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General Description 
 

The CVA System is a complete software package for traditional full-profile conjoint analysis.  CVA is a 
component within Sawtooth Software’s SMRT system.  SMRT stands for Sawtooth Software Market 
Research Tools.  CVA includes: 
 

- A designer for creating the stimuli (product profiles) displayed in conjoint interviews 
 

- A questionnaire component for producing computer-based interviews or paper-and-pencil 
surveys 

 
- Two utility calculators for estimating each respondent’s part worth utilities (strengths of 

preference) for product features 
 

- A market simulator for testing alternative product scenarios and displaying average utilities 
and importances. 

 
CVA stands for “Conjoint Value Analysis.”  The CVA System is one of three conjoint software packages 
from Sawtooth Software, all available as components within SMRT.  The other two are ACA (Adaptive 
Conjoint Analysis) and CBC (Choice-Based Conjoint).  We have designed each package to bring unique 
advantages to different research situations.   
 
About Conjoint Analysis 
 
Conjoint analysis is useful for learning how potential buyers of a product or service value its various 
aspects or features.  Conjoint analysis is equally useful for studying products and services (for convenience, 
we use the word “product” in both cases). 
 
Examples of questions that lead market researchers to use conjoint analysis are: 
 

- Which would be more valuable to the customer: longer warranty or more product 
performance?  

 
- What would be the effect of raising our price 10%? 

 
- What would happen if we added another product to our line that had 20% less performance 

but a 30% lower price? 
        
When using conjoint analysis, a product is thought of as being made up of various attributes (sometimes 
called “factors”).  For example, automobile attributes may be: manufacturer, color, type of engine, number 
of doors, and price.   

 
Each attribute has several possible levels.  For example, the levels of “number of doors” may be: two, four, 
and five (to include station wagons).  The levels of “engine type” may be: 4 cylinder, 6 cylinder, and 8 
cylinder.  (The word “feature” is often used in place of “attribute level.”) 

 
Conjoint data are collected from survey respondents by asking about their preferences for hypothetical 
product concepts, described in terms of specific attributes and levels.  In analyzing the data, one infers the 
value to each respondent of having each possible attribute level.  These estimated values are called part 
worths or utilities.  CVA’s calculation routines can estimate each respondent’s part worth utility values for 
each level of each attribute from data collected by the conjoint questionnaire.  These values are then used to 
make predictions about how respondents would choose among new or modified products.  The goal is to 
conclude what product changes would have the most beneficial (or least detrimental) effect on share of 
preference, or which would maximize the likelihood that buyers would choose specific products. 
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In conjoint analysis, product concepts can be shown to respondents one at a time, or they can be presented 
in pairs. Pairwise presentation can be harder for the respondent, because each question requires 
understanding two concepts rather than just one.  However, the comparative nature of the pairwise task 
may let the respondent make finer distinctions and contribute more information than single concept 
(popularly called card sort) presentation. 
 
The term full profile refers to product concepts that are described with respect to all the attributes being 
studied. For example, if the products in a particular category had ten important attributes, a full profile 
product concept would describe the product on all ten attributes. 
 
CVA produces either single concept or pairwise full profile designs.  It is questionable that respondents can 
deal with concepts having more than about six attributes.  However, over the years we occasionally have 
heard of people wanting to use CVA’s experimental design program for applications that we had not 
envisioned.  To give users this flexibility, and because modern PCs offer processing speeds and memory 
not available before, we have decided to allow this newest version of CVA to support up to 30 attributes, 
each with up to 15 levels.  Despite this capacity, we recommend that the number of attributes and levels for 
studies in practice be much smaller than these limits.  With more than about six attributes, the questions 
may be too complex for most respondents to handle, and the number of questions that must be asked of 
each respondent may become excessive.  If more attributes and levels are necessary, it can be advantageous 
to show respondents pairs of concepts described on subsets of the attributes, as in our ACA System for 
Adaptive Conjoint Analysis.  
 
About CVA 
 
CVA features a variety of tools and functionality.  Not all of these tools need to be used in a particular 
project. 
 
The authoring and design tools can be used to produce computer-administered or paper-and-pencil 
questionnaires.  We do not recommend the questionnaire design tool be used for studies with many 
attributes.  With too many attributes, the questions are likely to provide too much information to the 
respondent, who may become overloaded and confused.  For studies with more than about six attributes not 
dealing specifically with pricing research, we often recommend using the ACA System for Adaptive 
Conjoint Analysis. 
 
The calculation routines can be used to analyze questionnaire data and calculate respondent utilities.  The 
two standard methods are “Ordinary Least Squares” (OLS) regression and “monotone” (nonmetric) 
regression.  The OLS routine is appropriate for ratings-based data, and the monotone program for rankings-
based data.   An optional advanced module called CVA/HB is available for hierarchical Bayes (HB) 
estimation. 
 
SMRT’s market simulator is shared across our three conjoint systems.  The market simulator lets the 
researcher specify a market consisting of several products defined in terms of attribute levels, and then 
estimate the shares of preference that each product would receive.  If you have used single-concept 
presentation (described later) and purchase likelihood ratings, then the market simulator can be used to 
estimate purchase likelihood for product profiles. 
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Question Formats  

Pairwise Presentation 
The default questionnaire layout in CVA is Pairwise Comparison.  With pairwise presentation, respondents 
are asked to compare two products, as shown below: 
 

 
 
With small numbers of attributes, the paired comparison format has desirable characteristics.  Paired 
comparisons have a long history in the field of psychometrics, where they have been the method of choice 
for the precise measurement of small subjective differences.   When respondents compare two products 
side-by-side, it can help them draw finer distinctions between products offering different features.  
However, if two products are shown per question, respondents must evaluate twice as much information as 
single concept designs (described below). All research we are aware of to date suggests that relative part 
worths are very similar whether estimated from single concept or paired comparison conjoint questionnaire 
formats. 
 
We suggest the pairwise design for most conjoint projects.  However, the pairwise questionnaire only 
captures the relative differences in a respondent’s preferences for attribute levels.  Pairwise questions never 
measure respondents’ absolute level of interest in the product concepts.  Comparative information is all that 
is necessary for estimating relative part worths and running competitive market simulations.  If you need to 
run “purchase likelihood” simulations within the market simulator, you should use the single concept 
presentation, described next. 
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Single Concept Presentation 
Single concept presentation is commonly known as “card-sort.”  Respondents can be shown one product at 
a time and asked to rate how likely they would be to purchase each.  An example is shown below: 
 

 
 
This method is particularly useful if the “purchase likelihood model” is to be used in the simulator.  CVA’s 
ordinary least squares (OLS) routine is appropriate for analyzing single concept ratings. 
 
Alternatively, each of a set of product profiles can be printed on individual cards, and respondents can be 
asked to sort the cards from most to least preferred.  In this case, the responses are rank orders of 
preference, and CVA’s monotone regression routine is suggested for developing utilities. 
 
Evidence to date suggests that either questionnaire technique (pairwise or single-concept) produces quite 
similar part worths and importances. 
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Advantages and Challenges of CVA Questionnaires 
 
Although CVA’s question format has advantages in studies with small numbers of attributes, its task can be 
challenging for the respondent.  To be sure that your CVA questionnaire is appropriate for the study, you 
must: 
 

• keep the number of attributes small,  
• pretest the questionnaire, and  
• conclude that the resulting utilities are reasonable,  

 
before you proceed. 
 
Any conjoint questionnaire can be difficult for the respondent, but CVA questionnaires can be particularly 
so.  Unlike our ACA System for Adaptive Conjoint Analysis, CVA does not use any strategy for 
simplifying the respondent’s task.  Every question involves consideration of all the conjoint attributes.  
CVA can create either single concept (card sort) or pairwise comparison (two concepts at a time).  With 
pairwise questions, the amount of information the respondent must consider is twice as great as with single 
concept methods. 
 
Unless the number of attributes is quite small, (about six or fewer) there is risk that respondents will be 
overloaded, and that the quality of the data collected may be poor.  For this reason, we recommend other 
types of questionnaires if many attributes must be studied. 
 
In summary, although the CVA question format can be very effective when the number of attributes is not 
too large, we are concerned that inappropriate use of CVA may produce questionnaires that are too difficult 
for respondents.  As with any conjoint method, but particularly so in this case, it is essential to pretest the 
questionnaire:   
 

• answer the questionnaire yourself, and analyze your own data to make sure the utilities mirror 
your own values. 

 
• have others answer the questionnaire to report to you about whether it’s too difficult. 

 
• have a sample of relevant respondents answer the questionnaire, and analyze their data.  Be 

particularly alert for “nonsense” results with respect to price.  If many respondents have higher 
utilities for higher prices, then the data are suspect. 

 
If you do keep the number of attributes small, and if you do pretest the questionnaire and conclude that the 
resulting utilities are reasonable, then you can proceed with confidence. 

 
Selecting the Number of Tasks 
 
After you have defined attributes and levels and decided which questionnaire format is best for your study, 
you need to decide how many conjoint questions (tasks) to ask.  This decision depends on how many 
separate part worth parameters need to be estimated.  The more attributes and levels in your study, the more 
part worths to be estimated; and the more parameters to estimate, the longer the questionnaire. 
 
CVA examines the list of attributes and levels in your study and provides an initial recommendation 
regarding the number of tasks (conjoint questions) to ask.  The recommended number of tasks provides 
three times the number of observations as the number of parameters to be estimated.  The number of 
parameters to be estimated is determined by the formula:  
 
 Total number of levels - number of attributes + 1 
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Although it is mathematically possible to estimate utilities by asking only as many questions as the number 
of parameters to be estimated, we strongly recommend against this practice.  Asking the recommended 
number of tasks helps ensure enough information to calculate stable estimates for each respondent. 
 
If your design includes many attributes and levels, you may notice that the recommended number of 
questions exceeds what you could reasonably expect respondents to complete.  This leads to a difficult 
decision.  Too few questions limit the degrees of freedom of the design; but if you ask too many conjoint 
questions respondents may become fatigued or bored and provide data of poor quality.  In our experience, 
asking more than about 30 conjoint questions may result in poor quality data.   Testing your questionnaire 
with actual respondents can help you determine the optimal number of questions to ask for your project. 
 
CVA will not let you specify fewer questions than the number of parameters to be estimated, and will warn 
you if you don’t ask at least 1.5x the number of parameters to be estimated.  A number of studies in the 
literature suggest that some experienced conjoint analysts are willing to ask as few as 1.5x the number of 
questions as parameters to estimate.  Indeed, the use of HB estimation may slightly reduce the number of 
questions you decide to ask respondents, as it estimates part worths based on information from the current 
respondent plus information from the other respondents in the same dataset. 
 
Generating CVA Designs 
 
After you have specified attributes, any assumed a priori ordering for levels within attributes, chosen the 
questionnaire format, how many tasks to ask, and selected whether to discard “obvious” tasks, you are 
ready to generate a design.  The design specifies the combination of attribute levels (profiles) shown in 
each conjoint question. 

Orthogonality and CVA Designs 
The conjoint design is a critical component to the success of any conjoint project.  Attributes must vary 
independently of each other to allow efficient estimation of utilities.  A design with zero correlation 
between pairs of attributes is termed “orthogonal.”  Level balance occurs if each level within an attribute is 
shown an equal number of times.  Designs that are orthogonal and balanced are optimally efficient. 
 
In the real world, it might not be possible to create a perfectly balanced, orthogonal design for a particular 
set of attributes and prohibitions consisting of a reasonable number of tasks.  The CVA approach produces 
high quality designs automatically, although they probably will not be perfectly balanced or orthogonal.  
CVA lets you test the efficiency of a design before fielding your study.  Testing the design also lets you 
study the impact of including prohibitions, or asking fewer than the recommended number of questions. 
 
CVA provides an easy-to-use tool for generating well-balanced, “nearly-orthogonal” designs.  CVA 
generates a pool of potential conjoint questions (from which the final design will be chosen) using a 
relatively simple procedure.  For each question to be composed, it does the following: For each attribute it 
picks a pair of levels randomly from among all permitted pairs that have been presented the fewest times.  
A random decision is made about which levels will appear on the left and on the right (for pairwise 
designs).  No pair of levels will be repeated until all other permitted pairs have been shown.  Each pair of 
levels will be shown approximately the same number of times, and each level from one attribute is equally 
likely to be shown with any level from another attribute. 
 
CVA’s designer uses the following steps to select efficient designs, given the questionnaire specifications: 
 

 1) CVA generates a pool of potential conjoint questions equal to, by default, a pool 
multiplier of 10 times the requested number of questions (assuming that many unique 
questions exist).   

 
 2) The D-efficiency of the design is calculated for the pool, excluding one conjoint question 

at a time (only using the first 10x tasks created, where x is the requested number of 
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tasks).  The one task that contributes least to the efficiency of the design is discarded, and 
the process repeated until the desired number of tasks remains.   

  
3) CVA then examines every potential 2-way swap of conjoint questions that remain with 

those that were discarded or are available in the pool of potential conjoint questions.  
CVA swaps any pairs of questions that result in an increased efficiency. 

 
4) Next, CVA examines the frequency of level occurrences for each attribute.  It 

investigates interchanging levels that are under-represented in the design with levels of 
the same attribute that are over-represented.  Any changes that result in improved D-
Efficiency are retained. 

 
 5) Finally, for pairwise designs, CVA flips left and right concepts to improve the left/right 

balance of the design. 
   

CVA repeats steps 1 through 5 ten separate times and chooses the best final solution of the ten (you can 
over-ride CVA’s default of ten passes to enable CVA to potentially find a slightly better design).  For 
studies with many attributes and levels, a pool multiplier of 100 or more usually improves CVA’s ability to 
find efficient designs more quickly. 
 
CVA uses the final solution within the questionnaire.  Every respondent receives the same set of questions 
in CVA surveys.  You can export the design specifications to a comma-delimited text file if you wish.  You 
can also import designs for use within CVA from comma-delimited text files.  This enables advanced users 
to further customize or modify the design (for example, to add a few user-specified holdout cards).   

D-efficiency  
CVA’s iterative designer seeks to maximize D-efficiency, given the conditions and constraints defined by 
the user.  D-efficiency is described in the article by Kuhfeld, Tobias, and Garratt (1994), "Efficient 
Experimental Design with Marketing Research Applications," Journal of Marketing Research, 31 
(November), 545-557. 
 
Paraphrasing the article, D-efficiency is a function of the determinant of the X'X matrix, given by the 
formula: 
 

 
 
where    
  ND   = number of tasks 
  p  = number of attributes 
  X  = the design matrix using orthogonal coding 
 
If a design is orthogonal and balanced (each level within an attribute shown an equal number of times), 
then it has optimum efficiency.  The D-efficiency measures the goodness of the design relative to the 
hypothetical orthogonal design.  A perfect design will be both orthogonal and balanced and will result in an 
efficiency of 100. However, an orthogonal design is not always possible, given the number of attribute 
levels and requested number of tasks. A final efficiency of less than 100 may still indicate a satisfactory 
design. 

Attribute Prohibitions 
With both questionnaire formats (single-concept or pairwise), the researcher can specify that particular 
pairs of levels should not be shown at the same time.  CVA permits both across- and within-attribute 
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prohibitions.  In general, we caution against using prohibited pairs since they usually have a significant 
negative impact on the efficiency of your design.  Prohibitions should be used only to eliminate 
combinations that respondents would recognize as impossible or absurd.  We caution against prohibiting 
combinations of attributes if the only reason is that they are unlikely or don't exist yet in the market. 
 
Questionnaire Design Example 
 
The example below shows the results of the first of ten passes for a hypothetical conjoint design.  After 
showing CVA’s output, we’ll discuss it in some detail. 
 
 Begin Pass #1 
 # of tasks thrown out because of duplicates or obvious = 29 
 Candidate set successfully built with 100 tasks. 
 D-efficiency with... 
 99 tasks = 90.077068 
 98 tasks = 90.328815 
 97 tasks = 90.568669 
 96 tasks = 90.787874 
 95 tasks = 90.977933 
 94 tasks = 91.164087 
 93 tasks = 91.350241 
 92 tasks = 91.528866 
 91 tasks = 91.711268 
 90 tasks = 91.880740 
 . 
 . 
 (steps 31 to 89 excluded for the sake of brevity) 
 . 
 . 
 30 tasks = 95.680526 
 29 tasks = 95.574521 
 28 tasks = 95.562191 
 27 tasks = 95.579438 
 26 tasks = 95.603218 
 25 tasks = 95.605327 
 24 tasks = 95.595797 
 23 tasks = 95.679198 
 22 tasks = 95.519393 
 21 tasks = 95.435458 
 20 tasks = 95.125459 
 19 tasks = 94.922623 
 18 tasks = 94.515545 
 17 tasks = 94.214803 
 16 tasks = 94.058042 
 15 tasks = 93.771466 
 14 tasks = 92.878482 
 13 tasks = 91.170233 
 12 tasks = 89.469304 
 11 tasks = 87.844999 
 10 tasks = 84.818371 
 # of "thrown out" tasks substituted back into design = 2 
 # of levels changed to improve balance = 1 
 
 D-EFFICIENCY for pass # 1 = 86.948371 
 Pass 1 saved. 
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In the example above, we specified that we wanted CVA to create a questionnaire with just 10 tasks, or the 
minimum number of questions to permit estimation of utilities for this design.  In practice, this would be 
less than optimal, as we will explain.  
  
The example design had 4 attributes, with 5, 3, 3, and 2 levels.  The first three had a priori levels, and two 
prohibitions were specified.  The total number of parameters to be estimated is given by the formula: (total 
#levels - #attributes) + 1.  For this example it is (13-4) + 1 = 10. 
 
CVA begins by generating a pool of 100 conjoint questions (ten times the ten questions we requested).  The 
quality of the design is reported at each iteration as D-efficiency, which is bounded by 0 and 100.  The first 
iteration in the example above shows the D-efficiency after discarding the one question (task) which 
contributes least to the design: 
 
  99 tasks = 90.077068 
 
After the last iteration and final adjustments to the design, the D-efficiency for the final design is displayed 
for the 10-task design: 86.948371. 
 
The efficiency is recalculated each time a conjoint profile is discarded.  Notice that the quality of the design 
increases at first as inefficient questions are discarded, and then begins to decrease as the design thins out.  
After only about 14 tasks remain, efficiency decreases more rapidly as the last few are discarded.  With 10 
tasks, the efficiency is at its lowest point, 84.818371.   
 
CVA reports that two questions that had been discarded were substituted back into the design, and that 
levels have been changed for improved balance once.  Twenty-nine tasks were discarded because they were 
duplicates or “obvious,” so we know CVA actually generated 129 tasks in the process of creating a design 
pool with 100 unique tasks.   Finally, a message appears that the results for Pass 1 have been saved.   
 
We have stressed the importance of including enough conjoint questions to ensure efficient designs.  
However, design efficiency is not the only reason for including two to three times as many questions as 
parameters to be estimated.  All real-world respondents answer conjoint questions with some degree of 
error, so those observations beyond the minimum required to permit utility estimation are needed to refine 
and stabilize utility estimates. 
 
While there is generally a positive relationship between the number of conjoint tasks in the design and D-
efficiency, there are many exceptions.  It is possible for designs with few or no degrees of freedom to have 
100% D-efficiency.  This means that this design is optimally efficient for estimating main-effect 
parameters.  But this assessment ignores human errors.  By increasing the number of tasks, you provide 
more opportunities for respondent errors to cancel themselves out.  Increasing the number of tasks in this 
case (beyond the saturated orthogonal plan) will slightly reduce the reported D-efficiency (from 100% to 
something slightly less than 100%), but the precision of the estimated parameters may be significantly 
improved due to a greater amount of information provided by each respondent. 
 
To summarize our point, don’t focus solely on D-efficiency.  Good CVA designs foremost should include 
enough conjoint questions relative to the number of parameters to yield relatively precise estimates of part 
worths.  Given an adequate number of conjoint questions, we next focus on selecting a design with high D-
efficiency.  

Discarding "Obvious" Tasks 
CVA can use a priori designations you provide when specifying attributes to identify and omit conjoint 
profiles that result in obvious answers.  Questions that include a product with many good features at a low 
price or many bad features at a high price are less efficient for deriving conjoint utilities.  More balanced 
questions are more challenging for respondents and can provide more useful information.  Moderately 
balancing the expected utility of the concepts in pairwise questionnaires usually results in better conjoint 
designs.  It may also be beneficial for traditional "card-sort" exercises.  However, too much utility balance 
can lead to difficult questionnaires and increased response error.  CVA takes a conservative approach of 

 10



only discarding the most “obvious” conjoint tasks.  For the advanced user, even more balance can be 
accomplished by specifying additional prohibitions. 
 
In summary, the CVA designer creates near-orthogonal designs for either single-concept or pairwise 
designs subject to considerations practitioners commonly face when designing real-world conjoint studies: 
 

- the number of questions (stimuli) to include, 
 
- attribute level prohibitions, and  

 
- whether to discard "obvious" tasks (stimuli loaded with an unrealistic number of good or bad 

levels).  
 
The designer makes it possible for those who are not specialists in statistics to easily create efficient 
designs and achieve reliable results.   
 
Part Worth Utility Estimation 
 
With CVA you can use either ordinary least squares (OLS) or monotone regression to calculate utilities. 
After pretesting your questionnaire it may be helpful to calculate utilities for a sample of respondents using 
both methods.  A comparison of the two kinds of utilities can help you decide which method to use. A 
unique set of part worths is automatically estimated for each individual, and the utility run is saved for use 
within the Market Simulator.  You can also export the utilities to a text-only data file, an SPSSTM .SAV file 
or an ExcelTM-friendly .CSV file.   

Ordinary Least Squares and Monotone Regression 
OLS is the method of calculation traditionally used in most conjoint studies.  It can provide valuable 
diagnostic information about the quality of the calculated utilities.  However, OLS is not appropriate for 
conjoint data consisting of rank orders.   

 
For OLS to be appropriate, we must assume the data are “scaled at the interval level.”  By this, we mean 
that the data are scaled so that real differences in the things being measured are communicated by the 
arithmetic differences in their values.  Fahrenheit temperature, for instance, has an interval scale.  The 
difference between 70 and 80 degrees is exactly as large as the difference between 80 and 90 degrees. In 
the social sciences and in marketing research we are usually willing to assume that rating scale values 
possess this kind of scaling.   
 
However, it is usually not reasonable to make such an assumption about rank order data.  Suppose a 
respondent were to rank 30 concept statements in terms of his likelihood of buying each concept.  In the 
absence of other information, we would probably expect the concepts to have a normal distribution of 
buying likelihood.  If so, then we would expect there to be larger “real” differences between concepts with 
extreme ranks (such as 1 versus 2, or 29 versus 30) than those in the center of the distribution (such as 
ranks 14 and 15). 
   
When the data are rank orders, it is more appropriate to use a method of calculation that does not assume 
that the data represent anything more than rank orders.  That is the case with nonmetric methods, and in 
particular with the monotone regression method provided in CVA. 
  
There is also another reason why we have provided a nonmetric method of calculation within CVA:  With 
such methods it is easier to constrain calculated utilities to conform to the researcher’s expectations. 
   
Conjoint utilities are often observed to violate principles of common sense.  For example, in pricing studies 
it sometimes turns out that respondents seem eager to pay higher prices rather than lower prices.  This may 
accurately reflect some respondents’ behavior; price is sometimes taken as an indicator of product quality, 
and respondents may suspect that a low price reflects poor quality. 
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However, it is customary to explain to the respondent that “everything else is equal,” and that the attributes 
are to be considered independently of one another.  Under those conditions, if a high price level receives a 
higher utility then a low price level, we are likely to conclude that the respondent was simply confused.  
Rather than discard data for that respondent, it is often useful to provide additional information to the 
calculating program in the form of “constraints.”  For example, we may tell the calculating program that the 
utility for $1.00 must be no lower than the utility for $1.25. 
   
With nonmetric methods it is easy to enforce such constraints.  Since these methods are iterative, all that is 
necessary is to insure that the successive estimates at each stage obey the specified inequalities.   
   
With OLS it is much more difficult to enforce such constraints.  CVA provides that capability in a limited 
way: after the least squares solution is computed, then it is adjusted by “tying” values that violate specified 
inequalities.  However, this is an inelegant way of solving the problem.  When the data contain many 
violations of common sense relationships, then the nonmetric method provides a better way of enforcing 
desired constraints.  However, more recent research has shown that HB estimation provides yet an even 
better way for estimating utilities that are less prone to reversals and for additionally enforcing utility 
constraints. 
 
Simulating Respondent Preferences 
 
CVA is a component within the SMRT software system, which includes a simple tabulation program and a 
more powerful Market Simulator.  The Market Simulator lets the researcher model a hypothetical “market” 
by specifying each product's level on each attribute.  The file of respondent utility values is read, and a 
computation is made of each respondent's relative utility for each hypothetical product.  There are five 
options for the way the utilities are used: 
 

1.  First Choice: Each respondent is allocated to the product having highest overall utility. 
 

2.  Share of Preference: Each respondent's “share of preference” is estimated for each product.   
The simulator sums the utilities for each product and then takes antilogs to obtain relative 
probabilities.  Those are then percentaged for each respondent to obtain shares of preference.  
Shares of preference are averaged for all respondents, and those averages are used to summarize 
preferences for the respondents being analyzed. 

 
3.  Share of Preference with Correction for Product Similarity: The “share of preference” model is 
widely used, perhaps because of its simplicity and because many regard it as an intuitively 
reasonable model of reality.  However, it has a widely recognized disadvantage.  Unlike the First 
Choice model, if an identical product is entered twice, the share of preference model may give it 
as much as twice the original share of preference.  This problem is sometimes referred to as the 
“red bus/blue bus” or “IIA” (independence from irrelevant alternatives) problem.  Our third option 
was any earlier attempt to overcome this problem.  It examines the similarity of each pair of 
products and deflates shares of preference for products in proportion to their similarities to others.  
This ensures that the share of two identical but otherwise unique products together will equal what 
either product alone would get.  This technique is available in the software for historical purposes, 
as a newer technique seems to generally perform better.  We generally recommend using the 
newer fifth option for correcting for product similarity, called Randomized First Choice. 

 
4.  Likelihood of Purchase: The first three options all assume a set of competitive products, and 
are concerned with estimating the share a product might receive in that competitive context.  
However, sometimes no competitive products are available.  For example, the researcher might be 
concerned with a new product category, and might want to estimate absolute level of interest in 
the category rather than share of preference within the category.  Our fourth option does this.  The 
utilities are scaled so that an inverse logit transform provides estimates of purchase likelihood, as 
expressed by the respondent in the calibration section of the questionnaire.   This method is 
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appropriate if single-concept questionnaires are used and respondents rate the cards on a 
probability of purchase scale. 

 
5.  Randomized First Choice:  The Randomized First Choice (RFC) method combines many of the 
desirable elements of the First Choice and Share of Preference models.  As the name implies, the 
method is based on the First Choice rule, and significantly reduces IIA difficulties.  Rather than 
use the utilities as point estimates of preference, RFC recognizes that there is some degree of error 
or variance around these points.  The RFC model adds unique random variance to each part-worth 
(and/or product utility) and computes shares of preference in the same manner as the First Choice 
method.  Each respondent is sampled many times to stabilize the share estimates.  The RFC model 
results in a correction for product similarity due to correlated sums of variance among products 
defined on many of the same attributes.   

 
The CVA Market Simulator provides these capabilities: 
 

- The researcher provides a “base case” containing initial product specifications. 
 

- Each product's base share of preference is first evaluated, and then product specifications can 
be modified and simulations can be done to estimate the impact of specific modifications. 

 
- The effects of all possible one-attribute-at-a-time modifications can be evaluated 

automatically. 
 

- The simulator can interpolate between attribute levels. 
 

- Subsets of respondents can be analyzed, and average utilities as well as shares of preference 
are computed for each subset.  Standard errors are also reported. 

 
- Respondents can be weighted using demographic or other data. 
 
- The results can be directly saved to ExcelTM files, or cut-and-pasted into most any Windows-

based program.   
 
With CVA, we recommend that the researcher include holdout choice tasks in the questionnaire so that the 
simulator can be tuned (using the “exponent” or scale factor) so that the shares of preference are predictive 
of choice probabilities.  
 
Deciding Which Conjoint Method to Use 
 
Many methods are available for collecting and analyzing conjoint data, and the researcher contemplating a 
conjoint study must choose among them.  We at Sawtooth Software have had many years of direct 
experience with these methods, as well as the benefit of many conversations with users of our own and 
other software.  Based on that experience, we offer the following suggestions: 
 
The Full Profile Method (such as used in CVA) was the original conjoint method introduced to the 
marketing research community, and it remains a standard.  Green and Srinivasan (1990) recommend use of 
the full profile method when the number of attributes is six or fewer.  Although the answer depends on the 
complexity of the attribute descriptions and respondent interest/knowledge of the product category, we 
agree that six is an appropriate cutoff number.  We think respondents are likely to become overloaded and 
confused when confronted by large numbers of lengthy profiles.  Our experience is that, when there are 
more than about six attributes, and pricing research is not the goal, ACA works better--particularly if 
hierarchical Bayes estimation is employed.  We also think the weight of evidence shows that ACA works at 
least as well as full profile when there are fewer than six attributes (for example, see Huber et al., 1993) and 
pricing research is not the goal, although with few attributes ACA has no compelling advantage. 
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The ACA System was developed specifically for the situation where there are many attributes and levels.  
Most of ACA's questions present only small subsets of attributes, so questions do not necessarily become 
more complex when there are many attributes in the study.  With more than six attributes, we think ACA is 
likely to be the more appropriate method when pricing research isn’t the goal.  ACA can capture a great 
deal of information from respondents in a relatively short amount of time, and therefore has advantages for 
dealing with many attributes and when using relatively small sample sizes.   
 
Like most full profile applications, ACA is a "main effects only" model, and assumes there are no 
interactions among attributes.  Many conjoint practitioners agree that one must remain alert for the 
possibility of interactions, but that it is usually possible to choose attributes so that interactions will not 
present severe problems.  ACA has been shown to have weaknesses in pricing research, where it often 
underestimates the importance of price.  We generally recommend that either CVA or CBC be used if 
pricing research is the main purpose of your study.   
 
The CVA System is conjoint software first introduced by Sawtooth Software in 1990 for traditional full-
profile conjoint analysis.  It is a good technique when the number of attributes is about six or fewer, and 
also when dealing with relatively small sample sizes.  It often does a better job than ACA in pricing 
research.  CVA uses either a paired-comparison or a single-concept interview that can be administered by 
computer or with paper and pencil. 
 
The CBC System is conjoint software first introduced by Sawtooth Software in 1993 to administer and 
analyze "Choice-Based Conjoint" studies.  CBC conducts a paper- or computer-administered interview in 
which the respondent sees a series of choice tasks.  Each task displays several concepts and asks which the 
respondent would choose from that set.  Optionally, a "would choose none" option may be offered.  
Attribute levels in each concept are varied in such a way that values similar to conjoint utilities can be 
estimated for each attribute level.  Analysis can be done at the group level with multinomial logit analysis, 
which is included with the base CBC system.  Additionally, latent segment-based utilities can be generated 
using Latent Class.  Individual-level utilities can be estimated from choice data using hierarchical Bayes 
(CBC/HB). 
 
We think CBC provides three potential advantages over other conjoint methods: 
 

1. It presents tasks that may be more "realistic" than other conjoint methods.  In the real world, 
buyers express their preferences by choosing one product or another, rather than by rating or 
ranking them.  

 
2.  By including the opportunity for the respondent to choose "None of these," CBC may be able 
to deal more directly with questions relating to volume (rather than just share).  By contrast, ACA 
models volume using "Likelihood of Purchase" simulations, based on responses to Calibrating 
Concepts. 

 
3.  Because CBC analysis can be done for groups rather than for individual respondents, sufficient 
information is available to measure interactions as well as main effects. 

 
However, CBC has the disadvantage of being an inefficient way of collecting data.  The respondent must 
read and process several full profile concepts before giving each answer.  To keep the respondent from 
becoming overloaded and confused, we suggest using no more than about six attributes with CBC. CBC 
should be considered when there are few attributes and when interactions are likely to occur, both of which 
are often true of pricing studies.   CBC studies also require a bit larger sample size than ACA and CVA to 
achieve equal precision of estimates. 

 
One of the greatest advantages for using CBC is that the resulting utilities are scaled based on the choice 
data.  When applied in market simulations, these choice-developed utilities lead to shares of preference for 
competitive products that are directly linked to probabilities of choice.  In contrast, CVA utilities are 
estimated from rating scales or rank-order data.  These scales do not automatically lead to market 
simulations with appropriate choice probability scaling.   
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CVA users can achieve approximate choice-probability scaling for utilities by adding holdout choice tasks 
within their CVA surveys.  By tuning the scale factor (exponent) within Share of Preference or 
Randomized First Choice simulations to best fit holdout choice probabilities, the simulator may be tuned to 
resemble choice-based scaling.   
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CVA System Specifications 
 
Questionnaire Design  
 
Questionnaire format: Paired comparison or Card-sort in full-profile. 
 
Maximum number of attributes:  30 
Maximum number of levels per attribute:  15 
Maximum number of questions  500 
 
Utility Calculation 
 
Choice of algorithm: Least Squares or Monotone Regression (an add-on module is available for 
hierarchical Bayes (HB) estimation). 
 
Can accept data directly from text-only (*.txt) files 
 
Market Simulator 
 
Choice Models: First Choice 
   Share of Preference 
   Share of Preference with Correction for Product Similarity 
   Purchase Likelihood 
   Randomized First Choice 
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Appendix 
 

How CVA Calculates Utilities 
 
Ordinary Least Squares (OLS) 
 
This section assumes the reader has basic knowledge of linear regression.  However, understanding of the 
technical details in this section is not essential for using CVA. 
   
The OLS calculator does ordinary least squares linear regression using a “dummy variable” approach.  A 
vector of independent variables for each observation (conjoint question) is built using information from the 
experimental design.  The vector has elements of 1, 0, or -1, depending on whether respective attribute 
levels appear in that question, and whether they appear on the left-hand or right-hand side of the pairwise 
questions. 
   
The dependent variable for each observation is obtained by applying the indicated recoding transformation 
to the corresponding data value.  If the data value has the code reserved for missing data, then that 
observation (conjoint question) is not included in the calculation. 
 
When using regression to estimate conjoint utilities, it is customary to delete one level of each attribute 
from the computation.  Otherwise, there is a linear dependence among the variables describing levels of 
each attribute, which leads to indeterminacy in the computation.  Omitting one level of each attribute from 
the computation is equivalent to setting its utility at zero, with the other levels measured as contrasts with 
respect to zero.  The OLS calculator omits the first level of each attribute from the regression computation.  
Thus, if there are k attributes with a total of n levels, the regression is done with only n-k independent 
variables.  The indeterminacy could also be handled by adding side conditions, such as requiring that the 
utilities for each attribute sum to some constant.  However, our approach has the advantage of greater 
computational speed. 
   
An intercept term is also computed by CVA, but it is not reported separately.  Since the utilities will most 
often be used by adding up sums consisting of one value from each attribute, the intercept has been divided 
by the number of attributes and that fraction has been added to every utility value.  Thus the first level for 
each attribute, which would otherwise be zero, will be equal to the intercept divided by the number of 
attributes. 
   
The “r squared” value for each respondent does not contain any correction for degrees of freedom.  If the 
number of observations is equal to the number of parameters being estimated (levels - attributes +1), then 
the r squared value will be unity. 
 
If the design is deficient – containing either too few observations to permit estimation or insufficient 
information for a particular attribute level – then a message to that effect will appear on the screen and 
utilities will not be estimated for that respondent. 
   
If there are degrees of freedom available for error, then descriptive data will be written with information 
about the precision of estimation.  
   
A statistic (“rms cor”) is provided for each respondent, which describes the amount of correlation among 
the independent variables.  It is the “root mean square” of off-diagonal elements of the correlation matrix 
for the n-k independent variables.  Subtle relationships among variables can easily lead to faulty designs 
that would not be detected, and therefore we caution against paying much attention to this statistic.  We 
include it only because our users may be accustomed to similar statistics in other software packages. 
   
In an orthogonal design with no missing data, this value will be either zero or a small positive number.  
(Orthogonal designs have correlations within attributes.)  Orthogonal designs are sometimes altered to 
eliminate “nonsense” questions, which can compromise orthogonality.  Also, some design procedures 
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(CVA’s questionnaire design module, for example) produce well-balanced but not perfectly orthogonal 
designs.  
 
For each individual, standard errors of utility estimates are provided, except for the first level of each 
attribute, which is assumed to have utility of zero.  These standard errors may also be regarded as standard 
errors of differences between each level and the first level of that same attribute.  These standard errors can 
be of diagnostic value.  Attribute levels with large standard errors should be given more attention in 
questionnaire design.  They may appear in too few questions, or they may occur in patterns that 
compromise the level of independence necessary for good estimation. 
   
Another statistic (“rel effec”) describes the quality of the conjoint design.  We are mainly interested in the 
precision of estimates of differences in utility among levels of the same attribute.   The relative error 
variance of the difference is obtained from elements of the inverse of the correlation matrix among 
independent variables.  The relative error variance of the difference between two utility estimates is 
obtained by summing those two diagonal elements of the inverse and subtracting twice the corresponding 
off-diagonal element.  We compute the relative error variances of all within-attribute pairwise differences. 
   
Suppose there were an orthogonal design for the same attributes and levels, and all the levels of a particular 
attribute appeared the same number of times.  (Such a design may or may not actually exist.)  Then we 
could compute similar relative error variances for that “ideal” design.  
 
Our “Relative Efficiency” index is the ratio of the sum of theoretical relative error variances for such an 
ideal design, divided by corresponding sum of relative error variances for the actual design used.  The 
overall relative efficiency index is reported, as is an index for each attribute.  The best possible value is 
1.000, although values that high may not actually be achievable for some combinations of numbers of 
attributes and levels, since the required orthogonal designs may not exist. 
   
These coefficients can be useful diagnostics for a conjoint questionnaire design during the pilot stages of a 
study.  If the coefficient is too low for a particular attribute, then additional questions should be introduced, 
or the design should be modified to have less dependence among the attribute levels. 
 
Monotone (nonmetric) Regression 
   
This option for calculating utilities uses a method described by Richard M. Johnson in “A Simple Method 
of Pairwise Monotone Regression”, Psychometrika, 1975, pp 163-168. 
   
The method is iterative, finding successive solutions for utility values that fit the data increasingly well.  An 
initial solution is developed, either randomly or using information in the experimental design.  Two 
measures of goodness of fit are reported: theta and tau. 
   
Tau 
 
Suppose the conjoint questionnaire presented concepts one at a time and asked for a rank order of 
preference.  Although there would have been many concepts in the questionnaire, consider just four of 
them, concepts P, Q, R, and S.  Suppose the respondent ranked these concepts 7, 9, 13, and 17, 
respectively, and at some intermediate stage in the computation, utilities for these concepts are estimated as 
follows: 
  
  Estimated Preference 
 Concept Utility Rank 
     P 4.5 7 
     Q 5.6 9 
     R 1.2 13 
     S -2.3 17 
  
We want to measure “how close” the utilities are to the rank orders of preference. 
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One way we could measure would be to consider all of the possible pairs of concepts, and to ask for each 
pair whether the member with the more favorable rank also has the higher utility.  Since these are rank 
orders of preference, smaller ranks indicate preference, so we know that: 
 
 Preference Utility Squared 
  Difference Difference 
   P is preferred to Q    -1.1    1.21 
   P is preferred to R      3.3   10.89 
   P is preferred to S     6.8   46.24 
   Q is preferred to R     4.4   19.36 
   Q is preferred to S     7.9   62.41 
   R is preferred to S     3.5   12.25  
                                    
       Total                           152.36 
 
Of the six pairs, five have utility differences with the correct signs (the preferred product has the higher 
utility), and one pair has a utility difference with the wrong sign. 
 
Kendall’s tau is a way of expressing the amount of agreement between the preferences and the estimated 
utilities.  It is obtained by subtracting the number of “wrong” pairs from the number of “right” pairs, and 
then dividing this difference by the total number of pairs.   In this case,  
   

tau = (5 - 1) / 6 = .667  
   
A tau value of 1.000 would indicate perfect agreement in a rank order sense.  A tau of 0 would indicate 
complete lack of correspondence, and a tau of -1.000 would indicate a perfect reverse relationship. 
   
Tau is a convenient way to express the amount of agreement between a set of rank orders and other 
numbers, such as utilities for concepts.  However, it is not very useful as a measure on which to base an 
optimization algorithm.  As a solution is modified to fit increasingly well, its tau value will remain constant 
and then suddenly jump to a higher value.  Some other measure is required that is a continuous function of 
the utility values. 
 
Theta 
   
For this purpose we use the statistic “theta.”  Theta is obtained from the squared utility differences in the 
last column of the table above.  We sum the squares of those utility differences that are in the “wrong 
order,” divide by the total of all the squared utility differences, and then take the square root of the quotient.  
Since there is only one difference in the wrong direction,  
  

theta = square root(1.21/152.36) = .089 
   
Theta can be regarded as the percentage of information in the utility differences that is incorrect, given the 
data.  The best possible value of theta is zero, and the worst possible value is 1.000. 
   
Now that we have defined theta, we can describe the nature of the computation. 
 
An initial solution is obtained, either using random numbers or the information in the experimental design. 
   
With each iteration a direction is found which is most likely to yield an improvement.  A “line search” is 
made in that direction, and the best point on that line is determined. Each iteration has these steps: 
   

1.   Obtain a current value of theta and a direction (gradient vector) in which the solution should be 
modified to decrease theta most rapidly. 
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 2.   Take a step in that direction and recompute theta.  If theta is larger than before, try a smaller step.  
Continue trying smaller steps until a smaller value of theta is found.  (If no smaller value of theta can 
be found in this way, the process has converged and the computation ends.) 

        
3.  After a smaller value of theta has been found, continue taking steps of the same size until a value of 

theta is found that is larger than the previous one. This means that we have gone too far. 
 
4.   Fit a quadratic curve to the last three values of theta to estimate the position of the minimal value of 

theta along this line. 
 
5.   Evaluate theta at the estimated optimal position. If it is the best value of theta found so far, end the 

iteration with that solution.  Otherwise end the iteration with the best solution found. 
        
6.   Adjust the step size by dividing by the number of successful steps in this iteration.  (The goal is to 

have exactly one successful and one unsuccessful step.) 
 

A record of the computation is presented on the screen.  Here is the screen display for our sample problem: 
        
Computing for respondent number: 123456 
        
 Iteration   1:   theta=  0.1679  tau=  0.7541  steps=   1 
 Iteration   2:   theta=  0.1050  tau=  0.8142  steps=   1 
 Iteration   3:   theta=  0.0896  tau=  0.8142  steps=   3 
 Iteration   4:   theta=  0.0885  tau=  0.8033  steps=   1 
 Iteration   5:   theta=  0.0860  tau=  0.8087  steps=   3 
        
In theory, the iterations could continue almost indefinitely with a long series of very small improvements in 
theta.  For this reason it is useful to place a limit on the number of iterations. 
 
CVA has a default limit of ten iterations.  The actual number of iterations may be less than this, because the 
computation may terminate earlier as in point 2 above.  Each successive estimate of utilities is constrained 
as indicated by the a priori settings or additional utility constraints. 
   
As with many nonmetric procedures, there is no guarantee that the solution found is the “global minimum.”  
That is to say, there may be other possible solutions that would be as good or better.  However, experience 
in dozens of applications has indicated that this is not a problem.  Computations starting from different 
initial solutions appear to converge to similar solutions, and in actual practice there does not seem to be a 
problem with “local optima.” 
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How CVA Utilities Are Scaled 
 
Monotone regression 
 
CVA’s monotone regression utility calculator scales utilities in a way that is easy to describe and to 
understand.  For each respondent, the values for each attribute have a mean of zero, and their sum of 
squares across all attributes is unity.  Here is an example, assuming two attributes, one with 3 levels and 
one with 2 levels: 
   
  utility     square 
   
    Attribute One Level 1 .50 .25 
      Level 2 .10 .01 
      Level 3 -.60 .36 
   
 Total   0.00 
  
    Attribute Two Level 1 .44 .19 
    Level 2 -.44 .19 
   
 Total 0.00 1.00 
  
OLS regression 
 
CVA’s OLS utility calculator scales utilities in a way that depends upon the data, and upon the researcher’s 
use of the recode capabilities.  The calculation has these steps: 
   

1. If automatic recoding was specified, then the data are automatically recoded.  If no recode was 
specified, the values in the data file are used without modification. 

 
2. An array of “dummy” variables is constructed with a row for each conjoint question and a column 

for each attribute level.  Each cell of this array has a value of 1, 0, or -1, depending on the 
experimental design.  For single-concept presentation, the values are either 1 or 0.  If the level 
appears in the concept it is coded as 1, and if absent it is coded as 0.  For pairwise presentation, if a 
level appears in the left-hand concept it is coded as -1, or 1 if in the right-hand concept.  If an 
attribute level does not appear in either profile, then the corresponding array element is 0. 

        
3.   The first level (column) for each attribute is omitted temporarily from the design, which avoids 

technical problems of indeterminacy in the solution. (See Appendix C for more information about 
linear dependency.) 

 
4.   OLS regression is used to predict the transformed data values from the surviving columns of the 

array (variables).  A regression coefficient is computed for each variable, as well as a single 
intercept.  The regression coefficients for the omitted variables are assumed to be zero.   

        
5.   The intercept is divided by the number of attributes, and the quotient is added to every regression 

coefficient, including those previously assumed to be zero.  The resulting values are reported as 
utilities for the attribute levels.  (The intercept is handled in this way to make it easy to calculate 
total utilities for products during simulations.  Since each product to be simulated will have exactly 
one level from each attribute, the simulator will be able to include the intercept automatically just by 
adding the utilities of its attribute levels.) 

   
As can be seen from this explanation, with the OLS calculator the scaling of the utilities is completely 
under the control of the researcher.  Other things being equal, if the data are collected on a 100-point scale, 
the utilities will be about ten times the magnitude as they would be if the data were collected on a 10-point 
scale.  
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