traditional Machine-learning Hybrid 

Experiential interviews User Generated Content  

Highlight informative sentences manually 
Machine learning (convolutional neural network, 
CNN) identifies informative sentences 

Reduce customer-need redundancy manually 
(winnowing) 

Cluster numerical “sentence representations” to 
remove sentence redundancy and thus identify 
diverse customer needs 

Extract customer needs manually from interview-
based sentences 

Extract customer needs manually from 
informative diverse UGC sentences 

PREPROCESSING UGC TO IDENTIFY SENTENCES WITHIN THE UGC 

Sentences are most likely to contain customer needs and are a natural unit by which human 

analysts process either experiential interviews or UGC. But in UGC, customers do not always 

use a sentence structure. We preprocess raw UGC to transform the UGC corpus into a set of 

sentences. We use an unsupervised sentence tokenizer from the natural language toolkit (Kiss 

and Strunk 2006). We automatically eliminate stop-words (e.g., “the” and “and”) and non-

alphanumeric symbols (e.g., question marks and apostrophes). We transform numbers into 

number signs and letters to lower case. We further screen sentences to account for the artifacts of 

grammatical or punctuation errors in UGC. In particular, we drop sentences that are too short 

(less than three words) or too long (more than ten words). UGC tends to have many fewer 

compound sentences than experiential-interview transcripts. 

CONVOLUTIONAL NEURAL NETWORK (CNN) 

We use a convolutional neural network (CNN) on the corpus of sentences after preprocessing 

to classify sentences as either informative or non-informative. A CNN is a supervised 

classification model (e.g., Kim 2014). We use a CNN to transform numerical representations of 

sentences into a prediction of whether or not the sentence is informative. A CNN has multiple 

types of layers and can have multiple layers of each type. Figure 4 illustrates the types of layers 

that are contained in our CNN. (Our CNN is not an off-the-shelf CNN, but rather customized for 

our application.) The two key properties of the CNN are that (1) the CNN learns how to quantify 

and classify sentences simultaneously in the model, and (2) the model is able to process input 

(sentences) of different length. 
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Figure 4. Examples of the Types of Layers in our Convolutional Neural Network 

 

Numeric Representations of Words 

For every word in the English-language dictionary, the CNN represents the word by a 

numerical vector. We use pre-trained 300-dimensional word embeddings as described in the next 

section. If the word embeddings were unavailable, and with sufficient training data, a CNN could 

be used to learn word representations simultaneously with other parameters. The CNN quantifies 

the sentence by concatenating the representations of the words. 

Convolutional Layers 

A convolutional layer begins by applying filters to the sentence representation. A filter selects 

varying contiguous subsets of the sentence representations and weights the elements of the 

subset. The CNN then applies non-linear transformations, such as a logistic function, to the 

weighted subsets. The result of the application of this transformation to various parts of the 

sentence representation is called a “feature map.” 

We calibrate the weights used in the filters by training the CNN on the sentences that have 

been coded by human effort. The number of filters and their sizes are hyperparameters of the 

CNN. We select these hyperparameters before the CNN is trained. We tune the hyperparameters 

with cross-validation. 

Pooling Layers 

Convolutional layers often require many parameters and can become too complex to 

calibrate. If multiple convolutional layers are stacked without any dimensional reduction, then 

the number of parameters explodes. (The number of parameters also explodes if there are too 

many feature maps.) To maintain a feasible number of parameters, CNNs use pooling layers, 

which transform feature maps into shorter vectors. We use a    -pooling-over-time layer in 

which we retain the largest feature from each feature map produced by a convolutional layer 

(Collobert et al. 2011). 
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Softmax Layer 

The final layer, called a softmax layer, in the CNN transforms the output of the final pooling 

layer into a prediction of whether the sentence is informative (   ) or not informative (   ). 

The softmax layer is a binary logit model applied to the output of the last pooling layer. The 

parameters of the logit model are calibrated with the training data. In our application, we assign a 

sentence as informative if the estimated probability is greater than 50%. Future applications 

might assign sentences to categories for further review based on other criteria. 

Number of Each Type of Layer 

In our study, we stacked 3 convolutional layers and 1 pooling layer to generate input for the 

softmax layer. Each convolutional layer generates 40 feature maps. Performance of the trained 

CNN depends on a particular combination of layers and on the number of feature maps in 

convolutional layers. We used cross-validation to select these characteristics of the model. 

CNNs vs. SVMs 

Readers may be familiar with the use of support-vector machines (SVMs) for classification. 

CNNs have an advantage relative to SVMs because CNNs automatically and endogenously 

identify feature maps. In contrast, an SVM depends critically of the quality of the features used 

in the SVM. SVM features are often handcrafted, specific to application, dependent on context, 

and require substantial human effort. CNNs provide comparable performance to handcrafted 

SVMs without this substantial application-specific human effort (Kim 2014). 

CLUSTERING SENTENCE REPRESENTATIONS 

Armed with a corpus of informative sentences, we use machine learning to reduce 

redundancy. We cluster sentences that have similar semantic meaning and then sample from each 

cluster in proportion to the size of the cluster. For a given number of sentences, redundancy-

reduced sentences are more likely to contain diverse needs than a random sample of informative 

sentences. Because the clustered corpus is designed for maximum diversity, it is more likely (for 

a given  ) to yield a complete set of customer needs. 

In order to cluster sentences, we create numerical representations of the sentences that 

capture semantic meaning. The transformation for clustering is different than the concatenation 

for CNN classification, but both transformations are based on machine-language constructs 

known as “word embeddings.” We first describe word embeddings and then describe how we 

aggregate word embeddings to sentence representations. 

Word Embeddings 

Word embeddings are the numeric vectors that capture the semantic meaning of words. The 

basic concept is that semantically similar words appear in similar contexts. Information about the 

contexts is then used to represent words in the numerical space. We rely on a high-quality pre-

trained set of word embeddings that have remarkable properties. For example, if a word 

embedding,      , is a vector representation of word   , then the       have the following 

properties (Mikolov et al. 2013a): 
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We use 300-dimensional word embeddings that were pre-trained on the Google News Corpus 

using the “Skip-gram” model (Mikolov et al. 2013b). The Skip-gram model trains word 

embeddings by maximizing the average log-likelihood of words appearing within   words of one 

another in a sequence. For our purposes we simply adopt the word embeddings without further 

transformation. 

Sentence Representations 

In the CNN we concatenated word embeddings. This operation matches the use of filters in 

the feature maps. To create sentence representations for clustering we use an operation that 

retains the centrality of the semantic meaning. For our proof-of-concept application in oral care, 

we adopt the averaging method advocated by Iyyer et al. (2015). This operation is based on 

machine-learning experience. For example, Iyyer et al. demonstrate that the average of word 

embeddings is as effective as explicitly modeling semantic and syntactic structure with neural 

networks or training sentence representations simultaneously with word embeddings (Le and 

Mikolov 2014; Tai, Socher, and Manning 2015). 

Clustering Sentence Representations 

Because sentence representations have the property that similar vectors represent sentences 

with similar semantic meanings, we cluster the sentence representations based on the Euclidean-

distance norm. To be consistent with the hierarchical structures used in established VOC 

methods, we use an hierarchical clustering algorithm. Griffin and Hauser (1993) suggest Ward’s 

method, which we adopt. Not only has Ward’s method become standard practice for analyzing 

co-occurrence data but, by using Ward’s method, we maintain comparability with the human-

effort-based benchmarks that we compare to the machine-human hybrid approach. 

Final Extraction of Customer Needs 

The clustered sentence representations, sampled proportional to size, provide a set of 

informative sentences that are designed to be rich in diverse customer needs. The final stage 

relies on trained analysts to read each sentence and extract the customer needs. We expect that 

human-effort extraction is more efficient with informative, diverse sentences than with sentences 

sampled randomly from the UGC corpus. 
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ORAL CARE PROOF-OF-CONCEPT, EVALUATION, AND COMPARISON TO ESTABLISHED 

METHODS 

We have three goals. 

 Demonstrate that the machine-learning hybrid is feasible and that it can generate a set of 

customer needs from which attributes can be identified. 

 Compare the relative customer-need content of UGC and experiential interviews. 

 Evaluate the efficiency of the machine-human hybrid vs. a human-effort-based approach. 

We select the oral care category because oral care is best described by a relatively broad and 

challenging set of customer needs, but the set of tertiary customer needs in oral care is not too 

large to make the analysis unwieldy. 

“Gold Standard” Human-Based Approach 

A professional marketing consulting firm shared with us a VOC that they had delivered 

successfully to a client. Review Figure 3. The VOC was based on experiential interviews, with 

sentences highlighted by human analysts aided by the firm’s proprietary software. After 

winnowing, customer needs were clustered by an affinity group. The output was six primary 

customer needs and 22 secondary customer needs (Figure 3), as well as further elaboration into 

86 tertiary customer needs. 

UGC Data 

We consider 115,099 oral-care reviews from Amazon.com spanning the period from 1996 to 

2014. Preprocessing with the sentence tokenizer produced 408,375 sentences. 

Unique Dataset 

To compare the customer-need information in UGC to the customer-need information in 

experiential interviews, we randomly selected 8,000 sentences from the UGC corpus. The 

sentence structure of UGC differs from that in experiential interviews. UGC sentences tend to be 

shorter and less compound. In experiential interviews, sentences tend to ramble as they do in 

normal conversation. They are not always complete, but make sense in context. Also, the 

questions asked by interviewers are part of the give-and-take and cannot be ignored. To affect a 

valid comparison, we asked analysts, with experience extracting needs from interview 

transcripts, to estimate the number of UGC sentences that would be comparable to those 

contained in a typical VOC study. They judged the human effort involved in extracting customer 

needs from 8,000 UGC sentences would be comparable, but slightly less than, the effort involved 

in extracting customer needs from interview transcripts. 

The analysts, who extracted needs from the UGC, were drawn from the same marketing 

consulting firm that produced Figure 3. This enabled us to maintain a common level of training 

and experience. For each sentence, the analysts identified all customer needs in the sentence and 

coded those customer needs against the primary, secondary, and tertiary customer needs in the 

gold standard. If a tertiary customer need was not in the gold standard, the analysts attempted to 

assign the customer need to an existing secondary-customer-need group. If the tertiary customer 

need could not be assigned to a pre-existing customer-need group, the tertiary customer need was 
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given a new number. This data set is unique because the analysts coded all customer needs in 

every sentence of the UGC. Typical practice does not maintain such a map between the source of 

each customer need and the customer need. 

Information Contained in UGC versus Experiential Interviews 

We compared the information contained in the two sources of customer needs. This 

comparison is summarized in Figure 5a. Of the 86 tertiary customer needs extracted by human 

effort applied to the transcripts, 74 customer needs (86%) were extracted by human effort from 

the UGC. Importantly, analysts extracted seven new customer needs from the UGC, customer 

needs that were not extracted from the experiential interviews. This is impressive. We then asked 

analysts to examine an additional 4,000 randomly-selected UGC sentences to see if the customer 

needs that were identified from experiential interviews could be identified from additional UGC. 

Nine of the remaining twelve needs were identified. See Figure 5b. The analysts’ supplementary 

task was limited; we do not know if the additional 4,000 sentences contained any additional 

customer needs. (We plan future research to identify the relative importances of the various 

customer needs.) 

Figure 5. Comparison of Customer-Need Extraction from a Sample of UGC 

versus Experiential-Interview Transcripts 

(a) Holding Extraction Costs for UGC to be Less than those for Experiential Interviews. 

 

(b) Allowing Higher Extraction Costs for UGC, but Still Saving Interviewing Costs 

 

We conclude that UGC is at least a comparable source of customer needs as experiential 

interviews. Because UGC eliminates the substantial effort cost involved in scheduling and 
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implementing qualitative interviews, even with the additional 4,000 sentences, the total human-

effort cost is less with the machine-human hybrid approach than with the human-only approach. 

We’ll see later in this paper that machine-learning methods make extracting customer needs more 

efficient, thus enabling analysts to process a UGC corpus larger than 8,000 sentences for the 

same effort as was used to process transcripts. Further improvement should increase efficiency 

even more. 

Human-effort coding of the 8,000-sentence UGC corpus suggests that 52% of the UGC 

sentences are informative about customer needs (contain an identified customer need). There was 

also high redundancy. Ten percent (10%) of the most-frequently mentioned customer needs were 

articulated in 54% of the informative sentences. These percentages suggest potential efficiency 

gains due to the CNN and clustering sentence representations. 

CNN 

When the training sample,  , is larger, the CNN can classify sentences better. Figure 6 plots 

the ability of the CNN to classify sentences as a function of  . Figure 6 reports results up to 

6,000 sentences because preprocessing eliminated 1,394 sentences as too short or too long. This 

left 6,606 sentences eligible for use in training the CNN. 

We report three statistics that are common in machine learning. Precision, in machine 

learning, is comparable to hit rates in conjoint analysis (and not to be confused with the scale 

factor in conjoint analysis). In sentence classification, precision is the percent of sentences that 

are informative given that they have been labeled as informative. Recall is the percent of 

informative sentences that were correctly labeled as informative.    is a composite measure 

equal to: 

   
                

 
 
                  

 

There are tradeoffs in precision and recall as the size of the training sample increases, but 

their impact on the composite measure,   , appears to stabilize around        . At   
     , Figure 6 reports a precision of 70% and a recall of 73%. 

The CNN is effective if it identifies customer needs in the UGC corpus that were not in the 

training data. This was the case. The CNN identified customer needs in the UGC corpus that 

were not in the training data. 
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Figure 6. Precision, Recall, and    as a Function of the Size of the Training Sample 

 

Clusters of Sentence Representations 

To visualize whether or not clustering sentence representations enhanced diversity in 

customer needs, we use principal components analysis to project the sentence representations 

onto two dimensions. Information is lost, but we can see visually whether or not customer needs 

were separated by clustering sentence representations. Figure 7 reports the results. 

Figure 7. Two-Dimensional Projection of 300-Dimensional Sentence Representations 

 

The red dots are sentence representations that were coded (by human judges) as belonging to 

the primary customer need of “strong teeth and gums.” The blue dots are sentence 

representations that were coded as “shopping/product choice.” The ovals represent the smallest 
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ellipsis inscribing 90% of the corresponding set. Figure 7 suggests that, while not perfect, the 

clusters of sentence representations did achieve separation among customer needs. 

Gains in Efficiency Due to the Machine-Human Hybrid Method 

We use our database to compare counterfactual simulations of the number of customer needs 

that would have been identified by various methods. We compare the methods for various 

numbers of sampled UGC sentences. We chose to train the CNN on 5,000 sentences to 

approximate how we expect the CNN to be used in practice. We believe the larger training 

sample eliminates randomness in our analysis, but we do not believe that the relative 

comparisons of methods would change. 

When we train the CNN on 5,000 sentences, we can hold out 1,606 sentences after 

preprocessing to eliminate sentences that are too short or too long. At this        , the CNN 

achieves a precision of 76%, a recall of 78%, and an    of 77%. The CNN identifies 1,040 of the 

1,606 sentences as informative. 

For each of three methods, we compute counterfactuals assuming the analysts have only the 

resources to review   sentences for                        . To compare to a human-

effort benchmark, we evaluate the customer needs identified from a random selection from the 

UGC corpus (assuming preprocessing to eliminate sentences that are too short or too long). For 

example, an analyst would randomly select 250 sentences from the preprocessed corpus and 

review all 250 sentences. We redraw random samples 1,000 times and average. The results of 

random selection are shown in Figure 8 by a dashed blue line. 

We improve efficiency by using the CNN to identify informative sentences. To test efficiency 

gains, we randomly select from informative sentences (dotted red line in Figure 8). We increase 

efficiency further by using the CNN to screen for informative sentences, clustering sentence 

representations, and selecting from sentence representations proportional to the size of the 

clusters (solid black line in Figure 8). 

Over the range of the counterfactual simulations, Figure 8 suggests that the machine-learning 

stages enhance efficiency. There are gains due to using the CNN to eliminate non-informative 

sentences and additional gains due to using sentence representations to seek diversity within the 

corpus. The gains to diversity decrease with  , but the gains due to the identification of 

informative sentences continue throughout the range of the counterfactual simulations. 

We also interpret Figure 8 horizontally. Human effort requires, on average, 1,000 sentences 

to identify 65.6 customer needs. If we prescreen with machine learning to select diverse, 

informative sentences, an analyst can identify, on average, 65.2 customer needs from 750 

sentences. These efficiencies represent a human-effort saving of 25%. Given that human-effort-

based reviewing of experiential interviews has been optimized over almost thirty years of 

continuous improvement, these proof-of-concept results are promising. We expect the machine-

learning methods, themselves, to be subject to continuous improvement as analysts learn, by trial 

and error, how best to merge machine learning with human effort. 
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Figure 8. Comparison of Efficiencies among Various Means 

to Select UGC Sentences for Review 

 

DISCUSSION AND SUMMARY 

A high-craft conjoint analysis study requires that attributes and attribute levels be chosen 

carefully. VOC methods are a proven method by which to identify a complete set of attributes. 

VOC methods identify customer needs, then established methods, such as QFD, hedonic 

regression, or the Brunswik lens model, select attributes that are solutions to customer needs. 

In this paper we establish that machine-learning methods show promise to extract customer 

needs more effectively and more efficiently. Machine-learning methods also extract new 

customer needs that are missed by traditional experiential-interview studies. Once perfected, 

machine-learning methods applied to UGC will enable conjoint analysis analysts to extract a 

more complete set of customer needs (attributes) and do so quicker and with less human-effort 

costs. 

UGC 

Our results suggest that UGC can substitute for experiential interviews. In a limited corpus of 

8,000 sentences, human analysts were able to extract roughly as many customer needs as would 

have been extracted from experiential interviews. The overlap was not perfect, but the UGC did 

identify customer needs not in the interview transcripts. A comparison of Figures 5a and 5b 

suggests that, with a larger corpus, particularly with efficiencies due to machine learning, UGC 

should provide sufficient information with which to extract a more-complete set of customer 

needs than the typical experiential-interview study. 

CNN 

The CNN successfully identified non-informative sentences. Future research might optimize 

the CNN. 
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Sentence Representations 

Clustering sentence representations increases diversity, especially for small samples. 

However, as the size of the sample of sentences to review increases, the machine-human hybrid 

gets close to an exhaustive set of needs and the value of diversity decreases. 

Efficiency gains 

Perhaps the largest efficiency gain is the enhanced ability to replace experiential interviews 

with UGC. Experiential interviews are costly and require calendar time to recruit, schedule, and 

implement experiential interviews. A typical experiential-interview study requires about 4–5 

weeks. UGC can be harvested quickly (less than a day) and at substantially lower cost. 

We asked the marketing consulting firm to review 8,000 UGC sentences in depth because 

they judged that reviewing 8,000 UGC sentences was a conservative estimate of the effort 

required to review a typical set of experiential interviews. Even with 12,000 UGC sentences, the 

human effort for extraction is less than the human effort in an experiential-interview study. Both 

the CNN and clustering sentence representations make the review of the UGC sentences more 

efficient by as much as 25%. (A percentage we hope to increase with continuous improvement.) 

Machine-Learning Applied to Interview Transcripts 

There is nothing to prevent using the CNN and the sentence representation clusters on 

interview transcripts. We expect to see efficiencies there as well. The machine-human hybrid 

method applied to the interview transcripts can be useful in product categories where UGC is 

either not available or not extensive. 

Summary 

Understanding customer needs helps define a more complete set of attributes and improves 

the quality of the conjoint study. Based on our initial proof-of-concept application, we are 

optimistic about the potential of UGC and machine learning to transform the practice of 

identifying customer needs. We feel that the CNN and sentence representations are uniquely 

suited to the analysis of UGC because these methods do more than count words. They look to 

deep semantic structure as is required in the analysis of UGC. 

 

   

 Artem Timoshenko John R. Hauser 
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WHAT A DIFFERENCE DESIGN MAKES 

KAREN BUROS 
RADIUS GMR

1
 

JEREMY CHRISTMAN 
PROCTER & GAMBLE

2
 

ABSTRACT 

This case study illustrates the approach a researcher can take with Menu-Based Choice data 

using a study conducted by P&G. The procedures involve all aspects of the data from data 

cleaning to simulation, showcasing the difficulties encountered dealing with very large CPG 

markets. 

OVERVIEW OF THE PROBLEM 

The study was undertaken to explore alternative ways P&G might bring greater organization 

to a large, cumbersome category. The category encompasses three compatible product types used 

together to accomplish a task. While this paper disguises the category under study there are many 

situations like this in the consumer world; laundry detergent/fabric softener/stain remover, 

shampoo/conditioner/hair treatment are two examples. 

Three major national brands account for the clear majority of sales. The research study 

included only these three brands excluding smaller or regional brands. The products offered by 

these brands deliver specific benefits across the three product types but are not marketed as a 

single “bundle.” A key question to be addressed is whether the consumer selects products within 

a “benefit space,” within a brand regardless of the “benefit space” or makes differing selections 

from one product type to another. 

A total of 86 different products were included in the study, disregarding package size, multi-

packs or other promotional elements. All products were shown in comparable sizes and were 

priced. It should be noted that these are adult, not child-oriented, products. The products are sold 

in grocery, drug and mass merchandisers which often offer differing shelf sets depending on the 

shelf space allocated to these items. 

This paper will refer to the three product types as “Cleansing Products,” “Finishing Products” 

and “Remedial Products” and the brands as A, B, C and D. Brand A offers all three product types 

under a common logo, Brand B utilizes a slightly modified logo in one category. Brand C offers 

only two product types and Brand D is a market leader in one product type. 

The following table illustrates the size and complexity of the category: 

  

                                                 

 
1 Former Director Advanced Analytics Radius GMR 
2 P&G Quantitative Sciences 
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Cleansing 29 
             

 
Brand A 15 5 5 0 0 1 1 1 2 0 0 0 0 0 

 
Brand B1 12 1 6 0 0 2 0 1 2 0 0 0 0 0 

 
Brand C 2 0 1 0 0 0 0 1 0 0 0 0 0 0 

Finishing 41 
             

 
Brand A 15 1 1 1 1 1 0 0 8 0 1 0 1 0 

 
Brand B2 22 1 3 1 0 3 1 3 5 1 0 1 2 1 

 
Brand C 4 0 0 0 0 0 4 0 0 0 0 0 0 0 

Remedial 16 
             

 
Brand A 3 0 0 0 0 0 1 1 1 0 0 0 0 0 

 
Brand B2 8 0 2 0 0 0 0 2 3 0 1 0 0 0 

 
Brand D 5 1 0 1 0 0 0 1 2 0 0 0 0 0 

Benefit 

Space 
86 9 18 3 1 7 7 10 23 1 2 1 3 1 

Following are two potential ways consumers might “shop” this category. In this first 

approach, if the consumer is shopping within brand, a retailer might place all product types of the 

same brand together. 

 
  

Brand A 

Cleansing 

•Clean 

•Light 

Finishing 

•Clean 

•Bright 

Remedial 

•Effective 

Brand B 

Cleansing 

•Bright 

•Light 

Finishing 

•Clean 

•Effective 

Remedial 

•Light 

Brand C 

Cleansing 

•Clean 

•Bright 

Finishing 

•Effective 

•Bright 

Remedial 

•Light 
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Alternatively, within a benefit space, products might best be grouped by benefit. 

 

RESEARCH DESIGN 

The survey was conducted among 1,500+ panel members in early 2016. To qualify for the 

study participants were screened to be recent users of the category. 

The survey used a menu-based design, meaning that each respondent saw 22 products “at 

price” on a screen and were asked to select the products they would likely buy from that array. 

Respondents were asked to select products for the household (noting that these are adult-oriented 

items) and could select as many or as few, including none, as they wished. They could select 

only one of each item. 

The design was constructed such that all product types and all brands were shown in roughly 

equal proportions across the tasks. 

  

Cleansing 

Brand A 

•Clean 

•Light 

Brand B 

•Clean 

•Light 

Brand C 

•Clean 

•Bright 

Finishing 

Brand A 

•Clean 

•Bright 

Brand B 

•Clean 

•Effective 

Brand C 

•Effective 

•Bright 

Remedial 

Brand A 

•Effective 

Brand B 

•Light 

Brand C 

•Light 
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Items within each grouping shown in 

roughly equal proportions across the 

screens 

Total Cleansing 0.24 

Brand A 0.24 

Brand B1 0.24 

Brand C 0.24 

Total Finishing 0.27 

Brand A 0.28 

Brand B2 0.27 

Brand C 0.26 

Total Remedial 0.25 

Brand A 0.25 

Brand B2 0.25 

Brand D 0.25 

The design did not consider the overall objectives of understanding whether products were 

selected by benefit space or brand across product types. For example, a design could have been 

created to reflect groupings of items by benefit space on some screens, by brand on other screens 

and “random” displays on other screens thus obtaining a data-driven perspective on these issues. 

BUILDING SIMULATIONS 

Given the design, HB models were built using the following criteria: 

 Dependent variables are product chosen or not (86 models) 

 Independent variables are product shown or not 

 Cross-effects are other products shown (chi-square relationship P-value ≤.15) 

In the initial simulations, all products were included “as available” so that results could be 

compared to known market data and raw counts from the tasks completed. While the comparison 

to raw counts is a bit “apples to oranges” comparison, it nonetheless provided a useful 

comparison in tracking down the problems in the model. The initial results were deemed 

nonsensical, reflecting neither market data nor “raw count” data from the tasks. 
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“Shares” from HB Simulation   

Average # Cleansing Chosen 0.5 Too few  

Sum Brand A shares 0.23 

  

Sum Brand B1 shares 0.16 

Sum Brand C shares 0.06 

Average # Finishing Chosen 0.7 Too few  

Sum Brand A shares 0.52   

sum Brand B2 shares 0.14 Wrong! 

Sum Brand C shares 0.00   

Average # Remedial Chosen 2.6 Too many  

Sum Brand A shares 0.35   

Sum Brand B2 shares 1.79 Wrong! 

Sum Brand D shares 0.50   

   
“Apples to Oranges” Point of 

Reference to Raw Data 

Average # 

chosen/task 
 Any Cleansing 1.3 

 Any Finishing 1.4 

 Any Remedial 0.9 

 

UNCOVERING THE ISSUES IN THE DATA AND THE ANALYTIC APPROACH 

One of the goals of this paper is to illustrate the issues that should be investigated to assure a 

quality analysis. The first step investigates the “goodness” of the response to the survey. 

Examining the responses to the individual tasks, approximately 12% of the tasks involved 

selection of more than eight products and were deleted from further analysis. 
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The next hypothesis was that models could be over-specified. Only cross-effects < .05 were 

included. 

Dependent variable: Item3, Chosen 

Independent 

Variable 

Relationship P-

Value   Independent Variable 

Relationship 

P-Value   

shown1 0.02   shown32 0.06 x 

shown2 0.02   shown36 0.03   

shown3 0.00   shown37 0.10 x 

shown4 0.02   shown43 0.00   

shown6 0.11 x shown46 0.14 x 

shown8 0.09 x shown47 0.14 x 

shown10 0.00   shown49 0.13 x 

shown11 0.12 x shown51 0.09 x 

shown14 0.15 x shown52 0.00   

shown16 0.13 x shown55 0.12 x 

shown17 0.09 x shown62 0.05 x 

shown18 0.09 x shown67 0.14 x 

shown20 0.03   shown68 0.07 x 

shown22 0.03   shown69 0.05 x 

shown24 0.00   shown75 0.06 x 

shown25 0.00   shown77 0.13 x 

shown26 0.03   shown79 0.00   

shown27 0.11 x shown81 0.06 x 

shown29 0.04   shown82 0.08 x 

shown31 0.05 x shown85 0.10 x 

 

  

Selected 9 to 22 items per task 
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These actions resulted in only minor improvements in the simulated data when all models 

were re-run: 

  HB Simulations   

  Original Data 
 

Cleaned/ Trimmed 

Data   

Average # Cleansing 0.45 
 

0.67 X 

Sum Brand A shares 0.23 

 

0.17 X 

Sum Brand B1 shares 0.16 

 

0.44 X 

Sum Brand C shares 0.06 

 

0.06   

Average # Finishing 0.66 
 

0.57 X 

Sum Brand A shares 0.52 

 

0.31   

sum Brand B2 shares 0.14 

 

0.24   

Sum Brand C shares 0.00 

 

0.02   

Average # Remedial 2.64 
 

1.36 X 

Sum Brand A shares 0.35 

 

0.10 X 

Sum Brand B2 shares 1.79 

 

1.04 X 

Sum Brand D shares 0.50   0.22   

Further examination of the models showed that despite the more limited number of cross-

effects, the effects themselves were often counter-intuitive. To remedy the situation, logical 

constraints were imposed. 

 Within a category (e.g., Cleansing), the presence of “same brand” and “other brand” 

items should have a negative impact on the likelihood of selection—constrain negative 

 Across categories (e.g., Cleansing and Finishing), the presence of “same brand” items 

may have a positive impact—constrain positive 

Once again, this resulted in some improvement but not sufficient to warrant further analysis. 
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  HB Simulations 

  
Original 

Data 

Cleaned/ 

Trimmed 

Data 

Clean/ 

Trim/ 

Constrain 

Average # Cleansing 0.45 0.67 0.52 

Sum Brand A shares 0.23 0.17 0.22 

Sum Brand B1 shares 0.16 0.44 0.24 

Sum Brand C shares 0.06 0.06 0.06 

Average # Finishing 0.66 0.57 1.27 

Sum Brand A shares 0.52 0.31 0.16 

sum Brand B2 shares 0.14 0.24 1.08 

Sum Brand C shares 0.00 0.02 0.03 

Average # Remedial 2.64 1.36 0.06 

Sum Brand A shares 0.35 0.10 0.01 

Sum Brand B2 shares 1.79 1.04 0.05 

Sum Brand D shares 0.50 0.22 0.00 

Finally, having cleaned and constrained both the models and the data, the only place to look 

for the problem was in the simulations themselves. A “rule of thumb” in other choice modeling 

work is to make the choice task as realistic as possible to the respondent—to give as much 

information to the respondent such that he/she can make a realistic choice but not so much that 

the task becomes overwhelming. 

In this very large market, the consumer has a very large array of products to choose from in a 

drugstore, mass merchandiser or supermarket. To keep the task from becoming overwhelming, in 

this case, only 22 products were shown on the screen. The extrapolation of a 22-item task to an 

86-product simulation proved to be the problem. On the other hand, a 22-item simulation would 

not be close to a realistic simulation of the market. To explore this issue 50 tasks were selected 

from the original design, each showing 22 items. The selection was made by random selection of 

the version (out of 200 versions) and then random selection of the task (out of 12 tasks) to serve 

as “profiles” in simulation. The selection of profiles was checked for any bias against the original 

design. 
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% times shown out 

of all tasks Full Design 50 Tasks 

Total Cleansing 0.24 0.24 

Brand A 0.24 0.23 

Brand B1 0.24 0.25 

Brand C 0.24 0.27 

Total Finishing 0.27 0.27 

Brand A 0.28 0.30 

Brand B2 0.27 0.25 

Brand C 0.26 0.30 

Total Remedial 0.25 0.25 

Brand A 0.25 0.26 

Brand B2 0.25 0.25 

Brand D 0.25 0.25 

The 50 simulations were run and the average “shares” calculated across the 50 results. The 

difference in the results is dramatic as shown here. 

 

As a final step, the exponent in the simulator is adjusted to fine-tune the results to more 

closely reflect known market data and the data from the raw counts. 

Original 

Data

Cleaned/ 

Trimmed 

Data

Clean/ 

Trim/ 

Constrain

With 50 

22_item 

repetitions

Average # Cleansing 0.45 0.67 0.52 0.85

Sum Brand A shares 0.23 0.17 0.22 0.46

Sum Brand B1 shares 0.16 0.44 0.24 0.35

Sum Brand C shares 0.06 0.06 0.06 0.04

Average # Finishing 0.66 0.57 1.27 0.82

Sum Brand A shares 0.52 0.31 0.16 0.24

sum Brand B2 shares 0.14 0.24 1.08 0.52

Sum Brand C shares 0.00 0.02 0.03 0.06

Average # Remedial 2.64 1.36 0.06 0.69

Sum Brand A shares 0.35 0.10 0.01 0.15

Sum Brand B2 shares 1.79 1.04 0.05 0.29

Sum Brand D shares 0.50 0.22 0.00 0.26

HB Simulations
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RESOLVING THE DESIGN ISSUES 

Given an understanding of the data and simulation issues, the question becomes whether this 

design could be better utilized to answer the original questions of selection of product by brand 

or benefit space. 

To explore this, the selections made by the respondent could be recoded in several ways. To 

illustrate the concept consider the following: 

 Original Coding: Dummy-coded: Chosen/Not Chosen 

 Combinatorial: groups of items chosen together (e.g., peanut butter and jelly) 

 Brand_Benefit within Category 

  Brand within category 

 

For the combinatorial approach, three alternatives are explored. First, a straight count of the 

number of times items are chosen together in a task is made. It is not surprising that no 

combinations of items appear to dominate given the random selection of 22 items shown in a 

task. 
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Then a principal components factor analysis was attempted, again with no meaningful 

combinations emerging from the data. 

 

Finally, a hierarchical clustering of the items was tried. Again, no meaningful clusters 

emerge. 

 

Recoding the choices made by the respondent into a simplified design space appear to be the 

only available alternatives. The obvious disadvantage of this approach is that the respondent 

could select more than one of the same type item falling within a “recoded” space, e.g., brand. 

That said, it might provide some understanding of the selection process in the analysis stage. The 

reduced number of models could possibly yield greater stability in simulation.  
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Three approaches were undertaken as follows: 

 

Again, using the simulation averaging approach (50 simulations of 22 items) the results of 

these recoded models can be compared to the 86-item simulation. All approaches lead to very 

similar results. The choice of which approach to use becomes purely an analytic choice, noting 

that none of these completely resolves the issue of the random nature of the original design. 

 

The initial hypothesis was that the 86-item model was the source of the problematic results 

and that simplification of the models would resolve the issue. This proved not to be the case. 

When the alternative coded models were simulated using all 86 items, not only were the results 

contrary to the ingoing data and known market dynamics but they also differed markedly from 

one to the other. Once the data issues and, most importantly, the simulation issues were resolved 

the models fell into line as one would expect. 

It is possible that respondent-level clustering may reveal underlying patterns of choice. That 

approach was not explored in this case study. An alternative design, focusing on brands and 

benefit spaces in the tasks would more likely result in more meaningful findings. 

LEARNINGS 

As painful as this exercise proved to be, it nonetheless yields some meaningful learnings 

when approaching menu-based choice modeling. 
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 Sense check the data and trim out the poor responses 

 Conceptualize the models to mirror the objectives of the analysis 

 Use the tools you have to obtain the best model . . . 

o Minimize cross-effects  

o Constrain cross-effects when it makes sense 

o Calibrate—fine-tune—your exponent 

 Bring the simulator in line with the respondent task—or vice versa 

 Give yourself enough time to do the job right 

 

   

 Karen Buros Jeremy Christman 





329 

EXPLAINING PREFERENCE HETEROGENEITY WITH 

MIXED MEMBERSHIP MODELING 

MARC R. DOTSON 
BRIGHAM YOUNG UNIVERSITY 

JOACHIM BÜSCHKEN 
CATHOLIC UNIVERSITY OF EICHSTÄTT-INGOLSTADT 

GREG M. ALLENBY 
OHIO STATE UNIVERSITY 

1 INTRODUCTION 

The fact that consumers are heterogeneous in their preferences gives rise to marketing as a 

discipline and an industry. Choice models and associated decision tools that account for this 

heterogeneity allow firms to better understand what consumers prefer and have become a 

standard for product development and product line optimization. However, explaining preference 

heterogeneity remains an elusive problem. In this paper we develop an expanded choice model 

that improves our ability to explain preference heterogeneity by employing a novel approach to 

model discrete data, including binary and ratings survey data, that describe the drivers of 

consumer preference. 

Choice modeling is an effective tool for determining what product attributes individuals 

prefer but it has proven less successful at explaining the heterogeneity in consumer preferences. 

Explaining preference heterogeneity includes identifying covariates that serve as drivers of 

preference and enable targeting and promotion activities. The use of hierarchical Bayes in choice 

modeling allows for both individual-level attribute part-worth utilities and aggregate-level 

preference heterogeneity parameters. Part-worth estimates tell us what attributes consumers 

prefer. Parameters describing preference heterogeneity are conditioned on covariates that help 

explain cross-sectional variation in the part-worths. 

Finding covariates that are predictive of part-worths has proven difficult. The primary benefit 

when using a random effect distribution of heterogeneity has been accounting for unexplained 

heterogeneity. Using discrete variables describing possible drivers of preference, such as 

demographics and psychographics, as covariates is standard. However, survey data are typically 

used as covariates where the number of covariates makes it impractical to include interactions. 

Additionally, we have growing access to new sources of discrete multivariate data outside of 

surveys, including text, that we expect will be a rich source of information for explaining choice 

yet incorporating it isn’t obvious. We propose modeling this discrete multivariate data as part of 

the choice model in order to uncover covariates that can better explain preference heterogeneity. 

In this paper we develop an expanded hierarchical Bayesian choice model where covariates 

for the upper level are from a grade of membership model (Woodbury et al. 1978, Erosheva et al. 

2007). The grade of membership model is related to latent Dirichlet allocation, which serves as a 

touchstone within topic modeling (Blei et al. 2003). Both are part of a larger class of models 

known as mixed membership models that provide individual-level, low-dimensional 

representations of discrete multivariate data by accounting for interactions or co-occurrence 

(Airoldi et al. 2014). We propose modeling discrete variables describing potential drivers of 



330 

preference where interaction among drivers will help further explain preference heterogeneity. 

We apply our model within the robotic vacuums category and find we can both explain 

preference heterogeneity and predict choice better than traditional models using observed 

covariates directly. 

This paper contributes to efforts at using mixed membership models to improve marketing 

models. The application of this class of models to marketing contexts is still in its infancy. Extant 

research has focused on latent Dirichlet allocation (LDA), using product reviews and online 

forums to inform market structure (Lee and Bradlow 2011, Netzer et al. 2012) and to identify 

preferences for product features (Archak et al. 2011). Most recently, Tirunillai and Tellis (2014) 

use LDA to conduct brand analysis while Büschken and Allenby (2016) develop a sentence-

constrained LDA to better predict review ratings. However, mixed membership models have yet 

to be employed in the context of choice modeling. We believe this paper provides an important 

first step in this regard. 

The remainder of the paper will be organized as follows. We specify our model in Section 2. 

We detail our empirical application in Section 3. In Section 4, we compare results from our 

proposed model, with covariates uncovered using the grade of membership model, and 

alternative models where standard discrete covariates are used. We discuss implications of and 

extensions to this research in Section 5. 

2 MODEL SPECIFICATION 

2.1 Hierarchical Bayesian Choice Model 

Hierarchical Bayesian choice models allow for the estimation of both individual and 

aggregate-level preference parameters, even in the presence of few observations per individual 

(Rossi and Allenby 2003, Rossi et al. 2005). Decision tools associated with choice modeling 

make use of individual-level preference parameter estimates to forecast the results of various 

product policies while aggregate-level parameter estimates are employed to explain the source of 

individual preferences. 

The likelihood in hierarchical Bayesian choice modeling is typically assumed to be a 

multinomial logit model such that the probability of an individual choosing a product alternative 

is a function of the attributes that compose the given alternative and the part-worths or 

individual-level preferences for the attributes. The distribution of heterogeneity, or upper level, 

models preference heterogeneity in the individual-level part-worths. The distribution of 

heterogeneity is typically assumed to be multivariate normal. The mean of the distribution of 

heterogeneity is where the analyst can specify individual-specific covariates that explain 

variation in the part-worths. 

The directed acyclic graph (DAG) in Figure 1 provides a visual representation of the 

hierarchical Bayesian choice model. The DAG utilizes plate notation, where a plate represents 

replication for the enclosed variables. In the DAG, white nodes represent parameters to be 

estimated, grey nodes represent fixed hyper-parameters, and black nodes represent observed 

data. From the use of plate notation in Figure 1, we can see that the hierarchical Bayesian choice 

model has both aggregate and individual levels. To be clear, at the aggregate level, we have the 

hyper-parameters for conjugate normal (Γ-bar and A) and inverse Wishart (ν and V) priors and 

the parameters for the distribution of heterogeneity (Vβ and Γ). At the individual level, yn is a 
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vector of observed choices, βn are the part-worths, and zn are the observed covariates for 

individual n. We can see that the covariates are chosen independent of the model specification. 

As discussed, the covariates are the key to our ability to explain preference heterogeneity. We 

will use DAGs, beginning with Figure 1, to help motivate the proposed model. 

Figure 1. Hierarchical Bayesian Choice Model 

 

A variety of covariates have been employed to explain preference heterogeneity in the choice 

modeling literature. For example, Allenby and Ginter (1995) used demographic variables, Lenk 

et al. (1996) included expertise, and Chandukala et al. (2011) specified consumer needs to 

explain variation in the part-worths. However, explaining preference heterogeneity has not met 

with much success generally (Rossi et al. 1996, Horsky et al. 2006). 

One unresolved issue is that discrete covariates are often employed without a practical way to 

include interactions. The problem is one of dimensionality. The number of interaction terms is J 

choose M, where J is the number of covariates and M is the number of desired interactions. For 

example, with J = 30 covariates and M = 2, there are 435 possible two-way interactions, to say 

nothing of higher-level interactions where M > 2. While Chandukala et al. (2011) employ 

variable selection to determine which covariates matter, we are interested in a model general 

enough to account for interactions from traditional survey data as well as accommodate new 

sources of discrete data. 

We propose using a non-standard model that accounts for the interaction or co-occurrence of 

variables to uncover covariates from discrete multivariate data for use in a choice model’s 

random effect distribution of heterogeneity. Specifically, we propose combining a hierarchical 

Bayesian choice model with a grade of membership model to uncover covariates that account for 

interactions in order to explain preference heterogeneity better than using observed covariates 

directly. We first detail the grade of membership and the class of mixed membership models 

before specifying our expanded choice model. 
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2.2 The Grade of Membership Model 

The grade of membership (GoM) model was developed to classify disease patterns using 

discrete patient-level clinical data (Woodbury et al. 1978, Clive et al. 1983). It has since been 

applied to modeling survey data (Erosheva et al. 2007, Gross and Manrique-Vallier 2014). In 

these applications, each respondent answers a battery of survey questions with categorical 

responses. The research interest is to identify the patterns of interaction or co-occurrence in the 

categorical responses across respondents along with how each respondent relates to the patterns 

of co-occurrence. The GoM model characterizes these patterns of co-occurrence as profiles of 

archetypal respondents. Each respondent is a partial member of each of the profiles based on 

how similar their responses are to each pattern of co-occurrence. 

Figure 2. Modeling Pick Any/J Data with a GoM Model 

 

To illustrate, consider responses to a battery of select-all-that-apply questions (i.e., pick 

any/J). Each respondent selects or indicates a subset of the J = 30 statements or items that apply 

to them in answer to the question: “What benefits does cereal provide that are important to you?” 

Figure 2(a) displays the items selected for a given respondent together with their membership 

vector gn. Figure 2(b) displays λj,k(1) describing K = 3 aggregate-level profiles in terms of the 

likelihood of selecting each of the J = 30 items. Note that since there are only two categorical 

options for all J = 30 questions, each λj,k is a vector with two elements such that λj,k (0) is the 

complement of the values listed in Figure 2(b). Thus λj,k(0) + λj,k(1) = 1 for each λj,k. 

Using Figure 2, we can see how profiles emerge based on what items co-occur. For example, 

if item 11 “I want to make sure my family has breakfast in the morning” and item 3 “My kids 

will eat cereal for breakfast” are selected together frequently across respondents, this pattern may 

be part of a profile describing concern with breakfast for children. In Figure 2(a), the 
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membership vector gn describes the partial membership respondent n has in each of the K = 3 

profiles—“Kids Breakfast,” “Healthy Snack,” and “Source of Fiber”—where the number of 

profiles K = 3 has been specified by the analyst and the weight given to each profile is 

determined by how similar respondent n’s response pattern matches each of the aggregate-level 

profiles. For this particular respondent, they are primarily a member of the “Kids Breakfast” 

profile, with a weight of 0.60, while still being a partial member of the remaining two profiles. 

The membership vector gn has non-negative elements and is constrained to equal 1. 

The aggregate-level values λj,k(1) in Figure 2(b) describe how likely it is for each item to 

occur within each profile. The profiles are composed of all J = 30 items with the item that is 

most likely within each profile in bold. Based on common response patterns across respondents, 

the profiles describe archetypal or extreme respondents (i.e., respondents that define the bounds 

of the convex hull), ones that in this case are either concerned wholly with cereal for “Kids 

Breakfast,” a “Healthy Snack,” or a “Source of Fiber,” where the profile names have been 

determined by the analyst based on which items differentiate each profile. Thus each 

membership vector gn describes where a respondent n is located within a convex hull defined by 

the extreme respondent profiles. These profiles account for the co-occurrence or interaction of 

the discrete items while reducing the dimensionality from J to K. 

Figure 3. The Grade of Membership Model 

 

The DAG in Figure 3 provides a visual representation of the GoM model. The plate notation 

demonstrates the three model levels: item, respondent, and aggregate. The aggregate-level λj,k 

describing profiles is homogeneous while the respondent-level membership vectors gn are 

heterogeneous. To be clear, the hyper-parameters are for conjugate Dirichlet priors (α and τ) and 

the latent variables zn,j are different from the observed covariates in Figure 1. 

In the marketing literature, it has been argued that identifying extreme responses is important 

for designing and promoting successful new products (Allenby and Ginter 1995). For example, 

extreme response behavior can be used to more efficiently target prospects with a high 

probability of adopting an innovation. Conceptualizing consumer heterogeneity as a continuous 

distribution of preferences has been shown to aid in the identification of extreme responses 

(Allenby et al. 1998, Allenby and Rossi 1998). The GoM model represents discrete response 

behavior as a continuous proximity to a limited number of extreme profiles. Given that marketers 

often search for a limited number of product offerings for reasons of efficiency or resource 

limitations, a concept of heterogeneity that expresses differences among consumers in the space 

of a small number of extreme response profiles is appealing. We utilize the GoM model given 

this characterization of heterogeneity, which includes the respondent-level membership vectors 

gn, in the development of our proposed model. 
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2.2.1 Relationship with Finite Mixture Models 

Having a respondent-level membership vector that consists of non-negative, real-valued 

latent variables that sum to one is the distinctive feature of mixed membership models, the class 

of models that includes the GoM and LDA. Contrast this with the general form of a finite 

mixture model (Kamakura and Russell 1989) where we have a membership vector at the 

aggregate level while the GoM model in has a membership vector at the individual level. This 

feature is common to all mixed membership models and illustrates why they are often referred to 

as individual-level mixture models. 

Finite mixture models are a special case of mixed membership models (Erosheva et al. 2007, 

Galyardt 2014). However, our use of the GoM within the class of mixed membership models is 

different than the typical use of finite mixture models in choice modeling. Instead of specifying a 

mixture of distributions of heterogeneity, we are interested in using the respondent-level 

membership vector gn to serve as covariates that can further explain preference heterogeneity. 

2.2.2 Relationship with Factor Analysis 

Factor analysis is another related model and has long been a standard approach in marketing 

for dimension reduction (Stewart 1981). The basic assumption is that a set of variables can be 

reduced to one or more latent constructs called factors. The form of factor analysis is similar to 

that of the GoM model, with factor scores in place of the membership vector and factor loadings 

in place of the profiles. Erosheva (2002) even demonstrates that the GoM model is equivalent to 

a binary factor analysis with an identity link function. However, there are key differences in the 

two approaches. 

Factor analysis and GoM models differ in terms of their underlying assumptions, modeling 

objectives, and the type of data each method can process (Manton et al., 1994; Marini et al. 

1996). First, standard factor analysis assumes continuous data. Even using a cut-point model, 

which assumes the observed data are discrete indicators of latent continuous variables, the 

underlying constructs (i.e., factors) are still considered to be continuous. On the other hand, the 

GoM model assumes both discrete data and discrete underlying constructs (i.e., profiles). 

Second, the objective of factor analysis is to uncover latent constructs underlying a set of 

variables. The objective of the GoM model is to both uncover profiles representing extreme 

characterizations of respondents and measure each respondent’s proximity to these profiles. In 

other words, the GoM model has the description of respondents and respondent heterogeneity as 

the objects of inference. Finally, unlike factor analysis, the GoM model can handle a 

combination of multinomial, ordinal, and other discrete multivariate data. 

2.3 Hierarchical Bayesian Choice Model with a GoM Model 

The proposed model combines a hierarchical Bayesian choice model with a GoM model in 

order to use discrete multivariate data to uncover covariates that explain preference 

heterogeneity. A related concept is presented in the form of a supervised latent Dirichlet 

allocation (sLDA). In the sLDA topic model, each collection of discrete data (i.e., document, in 

the context of topic modeling) is paired with and used to be predictive of a response, such as 

using movie reviews to predict movie ratings (Blei and McAuliffe 2007). We employ the same 

kind of pairing between a collection of discrete data and response, however our response is part-

worth utility parameters and the collection of discrete data is from a battery of survey questions. 



335 

The individual-level choice model remains multinomial logit and the distribution of 

heterogeneity remains multivariate normal. Since there is a separate gn for each respondent in the 

GoM model, we use these membership vectors as covariates to explain heterogeneity in the part-

worths. Figure 4 illustrates the proposed hierarchical Bayesian choice model with a GoM model. 

From the DAG we can see that the proposed model is a three-level model where only the 

categorical responses and choices for each respondent are observed. The homogeneous profiles λ 

account for the interaction or co-occurrence among items and provide for the dimension 

reduction we need to use this collection of discrete data as covariates in the model of preference 

heterogeneity. 

Figure 4. Hierarchical Bayesian Choice Model with a GoM Model 

 

Figure 4 combines the DAGs in Figure 1 and Figure 3 to illustrate that the membership 

vector gn serves as the link between the choice model and the GoM model. Thus gn is informed 

by both the categorical responses and the chosen alternatives. The proposed model is more 

complete than a model where gn is estimated separately from choice since estimating all the 

parameters in the expanded model allows us to properly account for the uncertainty in gn. A 

complete list of the variables in Figure 4 are detailed in Table 1. 
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Table 1. Variables in Hierarchical Bayesian Choice Model with a GoM Model 

 

We validated our proposed model by generating data where K = 2, N = 200, J = 13, nj = 2 for 

all J, H = 50, P = 4, and L = 5 and recovering parameter values. Each true parameter value was 

within or near the bounds of a 95% credible interval. We display the aggregate-level posterior 

means in Figure 5. The posterior means line up along the diagonal, indicating parameter 

recovery. Note that the λ estimates are constrained to be within the 0–1 bounds. 
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Figure 5. Simulation Study Results 

 

3 EMPIRICAL APPLICATION 

We use data from a national survey of preferences regarding robotic vacuums. A total of 332 

respondents were carefully screened to ensure that the product options under consideration were 

relevant to them. In particular, qualified respondents had to own a robotic vacuum, currently be 

shopping for their first robotic vacuum, or might consider a robotic vacuum sometime in the next 

five years. 

Before the conjoint experiment, respondents were asked to detail why the product was 

relevant to them or anyone in their household by selecting from a list of 11 statements on 

cleaning that robotic vacuums might help address. Respondents were also asked to select from 

among a list of 7 statements that described problems with robotic vacuums. The combined list of 

18 statements regarding cleaning and robotic vacuums is provided in Table 2. Thus our discrete 

data consists of two possible categories where not selecting an item is coded as a 0 and selecting 

an item is coded as a 1. 



338 

Table 2. Statements on Cleaning and Robotic Vacuums 

 

Standard models using this discrete data as observed covariates in the random effects 

distribution of heterogeneity don’t have a practical way to include interactions, even though 

interactions should be expected. For example, we would expect that respondents who select 

statement 5 “I worry about germs and dirt on my floor and carpet” also select statement 10 “I 

spend over two hours per week cleaning” and that this interaction would have an impact on 

explaining preferences in the random effects distribution of heterogeneity. However, if we were 

to include two-way interactions, we would add an additional 153 covariates, to say nothing of the 

dimensionality introduced by higher-level interactions. 

After selecting from applicable statements on cleaning and robotic vacuums, respondents 

proceeded through a series of 16 choice tasks where they were asked to select which of five 

product alternatives they most preferred, including an outside option to not select any of the 

given alternatives. Figure 6 is a screenshot of one of these choice tasks. Each alternative was 

composed of seven separate attributes for a total of 12 estimable attribute levels, excluding the 

reference levels in bold detailed in Table 3. 
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Figure 6. Example Choice Task 

 

Table 3. Attribute Levels 

 

Besides brand and price, we see that the attributes were defined in terms of features, 

including the vacuum’s performance (i.e., what percentage of dirt and debris it picks up), 

capacity (i.e., how often it needs to be emptied), the type of navigation (i.e., does it change 

directions by just bumping into things or is it “smart” and able to scan and determine an optimal 

path), where it can be programmed, and whether or not virtual borders can be set to keep the 

robotic vacuum away from certain areas of the home. A summary of the data using model 

notation is provided in Table 4. 

Figure 6: Example Choice Task

in Table 2. Thus our discrete data consists of two possible categories (i.e., nj = 2 for all

J = 18) where not select ing an item is coded as a 0 and select ing an item is coded as a 1.

Standard models using this discrete data as observed covariates in the random e↵ects

distribut ion of heterogeneity don’t have a pract ical way to include interact ions, even

though interact ions should be expected. For example, we would expect that respondents

who select statement 5 “ I worry about germs and dirt on my floor and carpet” also

select statement 10 “ I spend over two hours per week cleaning” and that this interact ion

would have an impact on explaining preferences in the random e↵ects dist ribut ion of

heterogeneity. However, if we were to include two-way interact ions, we would add an

addit ional 153 covariates, to say nothing of the dimensionality introduced by higher-level

interact ions.

After select ing from applicable statements on cleaning and robot ic vacuums, respon-

dents proceeded through a series of 16 choice tasks where they were asked to select which

of five product alternat ives they most preferred, including an outside opt ion to not select

any of the given alternat ives. Figure 6 is a screenshot of one of these choice tasks. Each

20
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Table 4. Data Summary 

 

4 RESULTS 

We report the results of three models. The Intercept model only includes an intercept in the 

upper level model (i.e., βn = γ + ξn) and serves as a baseline. The Binary Covariates model 

includes all 18 dummy-coded statements from Table 2 as covariates in the upper level model 

(i.e., βn = Γ′zn + ξn) and represents the typical way these discrete covariates would be used in 

practice. Finally, the Membership Vector model is our proposed model, which uses the 

membership vectors from the grade of membership model as covariates for K = 5 profiles (i.e., βn 

= Γ′gn + ξn). 

The number of profiles K is determined by the analyst. Following the review on model 

selection criteria by Joutard et al. (2007), we ran an isolated GoM model on the 18 statements in 

Table 2 and compared two measures of fit. The first is the Newton-Raftery approximation of the 

log marginal density (LMD) (Newton and Raftery 1994), a standard Bayesian measure. The 

second is the deviance information criterion (DIC), developed by Spiegelhalter et al. (2002). 

Values closer to zero indicate improvement in fit for both measures. Figure 7 includes charts for 

the values of both LMD and DIC for models with K=2 to K=18. According to the LMD (where 

values closer to zero indicate better fit), K=5 is best. According to the DIC (where values closer 

to zero indicate better fit), K=7 is best. With the range of possible models narrowed, we ran the 

proposed model for K = 5 to K = 7. Comparing results to find profiles that are sufficiently 

differentiated and non-repeating, the model with K = 5 was deemed best. 

The final 75 respondents were reserved as a holdout sample, leaving 257 respondents for 

calibration. In addition, one choice task was held out from each respondent in the calibration 

sample for an additional measure of predictive fit. We ran each model for 50,000 iterations, 

saving every 50th draw, and using the final 20,000 iterations for inference. We checked for but 

found no substantial evidence of label switching. 
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Figure 7. Selecting the Number of K 

 

Choice model LMD is used for in-sample fit. Out-of-sample fit is provided in terms of hit 

probabilities. A hit probability is the average posterior probability of a set of observed choices 

given a specific model. The hit probability is averaged over a set of respondents, observations, 

and post-burn-in MCMC draws. The two hit probabilities of interest are for the holdout tasks 

from the calibration sample and the holdout sample, respectively. For the calibration holdout task 

hit probability, N = 257, H = 1, R = 401, and the part-worth draws are available from each model. 

For the holdout sample hit probability, N = 75, H = 16, R = 401, and the part-worths are drawn 

from the distribution of heterogeneity. However, the covariates in the proposed model are 

generated as part of the model and thus are not available for the holdout sample. 

To address this, the observed choices for the respondents in the holdout sample were 

withheld while their observed categorical responses were included to produce the covariates 

needed to compute the hit probability. Following Gelman et al. (2013), we treat the withheld 

observed choices for the holdout sample respondents as missing data and employ data 

augmentation to impute the missing observations at each iteration in the MCMC chain. This 

allows us to produce covariates for the holdout sample that are informed by the complete model, 

including the holdout sample’s observed categorical responses and the calibration sample’s 

observed choices and categorical responses, and thus draw the part-worths to compute the hit 

probability. We perform this data augmentation for the holdout sample respondents for each of 

the reported models. 
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Table 5. Model Fit 

 

Table 5 demonstrates that, across all measures of model fit, covariates uncovered with mixed 

membership modeling have more explanatory and predictive power than standard models using 

discrete covariates. Another alternative to the proposed model would be to include interactions 

directly. However, in running this alternative model, problems manifested themselves with only 

two-way interactions. First, the flexibility of the model induced by including so many covariates 

clearly allowed for overfitting. As we increased the number of iterations in the Markov chain, we 

continued to see an improvement in in-sample fit with no change in predictive fit and no sign of 

convergence. Second, the number of interactions would make interpretation infeasible. For these 

reasons we don’t report the results of this model. 

The proposed model also improves inference regarding the drivers of preference 

heterogeneity. To illustrate, let’s consider the posterior means of Γ from the Binary Covariates 

model. Table 6 displays the complete Γ matrix. The attribute levels are on the left and each 

column in the matrix is associated with the intercept or one of the statements from Table 2. The 

posterior means in bold are more than two standard deviations below or above zero. This matrix 

should inform a marketer concerning the drivers of preference for promotion and targeting 

strategies. However, making sense of the significant values or considering how these items may 

interact is cumbersome. 
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For example, we can use Table 6 to infer that respondents who are concerned about germs 

and dirt (i.e., statement 5 “I worry about germs and dirt on my floor and carpet”) prefer any 

brand of robotic vacuum relative to the outside good while not being concerned about getting the 

highest level of performance. We might expect this is because they are cleaning frequently (e.g., 

statement 10 “I spend over two hours per week cleaning”) and having a robotic vacuum is simply 

one part of a larger cleaning solution. Without a way to properly account for interactions, we 

aren’t able to understand these more detailed explanations of preference heterogeneity. 

The proposed model accounts for such interactions by identifying differentiated respondent 

profiles. Table 7 details the profiles as described by the estimates of λj,k(1). Since the respondents 

were qualified by owning or being interested in a robotic vacuum, it isn’t surprising that every 

profile has statement 1 “I enjoy coming home to a clean house” occurring with high probability. 

Profile 1 is differentiated from the other models by statement 2 “I don’t feel relaxed when I know 

my home isn’t clean,” statement 10 “I spend over two hours per week cleaning,” and statement 5 

“I worry about germs and dirt on my floor and carpet” occurring with high probability and 

statement 11 “I have a cleaning person who cleans for me” occurring with the lowest probability. 

We name this profile “Constantly Cleaning.” 

Profile 2 is differentiated by statement 12 “Robotic vacuums are too expensive,” statement 9 

“I don’t spend much time cleaning,” and statement 10 “I spend over two hours per week 

cleaning” occurring with high probability and statement 13 “Robotic vacuums are too 

complicated to program, set up, and operate” occurring with the lowest probability. We name this 

profile “Price Sensitive with Little Cleaning.” Profile 3 is differentiated by statement 2 “I don’t 

feel relaxed when I know my home isn’t clean,” statement 7 “I don’t like going to someone’s 

home that is dirty,” and statement 6 “I get anxious about having guests when my home is dirty” 

occurring with high probability. We name this profile “Anxious about Cleanliness.” 

Profile 4, like profile 2, has statement 12 “Robotic vacuums are too expensive” occurring 

with high probability, but is further differentiated by statement 4 “I have trouble keeping the 

floor beneath my furniture clean” and statement 14 “Robotic vacuums often need to be ‘rescued’ 

because they get stuck.” We name this profile “Price Sensitive with Difficulty Cleaning.” Finally, 

profile 5, like profile 3, has statements 6, 7, and 2 occurring with high probability—statements 

describing being anxious about cleanliness—as well as, like profile 4, a high probability of 

statements 14 and 4, which describe difficulty cleaning along with a belief that robotic vacuums 

get stuck. We name this profile “Anxious and Suspicious.” 
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Table 7. Membership Vector Model λj.k(1) Estimates 
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Table 8. Profile Names 

 

Table 9 displays the membership vectors to variability in the part-worths. Again, the posterior 

means in bold are more than two standard deviations below and above zero. Note that the size of 

the coefficients is in part a function of the size of K and the sum-to-one constraint on gn. As K 

increases in size, each element of the membership vector gn gets smaller and the coefficients of Γ 

get larger to map to the part-worth estimates. Even taking this constraint into account, the 

coefficients are still larger than those produced by the standard model as represented in Table 6. 

This is because partial membership in these extreme profiles allows the distribution of 

preferences to move into the extremes. Regardless, the focus in interpreting the coefficients in 

Table 9 remains on their relative sign and magnitude. 

Table 9. Membership Vector Model Γ Estimates 

 

As with Table 6, the matrix in Table 9 should inform a marketer concerning the drivers of 

preference for promotion and targeting strategies. However, using the proposed model, we are 

able to explain preferences in terms of the extreme profiles. For example, profile 1, “Anxious 

about Cleanliness” includes statements 5 “I worry about germs and dirt on my floor and carpet” 

and 10 “I spend over two hours per week cleaning” with high probability. With this profile we 

can answer what was only suggested from Table 6, that the more an individual is aligned with 

this profile, the more they prefer any brand of robotic vacuum while caring about a high-capacity 

robotic vacuum rather than one that performs the best. In other words, since they are cleaning 
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often, they want a robotic vacuum with high capacity in order to effectively assist but not replace 

other cleaning efforts. 

We can better inform targeting and promotion strategies using the proposed model. We can 

use the estimate of Γ as a roadmap for targeting by matching what respondents prefer with a 

more detailed explanation of what is driving those preferences. For example, for consumers 

above a certain threshold in their partial membership in profile 4 “Price Sensitive with Difficulty 

Cleaning,” we know that pricing promotions should be especially effective since they have a 

need for robotic vacuums but are incredibly price sensitive. The dimension-reduction provided 

by employing a GoM model makes this plausible with the 12 × 5 Γ matrix in Table 9 compared 

with a similar task using the 12 × 19 Γ matrix in Table 6 from the alternative model or an even 

larger Γ matrix that includes interactions directly. 

Accounting for the co-occurrence or interactions among items is akin to segmenting the 

market. The blocks of significant attribute level coefficients in Table 9 are reminiscent of such 

segmentation solutions. Unlike mixture models, which are typical in clustering applications, 

where a respondent is assigned to a single category, mixed membership models like the GoM 

allow for the more realistic description of each respondent being a partial member of each 

profile. In our empirical application, it makes sense that consumers interested in robotic vacuums 

are not going to be constantly cleaning, anxious about cleanliness, skeptical of robotic vacuums, 

or price sensitive exclusively. Rather, each individual is a mix of all the profiles, with weights 

determined heterogeneously. Accounting for such differences improves our ability to conduct 

inference. 

5 DISCUSSION 

In this paper we show that modeling interactions among discrete multivariate data does more 

to explain consumer preferences than the discrete covariates on their own. This is accomplished 

by combining a grade of membership model, part of the class of mixed membership models, with 

choice modeling to estimate membership vectors for use in a hierarchical Bayesian random 

effects distribution of heterogeneity. Note that our discrete multivariate data in this application 

consist of pick any/J data. However, it is applicable to any discrete data, including rating scale 

data. 

Choice modeling remains an essential fixture of marketing research. However, finding 

covariates that are explanatory of preference heterogeneity has proven difficult. Our proposed 

model provides a novel way to account for interactions, and provide dimension reduction, for 

survey data that explain variation in part-worth utilities. The empirical application utilizes typical 

survey response data to demonstrate the use of the proposed model. However, with growing 

access to unstructured collections of discrete data, we see this approach as an important step to 

utilizing such data, including text, to improve choice modeling. 

Latent Dirichlet allocation, as another kind of mixed membership model, performs in a 

similar way to the GoM. Text data results in the same kind of sparse matrix as the multinomial 

data used in the GoM model, with LDA proceeding with words instead of items or statements 

and a single document for each individual. The dimension reduction using text is even more 

dramatic when starting with potentially thousands of unique words in the count matrix. However, 

the amount of data needed to run LDA with words composing the collection of discrete data is 

significant due to the large number of words in any given vocabulary. Without enough data, there 
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are a variety of developments in topic modeling that are ripe for application within marketing, 

including using Dirichlet process priors (Ferguson 1973, Antoniak 1974) as a kind of distribution 

of heterogeneity over topic proportions. We leave the practical problems of using text in the 

place of traditional survey questions as an extension to this research. 

Another extension relates to estimating the optimal size of K. While there isn’t a consensus 

as to which measure of model fit provides the gold standard for determining the size of K, there 

are a number of extant methods for navigating across possible model dimensions that could be 

employed to include K as a parameter in the model (Green 1995, Green et al. 2015). The 

technical details of how to incorporate such methods into the proposed model is left for future 

research. 

More generally, we see the use of mixed membership models as a model-based approach to 

classifying consumers that yields a more realistic description of the individual as being a mixture 

of various extreme consumer profiles. This paper serves as a step toward fulfilling a broader 

need to provide more complete descriptions and explanations of consumer preference 

heterogeneity. 

 

    

 Marc R. Dotson Joachim Büschken Greg M. Allenby 

REFERENCES 

Airoldi, Edoardo M, David Blei, Elena A Erosheva, Stephen E Fienberg. 2014. Handbook of 

Mixed Membership Models and Their Applications. 1st ed. Chapman & Hall/CRC. 

Allenby, G M, James L Ginter. 1995. Using Extremes to Design Products and Segment Markets. 

Journal of Marketing Research 32(4) 392–403. 

Allenby, Greg M, Neeraj Arora, James L Ginter. 1998. On the Heterogeneity of Demand. Journal 

of Marketing Research 35(3) 384–389. 

Allenby, Greg M, Peter E Rossi. 1998. Marketing Models of Consumer Heterogeneity. Journal of 

Econometrics 89(1–2) 57–78. 

Antoniak, Charles E. 1974. Mixtures of Dirichlet Processes with Applications to Bayesian 

Nonparametric Problems. The Annals of Statistics 2(6) 1152–1174. 

Archak, Nikolay, Anindya Ghose, Panagiotis G Ipeirotis. 2011. Deriving the Pricing Power of 

Product Features by Mining Consumer Reviews. Management Science 57(8) 1485–1509. 

Blei, David M, Jon D McAuliffe. 2007. Supervised topic models. Neural Information Processing 

Systems. 



349 

Blei, David M, Andrew Y Ng, Michael I Jordan. 2003. Latent Dirichlet Allocation. Journal of 

Machine Learning Research 3 993–1022. 

Büschken, Joachim, Greg M Allenby. 2016. Sentence-Based Text Analysis for Customer 

Reviews. Marketing Science (forthcoming). 

Chandukala, Sandeep R, Yancy D Edwards, Greg M Allenby. 2011. Identifying Unmet Demand. 

Marketing Science 30(1) 61–73. 

Clive, Jonathan, Max A Woodbury, Ilene C Siegler. 1983. Fuzzy and Crisp Set-Theoretic-Based 

Classification of Health and Disease. Journal of Medical Systems 7(4) 317–332. 

Erosheva, Elena A. 2002. Grade of Membership and Latent Structure Models with Application to 

Disability Survey Data. Ph.D. thesis, Department of Statistics, Carnegie Mellon University. 

Erosheva, Elena A, Stephen E Fienberg, Cyrille Joutard. 2007. Describing Disability Through 

Individual-Level Mixture Models for Multivariate Binary Data. The Annals of Applied 

Statistics 1(2) 346–384. 

Ferguson, Thomas S. 1973. A Bayesian Analysis of Some Nonparametric Problems. The Annals 

of Statistics 1(2) 209–230. 

Galyardt, April. 2014. Interpreting Mixed Membership. Handbook of Mixed Membership 

Models and Their Applications. Chapman & Hall/CRC, 39–65. 

Gelman, Andrew, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, Donald B Rubin. 

2013. Bayesian Data Analysis. Third edition ed. Chapman & Hall/CRC Texts in Statistical 

Science, Taylor & Francis. 

Gelman, Andrew, Iain Pardoe. 2006. Bayesian Measures of Explained Variance and Pooling in 

Multilevel (Hierarchical) Models. Technometrics 48(2) 241–251. 

Green, Peter J. 1995. Reversible Jump Markov Chain Monte Carlo Computation and Bayesian 

Model Determination. Biometrika 82(4) 711–732. 

Green, Peter J, Krzysztof Latuszynski, Marcelo Pereyra, Christian P Robert. 2015. Bayesian 

Computation: A Summary of the Current State, and Samples Backwards and Forwards. 

Statistics and Computing 25(4) 835–862. 

Gross, Justin H, Daniel Manrique-Vallier. 2014. A Mixed-Membership Approach to the 

Assessment of Political Ideology from Survey Responses. Handbook of Mixed Membership 

Models and Their Applications. Chapman & Hall/CRC, 119–139. 

Horsky, Dan, Sanjog Misra, Paul Nelson. 2006. Observed and Unobserved Preference 

Heterogeneity in Brand-Choice Models. Marketing Science 25(4) 322–335. 

Johnson, Valen E, James H Albert. 2006. Ordinal Data Modeling. Springer Science & Business 

Media. 

Joutard, Cyrille, Edoardo M Airoldi, Stephen E Fienberg, Tanzy M Love. 2007. Discovery of 

Latent Patterns with Hierarchical Bayesian Mixed-Membership Models and the Issue of 

Model Choice. Data Mining Patterns: New Methods and Applications. IGI Global, Hershey, 

PA, USA, 1–36. 



350 

Kamakura, Wagner A, Gary J Russell. 1989. A Probabilistic Choice Model for Market 

Segmentation and Elasticity Structure. Journal of Marketing Research 26(4) 379–390. 

Lee, Sik-Yum. 2007. Structural Equation Modeling: A Bayesian Approach, vol. 711. John Wiley 

& Sons. 

Lee, Thomas Y, Eric T Bradlow. 2011. Automated Marketing Research Using Online Customer 

Reviews. Journal of Marketing Research 48(5) 881–894. 

Lenk, Peter J, Wayne S DeSarbo, Paul E Green, Martin R Young. 1996. Hierarchical Bayes 

Conjoint Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental 

Designs. Marketing Science 15(2) 173–191. 

Manton, Kenneth G, Max A Woodbury, H Dennis Tolley. 1994. Statistical Application Using 

Fuzzy Sets. Wiley, New York. 

Marini, Margaret Mooney, Xiaoli Li, Pi-Ling Fan. 1996. Characterizing Latent Structure: Factor 

Analytic and Grade of Membership Models. Sociological Methodology 26 133–164. 

Netzer, Oded, Ronen Feldman, Jacob Goldenberg, Moshe Fresko. 2012. Mine Your Own 

Business: Market-Structure Surveillance Through Text Mining. Marketing Science 31(3) 

521–543. 

Newton, Michael A, Adrian E Raftery. 1994. Approximate Bayesian Inference with the Weighted 

Likelihood Bootstrap. Journal of the Royal Statistical Society. Series B (Methodological) 

56(1) 3–48. 

Rossi, Peter E, Greg M Allenby. 2003. Bayesian Statistics and Marketing. Marketing Science 

22(3) 304–328. 

Rossi, Peter E, Greg M Allenby, Robert E McCulloch. 2005. Bayesian Statistics and Marketing. 

J. Wiley and Sons. 

Rossi, Peter E, Robert E McCulloch, Greg M Allenby. 1996. The Value of Purchase History Data 

in Target Marketing. Marketing Science 15(4) 321–340. 

Spiegelhalter, David J, Nicola G Best, Bradley P Carlin, Angelika Van Der Linde. 2002. 

Bayesian Measures of Model Complexity and Fit. Journal of the Royal Statistical Society: 

Series B (Statistical Methodology) 64(4) 583–639. 

Stewart, David W. 1981. The Application and Misapplication of Factor Analysis in Marketing 

Research. Journal of Marketing Research 18(1) 51–62. 

Tanner, Martin A, Wing Hung Wong. 1987. The Calculation of Posterior Distributions by Data 

Augmentation. Journal of the American Statistical Association 82(398) 528–540. 

Tirunillai, Seshadri, Gerard J Tellis. 2014. Mining Marketing Meaning from Online Chatter: 

Strategic Brand Analysis of Big Data Using Latent Dirichlet Allocation. Journal of Marketing 

Research 51(4) 463–479. 

Woodbury, Max A, Jonathan Clive, Arthur Garson Jr. 1978. Mathematical Typology: A Grade of 

Membership Technique for Obtaining Disease Definition. Computers and Biomedical 

Research 11(3) 277–298. 


