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1 Foreword

1.1 Acknowledgements

Many people have had a role in inspiring, consulting, programming, testing, and otherwise helping
with this documentation and with the MBC software itself. For inspiration, we owe much to David
Bakken, John Liechty, and Steve Cohen for their published articles on this subject.  We’ve
borrowed ideas from their work and have cited them in this booklet.  Tom Eagle, Peter Lenk,
Jeffrey Dotson, John Howell, and Aaron Hill provided ideas and guidance as we formulated our
plans for the software and our direction on the analytical procedures.  Since the release of MBC,
Paulo Cordella, Carlo Borghi, Kees van der Wagt, Gerard Losschilder, Christian Neuerberg, and Chris
Moore have undertaken and published methodological work comparing the methods we use in
MBC to other competing models of menu choices (including sampling of alternatives), validating
the usefulness of our approaches.  We should note that not all of these contributors endorse the
approaches we have taken, but their insight has been very helpful.  During the development of the
software over 180 people signed on as “development partners” and agreed to respond to periodic
feedback emails that we sent.  This proved very useful as we made decisions about philosophical
direction and software functionality.

Software of course needs quality control and testing, and Murray Milroy deserves heaps of credit
for his careful and often inventive work (attempting to do sometimes nonsensical things that the
typical human would never try).  Walt Williams is the lone master programmer who cranked the
software out from start to finish, and is known to create the fastest HB code on the planet.  We are
ever so grateful to the many customers who have served as beta testers for the software.  And, of
course, Rich Johnson deserves a great deal of credit for hours spent counseling us regarding our
strategic direction and on some of the technical details of MBC software.

Excel and Word are trademarks of Microsoft Corporation.
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1.2 Prologue

For over 35 years, Sawtooth Software has created software tools to solve quantitative market
research problems, especially those involved with predicting consumer behavior.  The real client
problem of predicting demand for complex products and services led our founder, Rich Johnson, to
develop ACA (Adaptive Conjoint Analysis), released as a commercial software program in 1985.  

In the early 1990s, we noticed that certain pricing research problems weren’t being served well by
ACA.  This led to the development of the first version of CBC software in 1993.  Johnson certainly
didn’t invent the technique, as Dan McFadden had laid the groundwork in discrete choice methods
in the 70s, and Jordan Louviere had championed discrete choice experiments within the marketing
community in the 80s.

Over the last few decades, we have worked closely with our software customers in technical
support, training, and consulting.  When we see common problems that don’t seem to be solved
well by our existing tools, it naturally leads us to ponder whether something new could be
developed to meet the challenge.

For example, in the late 1990s, we heard of ACA users using 20 to 30 binary (two-level, on/off)
attributes, when what they really needed was either the Method of Paired Comparisons or MaxDiff
(originally invented by Jordan Louviere in the late 1980s).  Steve Cohen (In4mation Insights) had
written some fine articles on MaxDiff (based on Jordan’s work) that were winning industry awards.
  MaxDiff soon followed as a Sawtooth Software product.

Most recently, we observed many of our clients wanting to do menu-based choice tasks, but
struggling to get CBC and MaxDiff software to handle the problem.  Prior to 2012, we tackled some
MBC projects on our own using power tricks involving CBC and CBC/HB, a lot of data processing,
and Excel simulators.  The undertaking was satisfying, but ultimately very time consuming.  Those
experiences led to the first version of Menu-Based Choice (MBC) software, released in 2012.

We do not claim to be world’s leading experts in menu-based choice.  Nor do we claim that the
approach we’ve taken is always the best possible solution.  But, a great deal of accumulated
evidence so far strongly suggests that we’ve chosen an approach that is practical, robust, and
scalable, to solve varied and often demanding menu-based problems.  
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1.3 Overview

Menu-Based Choice (MBC) is software for analyzing a variety of menu-based and discrete choice
problems in survey-based market research.  It does not design the questionnaires or collect the
data.  It does, however, analyze results and provide a market simulator.

This software requires more expertise to use properly than our other conjoint analysis tools.  The
user should have solid background in CBC and multivariate statistical modeling, especially in terms of
building models (regression, MNL) and the theory behind coding independent variables.  While the
software manages most details involving the data processing, independent variable coding, model
estimation and simulations, the user must understand and direct the process intelligently.

The steps to use the program are as follows:

1. Using your own means, you design the questionnaire and collect the data.  This may be
done using our CBC software's Complete Enumeration or Shortcut designs), blocked, or
"fixed" designs (such as using our CVA system's capable designer).

2. Using other tools, such as Excel or SPSS, you prepare the data in .csv format.  The data
include CaseIDs, independent variables, and dependent variables.  A separate
demographics file may be prepared, which may include weights and segmentation
(covariate) variables.

The final steps all are done using the MBC software:

3. Open the data file and identify the independent and dependent variables.  If an optional
demographics file is available, point MBC to that file as well.

4. Use Counting Analysis to examine the effect of independent variables on the menu choices
(the dependent variables).  This allows you to develop hypotheses regarding which
variables (such as prices for menu items) affect which choices on the menu, and the shape
of utility functions (linear or non-linear).

5. Use Counting Analysis to report the most commonly selected bundles of items on the
menu.  This identifies which combinations were most commonly selected, accumulated
across the various manipulations of your menu design.

6. With the aggregate logit routine provided, you can formally test which variables are
significant predictors of choice and the appropriate functional form for price on different
menu choices (e.g. linear, non-linear).  You may use the aggregate logit routine for building
final models as well, though many researchers prefer HB estimation.

7. Using the hierarchical Bayes (HB) routine provided, you estimate utility weights for the
independent variables (attribute levels) that are predictive of respondent choices on the
menu.  Typically, you build multiple sub-models, where each sub-model predicts a specific
portion of the menu.
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8. MBC includes a market simulator to predict the proportion of respondents expected to
select each item on the menu, given specific menu prices or realizations of other
independent variables.  If you've employed HB estimation, the simulator can also predict
the combinatorial selections of items.

MBC also can create an Excel-based simulator that you may share with clients without fee.

Technical Support

As with our other software systems, we provide free technical support during business hours. 
Technical support is intended to respond to difficulties in making the software function.  It is not
intended to provide free consulting help to assist with the many design and conceptual aspects of
analyzing MBC studies.
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2 Introduction

2.1 Quick-Start and Introduction

See our Tutorial for a click-by-click guide using a sample data set.  Or, follow the Quick-Start
instructions directly below:

Quick-Start to Using MBC Software

Assuming you have already fielded your MBC study and collected data:

1.  Using a program like Excel, create a .csv data file (one row per choice task)
that contains CaseID (first column) followed by independent variables and
dependent variables.   Click here for more details.

2.  Using a program like Excel, create a .csv labels file that provides labels and
level values associated with the independent and dependent variables for your
study.  The labels are for your convenience in reading analytics output.  The
level values are used as input to estimation of linear or log-linear coefficients. 
Click here for more details.

3.  Start the MBC software, and use the Project Wizard to point to your data file
and optional segmentation/weights file.

4.  Use the Variables tab to specify which variables are independent and
dependent variables, and to import your labels and level values from the labels
file.

5.  Analyze the data using Counting Analysis, Logit, and HB.

6.  Conduct Market Simulations.

Increasingly, stated preference choice projects involve Menu-Based Choice scenarios (MBC) where
respondents can select one to multiple options from a menu.  This is not surprising, given the fact
that buyers commonly are allowed to customize products and services (mass customization). 
Examples include choosing options to put on an automobile, selections from a restaurant menu,
banking options, configuring an insurance policy, or purchasing bundled vs. a la carte services
including mobile phones, internet, and cable.

Here is a very simple menu, where the respondent chooses options and a total price is shown:
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Respondents can select from zero to five choices on the menu in Figure 1.1.  This particular

respondent has selected three items, for a total price of $22.  There are 25=32 possible ways
respondents can complete this menu.  We designed the questionnaire so that some or all of the
prices vary across respondents, or even across repeated menus given to the same respondent.

If we vary prices across menu questions, we can observe whether changing prices influences what
respondents pick.  Economic theory, of course, suggests that as the price of a menu item increases,
its likelihood of choice will decrease.  But, is that relationship fairly linear?  Does reducing the price
for an item cause a different item on the menu to be chosen more likely (or even less likely)?  In
other words, are items on the menus substitutes or complements?  Menu-Based Choice (MBC)
experiments (yet another form of conjoint analysis) can investigate such issues.

A second example below involves the choice of a base model followed by configuration of options
on that base model:
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There are (3)(25) = 96 possible combinations of selections for this menu.  Prices might vary from
menu to menu, or maybe some options (such as Base Model 3) are not always available.  With
larger menus, there are often thousands or even millions of possible ways to make choices from
the menu.

Over the past two decades, there has been increasing interest in designing and analyzing menu-
based choice questionnaires, as they often more realistically reflect real-world buying situations
than standard Choice-Based Conjoint (CBC) or ratings-based conjoint.  Examples in the literature
include articles by Liechty et al. (2001), and Cohen and Liechty (2007).  

Cohen and Liechty (2007) write: "While choiceboards and menus have become more attractive,
how should the practicing researcher design studies and analyze the data to better understand
mass customization with menus? ... At first glance, understanding product bundles—which consist
of discrete features—seems like something that conjoint analysis should be able to handle.  But,
the complexity of the menu situation renders traditional conjoint analysis wholly inadequate."

A typical example of a menu-based problem is the classic "BYO" or "Configurator" task.   Much like
the Dell website of today, respondents can be shown different computer features and prices, and
are asked to configure their ideal computer (see Figure 1.3).  As respondents make choices such as
for brands, hard drive sizes, and processor speeds, the total price for the configured product is
shown.  After respondents are satisfied with the configuration and total price, they moved to the
next question.
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The Sawtooth Software community was made aware of menu-based choice experiments through
articles given at the Sawtooth Software conference by Bakken and Bayer in 2001, and Bakken and
Bond in 2004.  The 2001 paper involved BYO experiments, whereas the 2004 paper involved a
menu-based choice of bundles vs. a la carte items.  (Sawtooth Software conference proceedings
including these articles may be downloaded for free from our website at
http://www.sawtoothsoftware.com/education/techpap.shtml.)

The 2004 paper by Bakken and Bond was particularly interesting, and here are some examples from
that paper.

In the first example, respondents choose a restaurant to visit, and whether to buy a bundled item
or a la carte items.

http://www.sawtoothsoftware.com/education/techpap.shtml
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In the second example from Bakken and Bond, respondents chose among different options for
purchasing scalpels, forceps, and sutures.  Respondents could buy them together as a package, or
separately from two different suppliers.

Bakken and Bond used logit-based model estimation, and they posited that respondents
approached the task in Figure 1.5 with two-step decision making.  First, the respondent chooses
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any one of the bundled offers or rejects all bundles.  If all bundles are rejected, then the buyer
chooses one or more a la carte items from the menu.

The separate logit models making up the two stages (estimated via HB and having individual-level
utilities) were linked via a first-choice market simulator.  First, respondents were predicted to pick
a bundled offer or not.  If respondents were projected to not choose a bundle in the first stage,
then their most likely choices among the a la carte selections were predicted.  The simulator
accumulated the choices across respondents to create market predictions.

While we have not chosen to build simulators for our MBC software in precisely the same way, we
employ a principle that Bakken and Bond advocated in their paper: specifically, the idea that
decisions for some menus may be modeled as having a nested, or staged structure.  We also
employ logit-based models, but use the logit equation to predict likelihoods of choice rather than
the first choice rule.

Others have advocated multivariate probit analysis for menu-based problems (Liechty et al. 2001,
Cohen and Liechty 2007).  Multivariate probit seems to provide a more theoretically complete
model, directly incorporating the idea that items on the menu can be substitutes or complements.
 The researcher runs a single model, rather than a sequence of separate logit models.  The logit-
based models seem to provide good simulated share predictions of the likelihood of the sample
selecting different items on the menu.  But, multivariate probit may particularly have an advantage
when the goal is to predict the combinations of menu selections that each individual makes.   Other
researchers such as Eagle have also suggested nested logit for menu choices.  Perhaps in the future
we will investigate multivariate probit or nested logit for MBC.  For now, we are more familiar with
logit analysis, and find that it tends to work quite well.  We worry about the scalability of
multivariate probit to the more complex types of menus that our users may wish to attempt.  The
logit framework we've chosen is very flexible, and can handle from small to large menuing
problems.

Starting in about 2006, we included an MBC example in our advanced CBC tutorials.  To provide
data for that tutorial, we fielded an Lighthouse Studio questionnaire (our program for web-based
interviewing) where we programmed (using Free Format questions and Javascript verification) a
simplified version of a fast-food restaurant menu (a generic combination of the McDonald's and
Burger King menus), as shown in Figure 1.6.  
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681 respondents each completed 10 choice tasks like the one in Figure 1.6.  Within each category,
the selections were mutually exclusive.  As with the Bakken and Bond example (Figure 1.5), this is a
bundling vs. a la carte example (mixed bundling).  The value meal bundles were always offered at a
discount compared to the cost of purchasing the separate items a la carte.  We also employed
some special pricing rules, to ensure that the prices for larger size fries or drinks were always more
expensive than the smaller sizes.  

The next example is one that all CBC users should find familiar:
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Figure 1.7 is the standard CBC task (with brands sorted in natural order), which incidentally may
also be analyzed using MBC software.  Sawtooth Software's CBC program only considers the main
effects and first-order interactions for CBC questions during HB estimation.  MBC software can
model those (as the user specifies the coding properly).  Although it's probably unnecessary for a
standard CBC design analyzed under HB, MBC additionally can incorporate cross-effects into its
models (such as the effect of Brand A's characteristics on the choice likelihood of Brand B).   And, if
you needed to extend the CBC example (Figure 1.8) to use a check-box (select all that apply)
response, MBC could be used to analyze the data, whereas our standard CBC software would treat
the data as constant-sum allocation.

In pharma studies, we often hear of projects involving CBC-looking tasks with multiple drugs and
a patient profile in the prologue.  The task involves showing a patient profile with varying
characteristics along with an array of drugs with varying characteristics, where we ask doctors to
select which drug or combination of drugs they would prescribe to a patient with those
characteristics.   
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Figure 1.9

Such CBC-looking studies cannot be analyzed with our standard CBC software, but they can with
our MBC tool.  The likelihood of selecting each drug is modeled as a function of that drug’s
characteristics as well as the characteristics of the patient profile.

MBC software may also be used to estimate aggregate polytomous logit (situational choice)
models, such as a situation where the researcher wishes to study which demographic
characteristics of unwed teenage mothers are drivers of three possible outcomes for the
pregnancy: a) terminate pregnancy, b) keep the baby, or c) put the baby up for adoption.  One of
the alternatives is held as the reference (0-utility) option, and we fit alternative-specific coefficients
for the demographic characteristics to predict the other two outcomes.  The resulting simulator
predicts the likelihood of all three outcomes based on any combination of demographic
characteristics for a given teenage mother.

As you can see, there are myriad possibilities within the family of discrete choice and multi-check
menu choice questionnaires.  Many questionnaires are hybrids, with characteristics of both
discrete choices among mutually-exclusive options and multi-check menus.  Some also involve
hierarchical (staged) processes, where respondents first choose among multiple options, and then
select among other options conditional on the first-stage selection.  MBC software is flexible
enough to handle the examples in this chapter, and many more possibilities that you or your
clients might envision.
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2.2 Case Study: TGI Friday's Restaurant

Adapted from "Analysing Pick 'n Mix Menus via Choice Models to Optimise the Client Portfolio—
Theory and Case Study" by Chris Moore, GfK, NOP, 2010 Sawtooth Software Conference Proceedings.

At the 2010 Sawtooth Software Conference, Chris Moore (GfK, NOP) described an MBC project
conducted by his firm for TGI Friday's restaurants.  The study design followed a two-stage process
(both stages within the same questionnaire).  In the first stage, a CBC study was used to predict
which of several restaurants (including TGI Friday's) respondents would choose to visit, given
changes in the main aspects of the menu.  In the second stage, a menu-based choice study was
used to predict what buyers would pick from the TGI Friday's menu, given price changes just for
TGI Friday's items.  1,500 online respondents completed the survey.

For the first-stage model, Chris employed analysis similar to a CBC study.  The second-stage TGI
Friday's menu tasks were analyzed with an approach nearly identical to that employed by our MBC
software.  The market simulator was used (together with an Excel-based optimization program
called Crystal Ball) to optimize pricing for key dishes to ultimately increase net profit for the client.  

The model predicted holdout scenarios well, with an R-squared better than 0.95.  But, the proof of
the pudding was whether the firm could increase profits by following the researcher's
recommendations and implementing the optimized menu.  That they did, and after six months of
sales data, the test store showed 15% higher profit than the control stores.   
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2.3 Case Study: Ford Fusion

The next case study we present below (Ford Fusion) as far as we know did not use any of our
software tools, but shows how menu-based configurators can be used to collect valuable
information to direct product design and pricing efforts.

Source: "'Net Gives Ford Fusion Pricing Clues: A bit of con-fusion on the Fusion Web site" (July 10,
2005) by Paul A. Eisenstein, The Car Connection, downloaded from:
http://www.thecarconnection.com/tips-article/1007615_net-gives-ford-fusion-pricing-clues.

When Ford announced plans to launch its critical new Fusion sedan at $17,995, it took many
observers by surprise, especially when compared with competitors such as the Hyundai Sonata,
which starts $500 higher.

In today's hotly competitive market, the launch price of a new vehicle is critical, but so are other
factors, including the standard equipment package and option prices.

So the automaker has taken an unusual approach to getting consumers to tell what they expect to
pay for the new four-door, and what sort of options they expect on the car. It "added a layer of
real-time research," using a specially designed Web site.

It's common these days for manufacturers to set up dedicated Web sites well before a new
product hits the road. That provides a way to communicate with the curious, and keep the
attention of so-called "hand-raisers," especially likely prospects. The Fusion site initially featured
several subtle differences that only the most observant visitors might have noticed.

The most critical feature was built into the Fusion pricing calculator. Prior to setting the $17,995
base, the automaker programmed in a range of possible prices, Geist reveals, between the $13,600
price of the smaller Ford Focus and the $22,700 for the full-size Five Hundred.

"We call it randomized pricing," explains Geist "It changed every time a consumer would go to the
Web site. We were trying to see if the take (likely purchase) rate changed if the price was higher or
lower."

The system also created a randomized list of standard and option features, helping the automaker
get a better sense of what web visitors expected on the Fusion. One thing they asked for was all-
wheel drive. Ford had expected that option to have a much lower rate of demand on the smaller
Fusion than on the Five Hundred, said Geist, "but they came in pretty darn close."

Unfortunately for Ford, it made an early decision not to make the AWD package available at
launch. But it has been able to adjust other option features in time for Fusion's upcoming debut.
Indeed, with the low base price, the Web site research indicated buyers will "want a richer mix of
premium options," says Geist, than originally forecast in-house.

The automaker got a lot more feedback than it had anticipated. Of the first 50,000 visitors to the
Fusion site, a full 30,000, or 60 percent, "built" a vehicle to their specifications. Part of the
challenge for Ford was to then interpret that data.
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"When you're not stroking a check, you may be designing a vehicle that's a little more expensive
than what you'd actually buy at the dealership," cautions Geist. But he said the automaker was
able to compare the Web data with other research for Fusion. There have been the usual clinics
and focus groups, but the online approach has been especially helpful in making last-minute
tweaks.

"If they can configure the car correctly," says Dan Gorrell, chief analyst with the California research
firm, Strategic Visions, "it will help Ford improve customer satisfaction, and generate more buzz."

"This is a logical progression" in the effort to get customers involved in the development of a new
vehicle, says Geist, hinted that in the future, projects like this could be put in place "even earlier in
the process."
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3 Designing MBC Questionnaires

3.1 Introduction
We've design the MBC software to analyze a variety of menu-based choice problems, samples of
which we showed in the previous section.  However, the experimental design for these projects as
well as the creation of the questionnaire and data collection is left for you to manage using other
tools (described below).

There are common elements involved in typical MBC questionnaires:

1. Respondents choose among menu items, each typically featuring item-specific prices
(also known as alternative-specific prices).

2. Respondents make from zero to multiple selections per choice task (but do not specify
volume/quantity of purchase).

3. The price of the total ticket is shown, and is updated as respondents "buy" more items
on the menu (it isn't necessary to show the total price, but it is common to do so).

4. There often are constraints on the combinations of items that can be chosen.

5. There often are constraints on pricing (e.g. medium size drinks must be higher price
than small size; price of the bundle must be less than purchasing the same items a la
carte).

You may do questionnaire development and data collection with any questionnaire instrument
(even paper-and-pencil) or web survey tool of your choice, including Sawtooth Software's
Lighthouse Studio program.  We generally recommend using (controlled) randomized design
strategies (such as the Complete Enumeration or Shortcut strategies in our CBC software), as they
are robust and convenient to use for MBC studies.  If you use Lighthouse Studio, you will need to
customize the questions using Free Format and typically some customized Javascript code that you
must write on your own.  

The focus of these next sections is on experimental design, and we assume the reader already is
proficient in conjoint and CBC analysis.  
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3.2 Constructing Factors and Levels
In conjoint analysis we consider multiple factors (attributes) where each attribute has at least two
levels.  Menu-based choice problems also involve multiple factors, each having multiple levels. 
Whereas we often think of a CBC question as being composed of multiple product concepts
(cards), we should think of the entire MBC menu question being represented by a single card.  This
allows researchers to use the familiar tools for conjoint design with MBC experiments (CBC or CVA
Software, Warren Kuhfeld's SAS routines), except that the number of factors for MBC experiments
will often be much larger than for traditional conjoint or CBC.

Consider an example introduced previously:

Let's imagine that Base Model 3 was sometimes available and sometimes not (controlled by a
binary "on/off" factor).  Furthermore, each option on the menu can vary in terms of its prices.  We
could draw truly continuous random prices for each option (within a given range), but it makes it
easier for both design and analysis if we select a limited number of discrete prices, such as five per
option.

The nine factors in our experiment, with their levels are as follows:

1) Prices for Base Model 1: $150, $175, $200, $225, $250
2) Prices for Base Model 2: $250, $275, $300, $350, $400
3) Availability of Base Model 3: Available, not Available
4) Prices for Base Model 3: $400, $500, $550, $650, $750
5) Prices for Option A: $10, $12, $14, $16, $20
6) Prices for Option B: $16, $20, $24, $28, $36
7) Prices for Option C: $3, $4, $5, $6, $7
8) Prices for Option D: $50, $55, $60, $70, $80
9) Prices for Option E: $2.00, $2.50, $3.00, $3.50, $4.00
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The total number of possible combinations (full-factorial) is: 58x21= 781,250.  Thankfully,
respondents are not required to respond to all 781,250 combinations to allow us to estimate the
effect of these variables on choices.  We can use a subset (fractional factorial) of the possible
combinations to include in the questionnaire.
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3.3 Fractional Factorial Design Strategies

With the very earliest form of conjoint analysis (card-sort conjoint), analysts used design catalogues
or specialized software to select a very limited number of cards to display to respondents.  The
formula to determine the minimum number of cards to enable utility estimation (main effects) is:
Total_Levels – Total_Attributes + 1.  

Consider a conjoint study with 6 attributes each with 3 levels; the minimum number of cards
needed is 18-6+1 = 13.  Using the minimum is not recommended in practice, since there are no
degrees of freedom and therefore response error may result in severe errors of estimation.  For
traditional (card-sort) conjoint, many analysts would want to use 1.5x to 2x as many cards as
parameters to be estimated.  18, 21, or 24 cards might be advantageous choices in this case, as all
are divisible by 3 (each attribute has 3 levels), leading to the possibility of finding a level balanced,
near-orthogonal plan.  That said, designs that sacrifice a modest degree of level balance and
orthogonality may still be quite adequate in practice.  Sawtooth Software's CVA program has a very
good designer for working with traditional conjoint designs (and also MBC designs, as we'll show
later).

As we just illustrated with just a few attributes each with a few levels often about 18 cards would
be enough to support precise estimates of all main effects.  Since card-sort conjoint interviewing
was typically done on paper, it was easiest when there was just one deck of cards to replicate
across respondents.  Each respondent saw the same set of cards (but perhaps in random order). 
This represents a one-version plan.

Traditional conjoint design software (such as Sawtooth Software's CVA) can be used effectively for
MBC questionnaires.  Each card defines an MBC task.  For the MBC example in Figure 2.1, we have
8 attributes with 5 levels, and 1 attribute with 2 levels.  The minimum number of cards is 42-
9+1=34.  To obtain 1.5x as many cards as parameters to estimate (giving us some degrees of
freedom), we'd have (34)(1.5)=51 cards.  To obtain a level-balanced plan, we would probably try
either 50 or 60 cards (divisible both by 5 and 2).  This is probably too many MBC tasks to ask any
one respondent, so we would consider dividing the cards into different blocks of questions, such as
5 or 6 blocks each with 10 questions.

Designs became more complex with CBC, as researchers were interested not only in main effects,
but sometimes in interactions and cross-effects.  These higher-order effects required larger
numbers of cards (concepts) and choice tasks to estimate the parameters of interest with
reasonable precision—typically more choice tasks than any one respondent could complete.  For
example, if the experimental design called for 72 total choice tasks (each made up of multiple
concepts), researchers might divide these into six blocks of 12 questions.  Each respondent would
complete just one of the blocks, and all the effects accommodated by the design could be
estimated by pooling the analysis across respondents.

Why all this discussion of historical methods for designing conjoint and CBC?  If you plan to collect
the data using a method that requires you to hard-code the specific questions respondents will
see, then you will be striving for MBC questionnaires that can be fielded using a limited number of
questions and question blocks (our CVA software could be quite useful is designing such studies). 
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However, if you use a computerized interviewing method that can dynamically display the MBC
questionnaire based on a database of pre-designed tasks, or based on designs generated on-the-fly
using randomized methods (where each respondent gets a unique questionnaire version), you will
have greater flexibility in handling complex designs and MBC questionnaires.  Also, the useful
counting analysis built into MBC software is best supported by randomized plans (where
respondents are randomly assigned to receive one of many available blocks of the design).
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3.4 Number of Price Levels
To study price sensitivity requires that we vary prices and observe respondent reaction.  At
minimum we need to have two price points to study price sensitivity.  But, if we use just two price
points, we haven't observed how respondents react to prices in between those two points.  We
can only assume some function to estimate reactions to interior prices (such as linear).  With three
price points (e.g. $200, $300, and $400), we have an opportunity to capture some non-linearity in
the price function, but with just one kink.  More price points lead to greater opportunity to
capture non-linearity in the price function, and to assess which specific points along the function
are associated with regions of non-linearity (elbows, or dramatic changes in slope).  It would be
tempting to test dozens of price points along the range, but this approach comes with some
drawbacks, which we'll discuss further below.

It is not a requirement in MBC to use equidistant spacing across price levels.  For example, prices: 
$200, $250, $300, $400, $600 are reasonable, as well as: $200, $300, $400, $500, $600.  Both price
level specifications measure five price points between $200 and $600.  But, the first probes more
granular spacing at the lower prices.  If at all possible, try to include specific price levels that the
client is interested in taking to market, or that might represent psychological break-points
(thresholds of resistance) for different segments of respondents.
 
We suggest you maintain symmetry across factors of the design, in terms of number of levels.  It
wouldn't make sense to have one item vary across 3 prices and another item vary across 10.  The
conjoint literature is replete with cautions about the "Number of Levels" effect, and we should
expect this could lead to bias in MBC experiments as well.

We generally recommend including about 5 levels of price variation per menu item (no fewer than
4 and no greater than about 9).  The decision regarding number of price levels to include per menu
item for a given study depends on a number of factors:

· The type of design you plan to use: fixed (limited block) or randomized plan
· The utility function you plan to specify for each price effect
· The sample size

We'll discuss each of these points in turn.

If you plan to generate a minimal-sized design (with as few cards and blocks as possible), then
increasing the number of price levels per item on the menu will make it harder to generate a plan
with a reasonably small total number of cards (MBC questions).   You'll therefore want to use
relatively few price levels per menu item.  If, however, you are able to use randomized design
strategies (e.g. unique questionnaire version for each respondent) and questionnaires built on-the-
fly via computerized interviewing, this gives you greater flexibility to study more levels of price.

Many researchers will want to estimate non-linear functions for price, using the "part-worth"
functional specification (dummy-coding).  With dummy-coding, a k-level price attribute is
estimated as k-1 parameters in the model.  If five levels of price are used for a menu item, the
effect of its price can be captured as 5-1 = 4 parameters.  However, 20 total price levels would
require 19 parameters to estimate.  Not only would this tax the estimation, but it would likely lead
to utility reversals among adjacent price level estimates.
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Many readers will recognize that using dummy-coding and effects-coding lead to either identical or
nearly identical model fit and predictions.  Our CBC and CBC/HB software employ effects-coding. 
Our CVA software employs dummy-coding.  We have decided to employ dummy coding for ease of
developing MBC and user understanding.  With dummy-coding, the reference level is set to have a
utility of 0.

The sample size also affects the ability to investigate non-linear functions for price using the
dummy-coded "part-worth" functional form.   We should ensure that enough occurrences of each
price point are available in the data to lead to reasonably stable estimates.  MBC experiments
might involve 800 respondents, each having seen 8 menu tasks.  This leads to 6,400 total
completed menus.  If 20 price levels are defined for a particular menu item, this means that each
price level will have been seen about 6,400/20 = 320 times.   While this wouldn't pose any problem
for linear or log-linear estimation, it can lead to troubles for part-worth (dummy-coded) functions.
 There would only be 320 support points for each discrete price level, and the aim of part-worth
functions is to independently estimate the utility at each discrete price point.  Our general rule of
thumb is that each level of independent variable (attribute) in a choice experiment occur at bare
minimum 500 times, and preferably 1000 times.  For a study involving 6,400 total completed menu
tasks in the data file, this means that one should probably not go much beyond about 6 levels for a
price attribute.

Since this section has been pretty lengthy, we summarize the main points:

· We generally recommend using about 5 levels of price per menu item
· Symmetry: the number of price levels per menu item should be the same across items in the

design
· Price levels don't need to be equidistant
· The [#respondents x #menu_tasks]/price_levels should be around 1000.  In other words, each

price point should appear about 1000x across all respondents and menu tasks.
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3.5

Single-Block, Multiple-Block and Randomized
Plans
We've already discussed how for traditional card-sort conjoint, typically just one version of the
cards was printed, and all respondents got the same set of cards.  With CBC, often there were more
tasks in the design than any one respondent could answer.  If 72 total tasks were required, these
could be split into 6 blocks of 12 questions.  Each respondent would be randomly assigned to
complete one of the blocks.

Over the years, researchers have begun to favor larger designs (especially for CBC), with greater
numbers of blocks.  In the limit, each respondent can receive his/her own unique version (block) of
the plan.  In the Sawtooth Software literature, these are referred to as "randomized" plans.  That is
to say that each respondent is randomly assigned to receive one of many available versions of the
questionnaire, where each version has been designed carefully according to standard design
principles such as level balance and orthogonality.

Having multiple blocks not only can increase design efficiency, but it reduces order and context
effects, which can contaminate utility estimation.

Although we've spent a good deal of space discussing carefully designed plans according to
catalogues or specialized design software, it turns out that for computerized interviewing, and
relatively large sample sizes (both likely for MBC projects), randomized plans are convenient and
quite robust.

Sawtooth Software's CBC software can generate designs that you employ in MBC, and the fast-food
example described earlier (Figure 1.6) was designed using CBC's Shortcut design methodology. 
However, purely random designs (such as using "list building" in Lighthouse Studio or other
randomizing methodologies provided by other computer interviewing software) are quite suitable
for aggregate analysis such as aggregate logit.  It is best to try to control for level balance when
using random designs, but if the random number generator is good, there will be quite reasonable
level balance across hundreds of respondents and thousands of tasks.  Exact level balance is not
required.

Although some researchers might feel that using randomized designs with no explicit control for
level balance or orthogonality seems haphazard and unscientific, it turns out that such designs are
often about 80% as efficient (when considering aggregate analysis) as the best designed plans
available.  For some practitioners, randomized plans are especially alluring because they are easy to
implement and can help hold development costs down.  But, if individual-level analysis via HB is to
be used, we recommend more careful design procedures that lead to excellent level balance and
near-orthogonality within each respondent's tasks.

Our preference is to use CBC software with its controlled randomization strategies to design MBC
questionnaires, and to field the studies using Lighthouse Studio and the "Free Format" questions
with Javascript verification.
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Individual Item Price Variation or Lock-Step Category Price Variation

In the example shown earlier in this documentation (Figure 1.6), we varied the price of each menu
item independently.  Drinks and fries posed a special problem, since we wanted to measure the
price sensitivity separately for the small, medium, and large varieties.  We imposed some modest
prohibitions in the design, to avoid displaying illogical price comparisons (e.g. large fries costing less
than medium fries).  However, another approach to investigating respondent choices in the face of
changing prices is to vary the price of all items within the category in a correlated (lock-step)
fashion. 

For example, rather than draw a random price variation for each size of fries, we could draw a
single variation to apply to all fries.  For example, we could establish average prices for three
different sizes of fries:

Average Prices:
$1.09 Small fries
$1.59 Medium fries
$1.99 Large fries

Then, for a given choice task, we might reduce all prices by $0.20:

Prices all decreased by $0.20:
$0.89 Small fries
$1.39 Medium fries
$1.79 Large fries

Rather than having three separate independent variables that control prices for the three sizes of
fries, we can use a single independent variable to control all prices for fries.  That variable might
take on 5 levels:  -$0.40, -$0.20, +$0.00, +$0.20, +$0.40.

We still model the choice of each size of fries as a function of price changes, but price changes
overall for the category rather than for each item independently.  In general, quantity demanded
of fries (net as a category) should increase as the category price decreases for fries.  But, we
shouldn't necessarily expect the quantity demanded of each item within the category to increase
as the category's price decreases.  For example, as the category price for fries uniformly decreases
for all three sizes, respondents might shift away from the smaller fries in favor of medium and large
fries.  So, small fries could show a decrease in quantity demanded as category price for fries
decreases.  Conversely, as category price increases, small fries might show an increase in quantity
demanded, as people shift away from more expense larger fries.

Each area of the restaurant menu shown in Figure 1.6 could be designed using category price
variations rather than individual-item price variations: Sandwiches, Fries, Drinks, Salads, Healthy
Sides, and Desserts.  

Which approach should you take: individual-item variation or lock-step category pricing variation? 
It depends chiefly on the aims of the research, but we'd recommend trying to use lock-step
category pricing variation whenever it makes sense.  Lock-step category price variation means
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fewer independent variables, and can be less demanding on the model in terms of numbers of
parameters to estimate.  If the client is just interested in the choice of items due to overall
category price changes rather than in estimating the independent price sensitivity of each item
within the category, then it would favor the lock-step category pricing approach.  In many real-
world situations, the store frequently increases or decreases prices for all or most items in a
category, so lock-step category price changes may actually be more realistic. 
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3.6 Premium Pricing and Bundle Pricing
One of the practical hurdles that researchers will probably face with MBC questionnaires is the
restriction that some prices on the menu must always be higher than other prices.  For example,
consider basic and premium items on the menu, and the premium item ("Ultra") should always be
50% more expensive than the basic item:

q Basic  $100
q Ultra  $150

Perhaps the Basic price level variations are $80, $100, and $120.  In this case, we only include that
3-level factor in the design.  The price of ultra is simply computed as 1.5x the Basic price (this is the
same notion as lock-step category pricing).  With such a design, the likelihood of choosing Ultra will
be expected to be a function of the price of the Basic package.  

Sometimes, the design needs to be a bit more complex, such as Ultra being $20, $40, or $60 more
expensive than Basic.  For that case, we would have two factors in the design to control the prices
for Basic and Ultra:

1) Basic Price 2) Premium for Ultra

$80 $20

$100 $40

$120 $60

So, if a design card features $80 for the Basic Price and $40 as the premium to apply when
computing Ultra's price, the display is: 

q Basic  $80
q Ultra  $120

You simply add the Basic price plus the premium to compute Ultra's price on the menu.  During
analysis, the likelihood of picking Ultra is modeled as a function of the Basic price and separately
the premium price. 

Bundle pricing is also handled using the same trick.  Consider the fast-food example introduced
earlier.
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In this example, we wanted to make sure that the value meals shown at the top of the menu were
always priced lower than the sum of their parts if ordered separately from the a la carte portion of
the menu.  Furthermore, we wanted to test respondents' sensitivity to differing amounts of
discounts.  We tested the following value meal bundling discounts: $0.38, $0.78, $1.18, and $1.58,
which were treated as an additional 4-level factor in the design.  So, to determine the price for the
Value Meal, we added the prices shown on the current menu for the components making up the
value meal, minus one of the bundling discounts.  In the example above, the Deluxe Value Meal
price was computed as follows:

Deluxe Hamburger $1.99
+ Medium fries $1.49
+ Medium drink $1.69
- Bundling discount $1.18

Total:  $3.99

When we modeled the likelihood of choosing the Deluxe Hamburger Value Meal, we modeled it as
a function of the prices of its separate components (hamburger price, medium fries price, medium
drink price), as well as its bundling discount.  
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3.7 Design Testing
Readers accustomed to using Sawtooth Software's CBC program know how easy it is to use CBC's
Test Design procedure to generate random respondent data and compute the standard errors of
logit utilities via aggregate logit.  MBC doesn't provide an advanced test capability.  But, you can
create your .csv datafiles using your experimental design, and use Excel's "Randbetween
(minvalue,maxvalue)" function to generate random respondent answers to the menu tasks.  Then,
you submit the data to MBC software's aggregate logit routine to examine the size of the standard
errors of the utility parameters.  For example, you can examine the size of the standard errors for
designs without prohibitions compared to a design you are working on that requires some
prohibitions.  Our experience from standard CBC studies is that utility parameters from random
response data should have standard errors of .05 or smaller.  (The standard errors are of course
related to the magnitude of the independent variables in the X matrix.  The way we scale the X
matrix in MBC gives each column comparable scaling, allowing us to directly compare the
magnitude of standard errors using these norms.)

For MBC studies, if you find that you must impose prohibitions in the design, or if you have other
design elements that might degrade design efficiency, you certainly should test your design. 
Failure to adequately test your design may result in unusable data.  There are enough moving parts
and complication to some MBC studies, that such details cannot be overlooked.

When generating random-responders for test data, it’s helpful to consider the choice likelihoods. 

If an item is likely to be chosen about 5% of the time, then it would overstate the precision of the

parameters involved (such as that item’s prices) if choices were assigned with about 50%

likelihood.
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4 Preparing Data Files for MBC

4.1 Preparing Data Files for MBC
We have made it very easy to prepare data files for MBC software.  We use the .csv text format,
which may be saved from Excel and by most software that is used for collecting and processing
data.  The top row contains labels, but all data in the remaining rows must be numeric only (or
missing/blank).

Consider a very simple menu where respondents can choose among three options, each with
varying prices:

q Hamburger  $1.99
q Fries  $1.39
q Drink $1.19

To code the data file, a leading row of labels should first be provided (shown in row 1 in Figure 3.1
below).  The respondent ID (must be unique) should be found in the first column (column A), with
independent variables and dependent variables in the other columns (columns B through G).  Each
menu task is formatted as a single row.  Thus, a respondent with 5 menu tasks will span 5 rows of
the data file.  An example is given below (the first 8 rows, as might be displayed by Excel):

The independent variables in this data file (columns B through D) are the prices for each of the
items on the menu (Pr_Ham, Pr_Fries, and Pr_Drink).  In this example, we have varied each menu
item's price across 5 alternative-specific prices.  The actual prices shown for the five possible prices
of hamburger (variable Pr_Ham) might have been:

Level#
Price 
Shown

1 $1.59

2 $1.79

3 $1.99

4 $2.19

5 $2.39

But, we code the prices shown as integers 1-5 in the data file (you should code most of your
independent variables as consecutive integers beginning with 1).  This gives MBC maximum
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flexibility to use this variable as a categorical (dummy-coded part-worth function) or as a linear
term (when you assign values to the categories of each independent variable).

When this spreadsheet is saved to a .csv format, it looks like the following when opened with a
text editor like Notepad:

CaseID,Pr_Ham,Pr_Fries,Pr_Drink,Ch_Ham,Ch_Fries,Ch_Drink
1001,3,1,2,2,1,2
1001,2,5,3,2,1,2
1001,5,2,1,2,1,2
1001,4,4,2,1,1,2
1001,1,3,5,1,1,2
1002,2,2,4,2,2,1
1002,1,4,4,2,2,1

It's easy to open your .csv-formatted data file in MBC software.  From the Data Files tab, you
simply browse to your .csv file.
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4.2 Labels File
After you have specified which .csv file to use for your project, the next step is to provide labels for
the levels (variable categories) used in the study, as well as values associated with each
independent variable level if you want to specify models involving linear or log-linear terms.  The
Variables tab is where you do this, and this dialog supports cutting and pasting from programs such
as Word or Excel, so you don't have to re-type labels and values that you have written elsewhere:

On the Variables tab, you specify the labels used for the categories of each of the independent and
dependent variables in your study.  In Figure 3.3, we show how the labels have been specified for
each of the five levels of hamburger price (Pr_Ham), as well as the values associated with each
label.  The labels are used in MBC's reports and also the market simulator (so we suggest concise
labels).

Because there are many labels and values associated with variables in MBC projects, it is helpful to
define these in a separate my_labels.csv file, using a program like Excel.  You may Import Category
Labels and Values from File by clicking the icon indicated by the arrow in Figure 3.3.  The .csv file
containing labels must have four columns: attribute#, level#, label, and value (see Figure 3.4).

Figure 3.4 shows an example labels file, as displayed in Excel.
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For this dataset, after the independent variables (Pr_Ham, Pr_Fries, Pr_Drink) follow the
dependent variables: the choices of items on the menu (Ch_Ham, Ch_Fries, Ch_Drink).  (It is not a
requirement that independent variables be provided prior to dependent variables; they can come
in any order.)

Notice that the final column (values) contains prices on the scale in which they were shown to
respondents (e.g. 1500, 1750, etc.).  If you specify that these independent variables are Categorical,
MBC software will automatically transform these to have values within the design matrix that are
zero-centered with a range of 1 (to provide faster convergence during estimation).

In this data file, we have coded menu choices (dependent variables) as 1=chosen, 2=not chosen (all
dependent variables should be consecutive integers, starting with 1).  Therefore, in Row #2 of the
data file (respondent 1001's first menu task, as shown earlier), this respondent did not choose a
hamburger (Ch_Ham=2) or drink (Ch_Drink=2), but did choose fries (Ch_Fries=1).  For the second
choice task seen by this respondent (formatted on row 3), the respondent chose both hamburger
and French fries from the menu.

Some menus will have dependent variables that take on more than just two levels indicating
on/off.  The responses are coded as consecutive integers starting with 1.



Preparing Data Files for MBC 35

4.3 Selecting Independent and Dependent Variables

From the Variables tab, you need to indicate which variables are dependent variables using the
Variable Type column drop-down control.  Figure 3.5 shows the three dependent variables
(Ch_Ham, Ch_Fries, Ch_Drink) with Variable Type set to "Dependent."  Notice also that we can
specify which (if any) category of the dependent variable indicates "not selected" (off state), which
makes the later counting report more streamlined and easy to read.   For this experiment, all
dependent variables have an off state, so we indicate for each dependent variable that code=2
indicates the off state (not selected checkbox).

Other data may be provided as well in the file, such as continuous independent variables that you
treat as "user-specified" for MBC to take directly into the independent variable matrix as a single
column without any further modification.  These variables may include decimal places of precision,
and include positive and negative numbers.
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4.4 Missing Values
Missing Tasks
If a respondent did not complete all tasks, you may simply delete any missing task(s) (rows) from
the data file.  Each respondent does not need to have the same number of tasks (rows) present in
the data file.

Missing Dependent Variables
When dependent variables are conditional on the state of other dependent or independent
variables, this leads to missing data.  For example, if you cannot pick Dependent Variable 2 unless
Dependent Variable 1 was chosen, then Dependent Variable 2 will be missing whenever
Dependent Variable 1 is not chosen.  A dependent variable may also be missing due to the state of
a triggering independent variable.  For example, if an availability variable in the design triggers
whether an item is available or not, then the choice of that item will be missing whenever the
availability variable's value is false.  

Missing values appear as blank fields when opened with a program like Excel.  If viewed with a text
editor, the missing values are indicated by consecutive delimiters in the .csv file.

Missing Independent Variables
Independent variables can be missing due to a conditional dependent variable, as described above.
 Independent variables can also be missing due to the state of a triggering independent variable. 
For example, if an availability variable in the design triggers whether an item is available or not,
then the price of that item will be missing whenever the availability variable's value is false.   The
missing value is indicated as a blank field.

There are other cases involving independent variables that are only applicable to specific
alternatives in the design matrix (alternative-specific effects).  In these cases, you may specify a
not-applicable independent variable with a code of zero.   The zero carries forward into the design
matrix for parameter estimation.
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4.5 Segmentation Variables and Weights
If you have segmentation variables and weights, these should be provided in a separate
"demographics" .csv file, again with CaseID as the first column.  The CaseIDs must match the
CaseIDs provided in the main data file.  You select the demographics file from the Data Files tab:

Missing values are not permitted in the demographics file.  If you have a missing value, you should
set it to a numeric code distinguishable from the other numeric values in the file.

Weights are applied during counts and aggregate logit.

Weights are not applied during HB analysis, but rather are applied post hoc during market
simulations, to differentially weight respondents' predicted choices.
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5 Counting Analysis

5.1 Introduction
Although it is not requisite for MBC projects, counting analysis can help you learn about important
relationships in your data before you spend time building logit or HB models.  After investigation
via counting analysis, you will be better prepared to build well-specified models: effective
combinations of independent variables with appropriate functional forms, and accurate market
simulators. 

In counting analysis, we compare how many times something was available to be chosen to how
many times it was actually chosen.  If a hamburger at $1.99 was available to be chosen 1000 times
(across all respondents and menu tasks), and it was selected 100 of those times, its Counts
percentage is 100/1000 = 10%.

Randomized designs, as described previously, provide robust data for counting analysis (except
when prohibitions would bias the results).  For orthogonal or near-orthogonal designed plans that
are also level balanced, larger plans featuring multiple blocks (versions) also provide data suitable
for counting analysis.

Counting analysis provides many benefits:

· For each choice option on the menu, you can develop hypotheses regarding which independent
variables are the strongest drivers of those choices.

 

· Counting analysis allows you to consider whether the effects of continuous variables (such as
price) might be best specified as linear, curvilinear (log-linear), or non-linear (part-worth
function).

 

· You can observe whether continuous variables indicate positive or negative slope relationships
with choice.  Own-price effects are typically negative and cross-effects for substitutable items
are typically positive. 

 

· For typical menu situations, the independent variables are prices for the menu items.  But
independent variables can also be nominal/categorical in nature, such as the availability of an
item on the menu (if the item is sometimes on or off the menu), different orderings or layouts for
the menu, or variables involving the choice context, such as "purchasing for a child vs.
purchasing for oneself."  Counting analysis lets you examine the effect of these nominal or
categorical independent variables on menu choices.

 

· You can examine the most commonly selected combinations of choices across all tasks in your
MBC questionnaire.  For example, the most commonly-picked menu bundle for a fast-food study
might be the combination: Hamburger + Medium Fries + Medium Drink.

 

· Counting analysis can provide an excellent cross-check against the final market simulator output,
to give you assurance that there aren't any glaring errors in your simulator.  If you specify a
market simulation wherein all items on the menu are held at their average price (or "typical" level,
if considering a non-price independent variable), the resulting shares of choice should closely
resemble the marginal counts proportions.  When you change an item's price from its lowest to
highest values (and all other items on the menu are held at the constant average price), the
resulting demand function for that item should closely resemble the own-price demand function
suggested by counts.  Cross-elasticity price functions may also be compared for simulated
results vs. counts.  If you have made a significant error in building your models, comparisons to
counts most times will point out the problem.
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· You can investigate whether items on the menu appear to be complements or substitutes via
counting analysis.  You can compare the actual joint likelihood of selection to the expected joint
likelihood.

In the next sections, we will describe some of these benefits in more detail.
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5.2 Investigating Significant Predictors of Choice
Counting analysis helps you investigate which independent variables (such as price variations)
seem to be significant drivers of menu choices.  For example, the choice of hamburger on a fast-
food restaurant menu is almost certainly related to the price charged for that hamburger (an own-
price effect).  And, the price of the chicken sandwich may also have an effect on the choice
likelihood for hamburger (a cross-effect).  Counting analysis allows you to investigate the strength
of such relationships using a Chi-Square statistic.

It would seem to be covering all bases if we built models where choice of hamburger was a
function of its own desirability, its own price, and all other menu prices or other independent
variables.  Such a model could capture all potential own- and cross-effects (a "kitchen sink" model).
 This is in the spirit of mother logit models that were popular thirty or forty years ago under
aggregate analysis, such as aggregate logit.  

While such models are conceptually complete, they are probably not the best for the MBC models
this software estimates via logit and HB, for three main reasons:

· Such models include a lot of parameters to be estimated (many independent variables) and might
take a very long time to run under Hierarchical Bayes (HB) estimation.  In addition to long
runtimes, the ratio of number of parameters to be estimated (independent variables) to
information provided (choice tasks) at the individual level may be relatively high.  HB models that
estimate individual-level models do best when the data are not especially sparse.

· Models that include all possible effects, whether significant or not, run the risk of overfitting. 
While the fit of the model to the choices in the calibration tasks (the tasks used to estimate
models) may slightly increase with the inclusion of non-meaningful independent variables, the
ability to predict new choice scenarios (outside the calibration tasks) often degrades due to
parameter weights taking advantage of within-sample random relationships.

· When market simulator models use all possible own- and cross-effects, these often demonstrate
noisy reversals that can be unsettling.  For example, lowering the price for carrots on the menu
might ever so slightly increase the simulated likelihood of purchasing a hamburger, when such
relationships are non-significant and lack face validity.  While it may be explained that such weak
relationships are non-significant and due to random error, many people prefer tidy simulation
results that don't reflect such irregularities.  Pruning non-significant cross-effects will lead to

cleaner simulators with fewer oddities to explain to clients.  

Because of these reasons, we encourage you to prune your MBC models by dropping non-
significant independent variables.  Most own-effects are significant drivers of choice and should be
included in the model.  But, many cross-effects are not significant.  In our experience, often 75% or
more of potential cross-effects will turn out to be non-significant.  

For each potential menu selection (dependent variable), significant potential drivers of that choice
may be identified via counting analysis.  For example, we have been discussing a fast-food
restaurant example.  We expect that the choice of hamburger from the a la carte menu is certainly
related to its price.  Counting analysis allows us to examine the strength of that effect (in terms of
Chi-Square), as well as investigate other potential drivers.
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Most readers are probably familiar with counting analysis from Sawtooth Software's CBC programs,
and the counting analysis we employ is very similar for MBC.  Counting analysis simply computes
the percent of times an item on the menu was chosen when specific levels (indications or prices) of
an independent variable were given.  For example, we can count the percent of times that the
hamburger was chosen from the a la carte menu when it was offered at different discrete price
levels.

The Counts tab within the MBC software includes a dialog where you can request counts for each
dependent variable at a time.  In Figure 4.1 we have selected to run a counting analysis that
analyzes the Effect of variables on choices of the dependent variable Sandwich_Choice.

When we generate the report, we can look at (for example) the effect of changing prices of the
hamburger (Burger_Price) on the likelihood of choosing the hamburger.

Overall, hamburgers were chosen 9.99% of the time across all tasks in the MBC questionnaire.  But,
the price for the hamburgers varied according to a randomized experimental design.  We can
tabulate the percent of times hamburger was chosen when it was shown at each price point in the
design.
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We see that as the price of the hamburger increases, its likelihood of choice generally decreases. 
However, there is a slight (non-significant) "reversal" for the probabilities at $2.59 (8.75%) and
$2.89 (9.18%).  The probabilities suggest respondents prefer Burgers at $2.89 over $2.59 (which is
probably not true).  Counting analysis is not quite as accurate as parameters estimated via logit and
HB analysis, so perhaps once utilities are estimated, the reversal will go away.  However, if it
persists, fitting a linear, log-linear or part-worth function (with utility constraints) could resolve the
reversal if you felt it was necessary to eliminate it.

Note that we have computed a "Relationship Chi-Square" statistic with accompanying likelihood
(p-value) that quantifies the likelihood that the strength of this relationship as observed would
occur by chance (0.01).  If the choice likelihood of hamburger was essentially unchanged when it
was offered at different price levels, the Relationship Chi-Square statistic would be very small, and
the p-value would be very high (near 1.0).  Many researchers take p-values of 0.05 (95%
confidence) or even 0.10 (90% confidence) as indications that an independent variable should be
included in a model.  We would recommend that you not be overly selective at this stage of the
analysis.  Any independent variable with a p-value of about 0.20 or less (80% confidence or higher)
might be included in our logit and HB models unless there is clearly no reasonable behavioral
explanation for that relationship.

MBC reports the count proportions for all discrete levels of the independent variables predicting
each category of each dependent variable.  Because this can be a lot of data to digest, MBC
software provides a summary table listing the strength of each independent variable relationship
(in terms of the p-values) on choice for each menu item.  



MBC v1.144

This allows you to scan the summary table and quickly note which independent variables are
potential drivers of choice for each level of each dependent variable.  (It's easiest to click Show
results in popup button or to cut-and-paste these summary tables into another document or
spreadsheet for later reference as you build your models.)  When you eventually build models that
predict each dependent variable, you'll want to refer to this summary table as a possible guide for
which variables to include, and recommendations for appropriate functional forms (linear, log-
linear, or part-worth).

Notes: Counts results provide a guide for understanding relationships in your data.  However,
many researchers approach experimental design and subsequent model building with a priori
beliefs regarding which variables to include, and model specification.  It is appropriate to rely on
the strength of the experimental design approach and to apply those prior beliefs when building
your models and simulating choices, even if many of the effects seem not to have statistically
significant relationships.  In fact, such an approach sets you on more formally correct ground
than the post hoc approach of looking for statistically significant effects (which requires you to
select a degree of confidence) and including all those that seem to meet that threshold of
confidence.

If using Combinatorial Coding of dependent variables (a recommended approach), the
combinatorial dependent variable often takes on a dozen or more categorical states.  Many of
those states involve very small bases, leading to imprecise counting results and lengthy Counts
reports to account for each of often dozens of categories.  It is better to approach model building
for combinatorial dependent variables using a priori beliefs combined with knowledge learned
from Counting analysis prior to combining multiple (e.g. binary) dependent variables into
combinatorial outcomes.
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5.3 Linear or Non-Linear Relationships
Many econometric models used in academia and in practice assume linear or log-linear functions
for price or other continuous variables, such as shown below. 

In MBC, we accept the possibility that price functions are not necessarily so smooth and
predictable as shown in Figures 4.5 and 4.6.  We suggest you be on the lookout for non-linear
relationships that may not be captured well using linear or log-linear specifications—and counting
analysis provides one way to investigate this.   It is quite possible that respondents have certain
psychological thresholds that may lead to quite non-linear effects of price on choice for certain
menu items.   If you were to specify a linear relationship for a price variable and the true
relationship is decidedly non-linear, you may just have smoothed away an important finding of
the research and hindered the accuracy of your simulation model.  MBC software lets you
customize for each independent variable whether its effect on specific menu choices is linear, log-
linear, or non-linear (part-worth).

Counting analysis helps you identify potential non-linear relationships (remember that counting
analysis isn't as accurate as estimating the effects via logit or HB).   If you design your questionnaire
so that price variations take on a reasonably small number of discrete (rather than continuous)
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price variations (such as five levels of price: $10, $12.50, $15, $17.50, and $20), you put yourself in a
good position to investigate non-linear effects using counting analysis and later to more formally
model non-linear effects (via dummy-coded part-worths) in subsequent logit and HB analysis.

In general, we suggest you investigate via counting analysis whether own-price effects are linear or
non-linear.  Cross-effects are typically less strong and may more generally be captured (without
much loss in model accuracy) as linear or log-linear effects.

For example, we can examine the effect of hamburger price on choice of hamburger (a strongly
significant own-effect).   We've plotted the relationship using Excel:

It can be difficult to judge whether there is enough evidence that a relationship is non-linear or
linear just by visually inspecting such plots.  The preference function might zigzag or look to have
distinct bends and curves, when really those bends are due to noise resulting from sampling error.
 If we assume independence of choice tasks, we can compute the standard error of each
proportion and also a confidence interval.  If each price point in the chart is supported by an n of
about 1000 (where n is the number of choice tasks shown with that price across the sample), we
know that the 95% confidence interval is roughly +/- 3% or less for each count proportion. 
Considering the margins of error helps us intuit ("eyeball") whether the non-linear patterns we see
could be due to chance variations in the proportions or are probably repeatable and significant.  
But, MBC's counts analysis provides a more formal Chi-Square test to assist you in deciding
whether there is enough evidence in the data to justify a non-linear function.  In the counts report,
a "Non-Linearity Chi-Square" test is shown, together with a p-value (see Figure 4.3).  (Details of this
test are given in the Appendix.)  If the non-linearity p-value is 0.05 or lower, it indicates 95%
confidence or better that the relationship is non-linear (a part-worth function).  The Chi-Square
test for this particular relationship leads to a recommendation that a log-linear function fits the
data better than linear, but that a part-worth function (dummy-coded parameters) is not justified
by the data.
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Some researchers may plot counts curves and see a relationship that looks decidedly non-linear,
yet the Chi-square test for non-linearity may recommend against using a part-worth function.  That
is because there needs to be a large enough count size (enough respondent choices; enough
evidence) to justify that the frequencies observed are different enough from the frequencies
expected from a linear function.

For linear or log-linear functions, just one parameter is estimated to capture the relationship. 
Reducing the number of parameters to be estimated is beneficial, especially for HB analysis.  The log-
linear model is done by transforming the quantitative variable (such as price) by the natural log in
the design matrix (note: price values must be positive to support log-linear functions as the log of a
negative value is undefined).  For non-linear models that are not fit well using either a linear or log-
linear function, we can employ dummy-coding (part-worth function).  With dummy-coding, a price
variable taking on 5 discrete levels is modeled using 5-1 or 4 parameters. 
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5.4 Positive or Negative Slope Relationships
Counting analysis can help you identify whether an independent variable (such as price for a menu
item) has a positive or negative effect on the choice of a menu item.  The effect of the price of a
menu item on its own choice likelihood is expected to be negative: as price increases, the choice
likelihood decreases.  For items viewed as substitutes, the price of one item is positively related to
the choice likelihood of the other item.  For complementary items, the price of one item is
negatively related to the other item.

Sometimes, you or your client may have some theories regarding the positive or negative effect of
variables such as prices on menu choices.  The counting module can help you assess whether the
data seem to conform to those assumptions.  Of course, you should more formally test the
appropriate signs of utility relationships using the aggregate logit module.  Formally testing the
appropriate signs would be important prior to imposing utility (monotonicity) constraints during
utility estimation.   You wouldn't want to impose a utility constraint with a sign that contradicts a
strongly significant sign relationship.
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5.5 Comparing Counts to Final Market Simulations

In an earlier section of this manual, we stressed how important counts are in helping to diagnose
glaring problems in the market simulator.  MBC market simulators can become quite complex,
involving multiple logit-based models acting in concert to predict choice likelihoods for menu items
given specific prices (or other specific realizations of independent variables).  Before delivering
such what-if simulator tools to a client, you should do a healthy amount of testing and checking to
ensure that it is working properly.  Comparing simulations to counts results can help you assess
systematically whether there is a significant problem with the market simulator.  Of course,
holdout choice tasks are also valuable in this regard.  But, with MBC studies, counts are probably
even more valuable than holdouts for assessing the quality of the market simulator and diagnosing
specific problem areas.  A holdout gives you a snapshot of how respondents would react to a
specific set of prices (or realization of other independent variables) on the menu.  Counts results
capture how respondents reacted to the full range of price changes, in terms of the average choice
likelihood of menu items, and the own-effects and cross-effects of menu prices on choice.  Thus,
counts results provide a more complete reference for testing the output of market simulators.
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5.6

Which Combinations of Items Were Selected Most
Often?
Often, researchers are interested in which specific combinations of menu items were selected

most often.  Consider a menu with 12 items that can be checked or not checked.  There are 212 =
4,096 possible combinations of checks that may be made.  Combinatorial counting analysis reports
the top n combinations that were selected, and the percent of total choices accounted for by each
combination.  

From the Counts tab, you can select to perform a counting analysis on the Most frequently chosen
combinations.

You may also specify how many top combinations to display (10 are shown by default).  When you
click Generate report, MBC first reports the one-way choice likelihoods of items:
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For example, the Hamburger Meal was chosen 27.42% of the time.

MBC also reports two-way choice likelihoods of items (how often each combination of two levels
was chosen).

In Figure 4.10, we see that the combination Deluxe Hamburger Meal + Pie was chosen 2.57% of the
time.  

Next, the top 10 full combinations selected are reported (the first seven in this report are shown in
Figure 4.11):
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The most common selection was to choose just the Hamburger Meal (23.16% of all choices).  The

2nd most likely choice was to choose nothing (11.60% of choices).  The 6th most common selection
was to choose a Medium Drink + Grilled Chicken Salad (2.44% of choices).  Although all top 10 most
likely combinations are not shown in Figure 4.11 (to save space), it is interesting to note that
largely due to the inclusiveness and popularity of the value meals, those top 10 combinations
represent 65% of all choices made in the questionnaire.
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5.7 Substitutes or Complements?
Counting analysis also can provide a simple way to investigate whether items on the menu are
substitutes or complements.  Consider a simple menu with a dozen items that are either selected
or not.   If item #1 is selected 20% of the time and item #2 is selected 30% of the time, and if these
items were neither substitutes nor complements, we would expect that the likelihood of the two
being selected together would be 0.2 x 0.3 = 0.06.  MBC reports both one-way and two-way
counts.   If we find that the two-way joint likelihood of item #1 and item #2 being selected
together is much larger than 0.06, then we would take this as evidence that these two items are
complements.  If the joint likelihood is much smaller than 0.06, then that is evidence that the items
are substitutes.  This suggests a simple measure for testing the synergies between items is to divide
the actual joint likelihood (2-way counts probability) by the expected joint likelihood (product of
the one-way counts probabilities).  Values much larger than 1.0 suggest complements; values much
less than 1.0 suggest substitutes.  (For a more formal statistical test, the actual frequency of the
joint occurrence may be compared to the expected frequency, and a Chi-square test may be
performed with d.f. of 1.)
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6 Conceptualizing MBC Models

6.1 Conceptualizing MBC Models
The MBC software is a flexible, scalable tool for analyzing menu-based, multi-check choice
problems.  Unlike Sawtooth Software's CBC, where the development of attribute lists with levels
and estimation of utilities follows a similar pattern from project to project, MBC problems require
more forethought, ingenuity, and conceptual know-how on your part.  Using MBC requires much
more experience and expertise in statistics and econometric modeling than using CBC software!  

While designing the menu, you must constantly be thinking about how you plan to use MBC
software to analyze the resulting data.  You should generate designs and, prior to fielding the
study, estimate the models using dummy (random) respondent data.   Keep a close eye on the
number of parameters you are estimating and whether you have enough respondents x choice
tasks to estimate the desired effects with reasonable precision.  After collecting the data, you'll
make decisions about how to build the models (series of sub-models) that provide good fit to the
calibration data and accurately predict how respondents will make choices given new menu
scenarios.  

Before we continue, it is useful to review some concepts and terminology:

· Dependent variables can be binary (on/off) or mutually-exclusive categorical: 1=choose red,
2=choose green, 3=choose blue, 4=choose no color (where one and only one category may be
selected from the menu).

· The effect that a menu item's price has upon its own choice likelihood is termed an own price
effect.  The effect of a menu item's price on the choice likelihood of a different menu item is
termed a cross price effect.

· We refer to logit-based models, which can mean aggregate logit models as well as HB models,
as the HB estimation we employ uses the logit equation.

· We refer to sub-models, which are models that predict the choice for a specific item (or multiple
items) on the menu, but not all items on the menu.  By using multiple sub-models, we can "divide
and conquer" complex menu problems.
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6.2 Example #1
Consider a simple menu-based task for configuring additional options on a new automobile:

With four binary dependent variables, there are 24=16 unique ways that respondents could
complete the menu.

There are two main ways this model can be conceptualized using MBC software:

Option 1:
Construct four separate logit-based sub-models, where each sub-model predicts the likelihood
that an option is chosen.  Each model has a form identical to a binary logit model, where the
dependent variable takes on two states: "chosen" and "not chosen."

· Sub-Model 1: Choice of Alloy Wheels (or not) is a function of its desirability, its price, and all
other significant cross effects

· Sub-Model 2: Choice of Moon roof (or not)  is a function of its desirability, its price, and all
other significant cross effects

· Sub-Model 3: Choice of XM Radio (or not)  is a function of its desirability, its price, and all
other significant cross effects

· Sub-Model 4: Choice of Navigation System (or not)  is a function of its desirability, its price,
and all other significant cross effects

Given a new menu scenario with specific item prices, we can predict the likelihood that
respondents would pick each item from the menu.  To make the predictions, we run
simulations for all four sub-models.  

Option 2:
Since there are just 16 possible ways that respondents can complete the menu task, you could
recode your dependent variable (in your .csv data file) from a series of four binary variables to
a single categorical variable taking on values 1-16.   One possible ordering of those 16 unique
combinations is as follows:

1) Alloy Wheels, Moon roof, XM Radio, Navigation System
2) Alloy Wheels, Moon roof, XM Radio
3) Alloy Wheels, Moon roof, Navigation System
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4) Alloy Wheels, Moon roof
5) Alloy Wheels, XM Radio, Navigation System
6) Alloy Wheels, XM Radio
7) Alloy Wheels, Navigation System
8) Alloy Wheels
9)  Moon roof, XM Radio, Navigation System
10)  Moon roof, XM Radio
11)  Moon roof, Navigation System
12)  Moon roof
13)  XM Radio, Navigation System
14)  XM Radio
15)  Navigation System
16) (None)

With this formulation of the dependent variable, you could estimate a single logit-based (MNL)
model, rather than four separate models.  In effect, we are assuming a data generation process
where the respondent considered all 16 possible combinations, together with the prices
associated with those outcomes, and selected the one alternative with the highest total
utility.  

· Model: Choice of alterative (out of 16) is a function of its desirability and the prices of the
items involved in that alternative.

Given a new menu scenario with specific prices, we can predict the choice likelihood (across
the sample) of each of the 16 discrete outcomes.  You separately will need to net the choice
probability for each of the four options on the menu by summing the probability shares across
alternatives that included that option.  For example, choice of Alloy Wheels was an element of
alternatives 1-8.  By summing the probabilities across alternatives 1-8, we accumulate the
likelihood that Alloy Wheels was selected on the menu.  To predict the likelihood that Moon
roof was selected on the menu, we sum the likelihood of alternatives 1, 2, 3, 4, 9, 10, 11, and
12.  (MBC software allows you to create Netted Variables within the Market Simulator that
automatically accumulate these netted probabilities, so that you can have the simulator report
the probability of choice for each original item on the menu.)

Which way of formulating the model is better, Option 1 (four separate models) or Option 2 (a
single unified model)?  Based on our experience comparing these kinds of models, we'd
recommend that if the number of possible ways that respondents can complete the menu is a
reasonably small number, such as about 36 or fewer, building a single unified model will likely
perform better.  It is conceptually more complete to have a single model that predicts all
possible combinatorial outcomes than to build a sequence of models that predicts each
separate choice on the menu (but does not specifically consider combinatorial outcomes).  But,
obviously, such complete models are not always feasible.  As the number of possible
combinatorial outcomes becomes too large (such as 75 or more), the problem can become too
big for HB to handle in reasonable time, the model tends to become too sparse at the
individual level, and overfitting becomes a serious concern.  However, it is possible to think
about logical subsections of the menu that may be modeled in this way, rather than having to
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model all possible outcomes in the menu using a single dependent variable.  This is a
recommended approach.
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6.3 Example #2
One of the examples we showed earlier in this documentation was a choice of a la carte menu
items vs. bundled value meals.  We modify it slightly below to place restrictions on the way the
choices may be made.

Imagine that there are logical restrictions on the way the menu may be completed: if respondents
choose a value meal, they are only allowed to select one, and they aren't allowed to select any
additional a la carte items from the menu.  If they decide to purchase a la carte items (rather than
a value meal), they may mix their a la carte orders across restaurant chains in any combination.

It turns out that there are too many possible outcomes (3+29=515) to model this well using HB and
an exhaustive combinatorial outcomes approach.

Because the choice of value meal was mutually exclusive (only one value meal could be chosen),

we code this as a single categorical dependent variable with 4 possible outcomes (1=1st value meal

chosen, 2=2nd value meal chosen, 3=3rd value meal chosen, 4= no value meal chosen).   Modeling
mutually exclusive, categorical outcomes using a single categorical dependent variable (MNL
formulation) generally will be more accurate than treating that single choice as a series of binary
dependent variables (binary logits).  

There are at least three ways to use MBC to model Example 2.

Option 1:

The easiest way to conceptualize the model is that the choice of each item on the menu is
a function of its desirability, its own-effect of price, and any significant cross-effects from
other item's prices from the menu.  A separate sub-model is built to predict each a la carte
menu item (9 models) and a sub-model is built to predict the likelihood of picking one of
the value meals vs. no value meal (1 model), for a total of 10 separate logit models.
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The weakness of this series of sub-models is that there is no recognition that it is logically
inconsistent for a respondent to pick both an a la carte menu item and a value meal.  This
could lead to nonsensical individual-level predictions and harm predictive accuracy for the
aggregate choice likelihoods of menu items.

Option 2:

This model assumes a hierarchical (nested) decision structure.  Respondents are viewed
first to consider whether they will purchase a value meal or not.  If respondents do not
choose a value meal, then they decide which of the a la carte items to select.  A sub-model
is built for each of the 9 a la carte items, predicting the likelihood that respondents will
select each from the menu.  As with option 1, there are 10 separate logit models, but with
a key difference discussed below.

The nesting structure in MBC is accomplished by retaining only the choice tasks where
value meals were not selected when estimating the 9 sub-models accounting for the
choices of a la carte items.  In MBC software, choice of a dependent variable can be
specified to be conditional on the choice of another dependent variable.  We specify that
the choice of each of the 9 a la carte items is conditional on no value meal being selected.

Setting up a nesting structure formally informs (via simulations) that respondents cannot
pick both a value meal and an a la carte option.  It restricts simulated predictions to the
space of feasible outcomes.

During simulations, and at the individual level, the likelihood that respondents would not
pick a value meal is multiplied by the likelihood of selecting each of the a la carte items
given non-choice of the value meal.

Option 3:

This approach is just like Option 2, except that rather than model the a la carte choices as a
series of 9 binary logits, we collapse these binary outcomes into three dependent variables
representing all feasible combinations of specific items:

Dependent variable 1: (all combinations of burger choices)
Dependent variable 2: (all combinations of fries choices)
Dependent variable 3: (all combinations of drinks choices)

Note that each of these collapsed dependent variables has 23 = 8 possible outcomes.  By
using counting analysis, we may find that some of these 8 outcomes were never chosen
(for example, it's highly unlikely that any respondent would choose three burgers, one
from each restaurant).  If that is the case, we may decide we have enough evidence to
code a collapsed dependent variable with fewer than 8 outcomes.  This restricts the model
to only the feasible outcomes, and should lead to improved accuracy.  Note that by doing
so we assume the non-observed outcomes in the sample also have zero likelihood of
choice within a new sample.
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This approach simplifies the menu to 4 dependent variables in total (instead of 10): the
three directly above, as well as the primary choice of whether to purchase a value bundle
or not.
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6.4 Example #3
In the previous section on counting analysis, we described a way to examine whether pairs of items
on the menu appear to be substitutes or complements (by comparing the actual joint likelihood of
choice to the expected joint likelihood).  We discuss this topic further in this example.

One way to code the data for this menu is to consider that there are 22 separate checkboxes. 
Thus, we have 22 dependent variables each assuming either code 1 or 2 (1=chosen; 2=not chosen).
 We could build 22 separate binary logit/HB models, where each model predicted the outcome of
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one checkbox as a function of the desirability of the food item for that checkbox, its price, and any
significant cross-effects.

However, if we realize (either a priori or by examining the data via counts) that there are options
on the menu that are very strong complements, then it may make sense (after collecting the data)
to recode a few binary dependent variables items into a single dependent variable representing all
feasible combinatorial outcomes.  For example, hamburger patties and hamburger buns are very
complementary.  It would seem very strange for a person to purchase hamburger patties without
also buying the buns.  The new 4-level dependent variable is coded as follows:

1 = Hamburger patties
2 = Hamburger buns
3 = Hamburger  patties and  hamburger buns 
4 =  No hamburgers or buns

The act of grouping strongly complementary menu items into categories of a single dependent
variable can lead to more accurate market simulation models.  It more formally captures the
complementary synergies among items.

Imagine that we performed counting analysis and across 800 respondents and 8,000 tasks find that
no task (or very few tasks) ever reflected code 1 of the collapsed 4-level dependent variable
directly above (Hamburger patties only).  If we were willing to make the assumption that the
likelihood of observing that outcome was zero in future market simulations, we could recode the
dependent variable with just three outcomes (and delete as outliers any tasks that didn't result in
these three codes):

1 = Hamburger buns
2 = Hamburger patties  and hamburger buns 
3 = No hamburgers or buns

One could extend the same idea to capture the synergies among 3 or 4 items that were strong
complements and/or substitutes.  But, once the number of categories of a collapsed dependent
variable exceeds about 36 or so, this approach could tax the model in terms of numbers of
parameters to be estimated and probably is  counterproductive.

You might wonder what would happen if two items were strong substitutes or complements, and
we neglected to recognize this and collapse the items into a single dependent variable.   When
running counts analysis, you would probably recognize that there was a strong cross-effect for the
price of hamburger patties affecting the choice of buns (and perhaps vice-versa).  When including
those cross-effects in the HB models, the substitution patterns would be enhanced.  But, perhaps
more importantly, HB provides utility parameters at the individual level, and respondents who
purchase hamburger patties probably also purchase hamburger buns.  Respondents who don't
purchase hamburger patties also probably don't purchase hamburger buns.  Capturing such
heterogeneity via HB helps ensure that the market simulator reflects complementary and
substitution effects among items on the menu.

There are many other pairs or triads of complementary items that could be considered in addition
to the one we identified:
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Strong Complements:
Hotdogs and hotdog buns
Tortilla chips and salsa
Mustard and ketchup and relish (a triad)
Steaks and steak sauce

Strong Substitutes:
1 quart milk and 1 gallon milk
6-pack soda and 12-pack soda
1 quart orange juice and 1 gallon orange juice
6-pack beer and 12-pack beer

We should point out that if a menu item is included as an element of multiple categories of the
same dependent variable, when market simulation predictions are made, the total likelihood of
choosing that item is the sum of the probabilities of the categories of the dependent variable that
include that item.  Therefore, it would be incorrect to represent an item as an element of categories
of two or more dependent variables!  This would lead to double-counting the probability of choice for
that item in MBC.
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6.5

Combinatorial Dependent Variable Coding
Suggestions
We have discussed the benefits of considering if groups of items on your menu seem to be
complementary or substitutable, and to consider collapsing multiple binary choices (from either
the entire menu or a subset of the menu) into a single dependent variable.  For example, eight
separate items on a subset of a restaurant menu all from the sandwiches category might be

collapsed into a single dependent variable.  Although there are 28 = 256 possible ways to choose
among eight sandwiches on the menu, perhaps only 10 combinations of sandwich choices were
ever chosen with enough frequency to worry about accounting for in the model.  Perhaps there
are a very few observations of other combinations beyond those 10 most frequent combinations. 
In this example, it's quite probable that the 10 most frequent combinations of choices of
sandwiches represent more than 98% of all sandwich combinations ever chosen.  What we might
think about doing is to treat these very infrequent remaining sandwich choice combinations as
outliers, and to drop these tasks altogether.  It's quite possible that many or most of the dropped
tasks actually were outliers: responses made at random or due to individual response error. 
Researchers regularly discard outliers in other market research data and obtain better
representation of the true population distributions.  Perhaps by discarding combinatorial choice
outliers (by dropping such tasks) we can leverage the power of combinatorial dependent variable
coding, keep the number of categories in each collapsed dependent variable to a much more
manageable number, remove outlier tasks and noise, and thus obtain better overall predictions.

When using combinatorial dependent variable coding, it is helpful for reporting purposes within
the market simulator to aggregate across multiple categories using Netted Variables, thereby
constituting the choices back to their original categories from the menu.  Thus, rather than
reporting that the choice of Fries is accounted for by multiple categories of a combinatorial
dependent variable, a single Fries netted variable is reported that automatically sums across those
multiple categories.
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6.6 Conceptualizing the Model Summary

Keep these guidelines in mind:

· If there are mutually exclusive choices on the menu (e.g. radio buttons forcing
exclusive choices among multiple options), make sure these are coded as a single
categorical dependent variable.  For example, the choice among three value meals vs.
no value meals in Example 2 should be coded as a single dependent variable with four
outcomes.  It would be a mistake to code the mutually exclusive choice among the
three value meals as three binary (on/off) dependent variables.

· Enumerate the total possible ways that respondents can complete the menu (or
subsets of a menu).  If there are about 36 or fewer possible ways that were actually
observed in the data with significant frequency, you should consider modeling the
menu selection as a single model that assumes that the respondent viewed the menu
(or subset of the menu) as a discrete choice (MNL) among these possible alternatives.

o Consider whether some items on the menu are strong complements or
substitutes with other items on the menu (counting analysis helps assess this).  If
so, consider recoding the data into a single dependent variable representing the
unique possible combinations of those menu items.   Again, if none (or very few)
of the respondent tasks ever reflect certain chosen combinations, you might
decide to omit those categories in the collapsed dependent variable and drop
such outlier responses.

· If the choice of an item on the menu is conditional on another item either being
chosen or not chosen, then it can improve the accuracy of the resulting simulator if a
nesting structure is specified.  In a nesting structure, some dependent variables are
conditional on respondents first selecting or rejecting another item on the menu.  In
Example 2 shown previously, we may specify that the choice of a la carte items was
conditional upon respondents first rejecting all value meals.  Imposing nesting
structures can ensure that the model formally recognizes that certain menu choice
combinations are not feasible.
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6.7

Independent Variables: Generic or
Alternative-Specific
In the previous section on counting analysis, we discussed coding independent variables as linear,
log-linear, and part-worth (dummy coded).  In this section, we discuss whether independent
variables should be parameterized as generic or alternative-specific.  We describe it conceptually
here, and then show how to use MBC software to perform the steps in the Specify Models section
that follows.

To help us describe the difference between generic and alternative specific independent variables,
let's consider a simple CBC problem, with three sandwich options (Hamburger, Chicken Sandwich,
and Fish Sandwich) at different prices (Figure 5.4).  (Our discussion of this CBC problem is directly
applicable to MBC analysis)  For ease of discussion, let's assume that the prices for all three
sandwiches take on just three variations:

Level 1:  $2.00
Level 2:  $2.50
Level 3:  $3.00

Further assume that we have decided to model price as a linear function.  In CBC and MBC analysis,
we recommend centering quantitative variables such as price when estimating linear terms (and
giving the centered prices a range of 1.0).  Therefore, the values -0.5, 0.0 and 0.5 are used to
represent $2.00, $2.50, and $3.00.

Under the standard MNL model formulation for this CBC task, the simplest model (with fewest
parameters to estimate) assumes main effects.  A generic price function is captured, indicating
respondents' sensitivity to price changes (holding sandwich type constant).  This is coded in the
independent variable (X matrix) as three rows (alternatives) with three columns (independent
variables):

A    B    C
0    0   -0.5
1    0    0.5
0    1    0.5

We've labeled the columns A, B, and C.  Column A is a dummy-coded column that when submitted
to logit estimation captures the utility weight of Chicken Sandwich, and column B is a dummy-
coded column to capture the utility of Fish Sandwich.  To avoid linear dependency, the utility of
Hamburger has reference value of zero.
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C is a column reflecting the zero-centered price for the sandwich alternatives, and captures a
generic price effect (that applies commonly across the three sandwich types).

It's common for researchers to investigate (via 2 log-likelihood tests in aggregate logit) whether the
assumption of a generic price effect holds, or whether the model fit may be significantly improved
by capturing alternative-specific price effects (e.g. the independent price effect for each sandwich
type).  Alternative-specific price effects may be captured by coding price separately (as unique
columns) for each alternative:

A    B    C    D    E
0    0   -0.5  0.0  0.0
1    0    0.0  0.5  0.0
0    1    0.0  0.0  0.5

Columns A and B are unchanged from our earlier example, as the only differences will be found in
the way we parameterize the prices.  Rather than capturing price as a single column, we have
distributed price across three separate columns (C, D, and E), corresponding to each of the three
sandwich alternatives.  We've bolded and underlined the three prices for each alternative in
column C.  In the first row, column C contains the price for Hamburger (-0.5).  Column D captures
the price effect for Chicken Sandwich, and it does not apply to row 1 (the Hamburger row).  When
a price doesn't apply, it is specified at its center of gravity (0).

Specifying price variables (or other independent variables other than price) as alternative-specific
typically increases the fit of the model, but at the expense of requiring more parameters to
estimate.  When you use MBC software to specify models, such as the choice of sandwich on the
menu, you may choose whether to assume that independent variables have generic effects on
alternatives or alternative-specific effects.  We strongly encourage you to investigate (via 2 log-
likelihood tests using the aggregate logit routine included in MBC) whether the increased model fit
due to alternative-specific price effects is large enough to justify the increased number of
parameters in the model.  Logit models often benefit from many alternative-specific effects;
whereas HB models sometimes are hindered by them, leading to overfitting.

For each dependent variable, MBC asks you to specify which independent variables to include in
the model, and how each independent variable should be coded: linear, log-linear, or part-worth
coded.  For dependent variables that are multi-level categorical, such as the choice of sandwich
(1=Hamburger, 2=Chicken Sandwich, 3=Fish Sandwich), MBC asks you to pick the independent
variables to use, and the way in which you specify the effects indicates whether they are generic or
alternative-specific.   In a subsequent step, you are given the opportunity to ask MBC to collapse
the effect of different independent variables into a common variable and generic effect.  (Using

the  icon).

For example, consider that we have used MBC to model the choice of sandwich (Hamburger,
Chicken Sandwich, or Fish Sandwich).  For each category of the dependent variable (1=Hamburger,
2=Chicken Sandwich, 3=Fish Sandwich) MBC has asked us to indicate which independent variables
are to be included, along with their functional form (we've specified linear).  We indicate
Price_Hamburger, Price_ChickenSandwich, Price_FishSandwich as the independent variables
associated with each of the categories of the dependent variable.  MBC initializes the following
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design matrix, with alternative-specific price effects (you can click the Preview Design button to
view how MBC codes the independent variable matrix):

A    B    C    D    E
0    0   -0.5  0.0  0.0
1    0    0.0  0.5  0.0
0    1    0.0  0.0  0.5

Let's say that we would like to assume that the price effect doesn't differ between Hamburger and
Chicken Sandwich (alternatives 1 and 2), but is different for Fish sandwich (alternative 3).  We
select columns C and D of the independent variable matrix and ask MBC to collapse those two
columns as a generic effect.  First, MBC makes sure the columns are coded in the same way (linear,
log-linear, or part-worth). Because they are both linear in this case, MBC looks at the assigned level
values associated with Hamburger and Chicken Sandwich, and re-centers the prices for Hamburgers
and Chicken Sandwiches on a common zero-centered scale (they already were on the same scale in
our example, so no change is necessary), and then MBC collapses the values of the rescaled
elements for columns C and D:

A    B   CD    E
0    0  -0.5   0.0
1    0   0.5   0.0
0    1   0.0   0.5

We have labeled the collapsed column "CD."  If we wanted to capture price as a generic factor
across all three sandwich alternatives, we could ask MBC to collapse columns C, D, and E.  MBC
software first puts the prices for Hamburgers, Chicken Sandwiches, and Fish Sandwiches on a
common zero-centered scale, and then collapses the corresponding (rescaled) elements of
columns C, D, and E.

A    B   CDE
0    0  -0.5
1    0   0.5
0    1   0.5

We have described how MBC software can parameterize all independent variables as alternative-
specific.  This is an expensive way to build models (large number of parameters to be estimated),
but it leads to the potential of greater model fit if indeed the effect of independent variables is
different for each category of the dependent variable.  MBC allows the researcher to select which
columns of the X matrix to collapse as generic effects across specific categories of the dependent
variable.  One can investigate different ways to parameterize the model that will result in very little
loss in model fit, but reduce the number of parameters to be estimated.  This work is a relatively
manual process, done using MBC's aggregate logit routine, and with 2 log-likelihood testing.
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7 Building Models (Specify Models Tab)

7.1 Specify Models Tab
In this section, we take the theory we introduced in the last section and describe how to put it into
practice: how to use MBC software to specify (build) different models that predict choices on the
menu.  You specify models involving independent variables that predict each dependent variable. 
For each dependent variable, you'll select which independent variables to use, and how they
should be coded (linear, log-linear, or part-worth).

We'll begin with the small example introduced earlier.  Respondents can choose among three
options, each with varying prices across the tasks:

q Hamburger  $1.99
q Fries  $1.39
q Drink $1.19

The data format is shown below (Figure 6.1).  The three independent variables are Pr_Ham (price
of the hamburger), Pr_Fries (price of fries), and Pr_Drink (price of drink).  These price variables can
each take on 5 possible values, from lowest to highest price.  Following the independent variables
in the data file are the three dependent variables: Ch_Ham (choice of hamburger), Ch_Fries (choice
of fries), and Ch_Drink (choice of drink).  The dependent variables are coded as 1=chosen and
2=not chosen.

After selecting this data file within MBC, you then will have classified and labeled the independent
variables and dependent variables from the Variables tab (Figure 6.2).  These steps were described
previously in this documentation.
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Because there are three dependent variables, we will build three separate models: one model (a
sub-model) per dependent variable.  When you navigate to the Specify Models tab, you see the
following dialog (Figure 6.3):

Along the left, you see the three dependent variables (Ch_Ham, Ch_Fries, and Ch_Drink).  We'll
begin with the first sub-model (predicting choice of hamburger).  We highlight the Ch_Ham label
with the mouse, and begin adding independent variables (predictor variables) to the sub-model
predicting choice of hamburger.

(In reality, such a simple menu should be modeled using a single dependent variable that coded all 8
possible combinations that could be selected (as shown in the subsequent section of this chapter). 
But, for illustration, we first demonstrate how three sub-models could be built, one predicting choice
of each of the three menu items.)

Let's imagine that after studying counts analysis, we believe choice of hamburger depends on the
price of the hamburger (Pr_Ham) as well as the price of the fries (Pr_Fries), but not the price of the

drink.  Click the Add Row icon ( ) twice (see Figure 6.4, below) to specify the two independent
variables.  Then, select the coding for each of the two independent variables (specify Linear to
keep things simple). 

To see how the specified coding within Figure 6.4 is actually implemented in the design matrix,
click the Preview… (Preview Design Matrix) button.
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The ability to preview the design matrix keeps you informed and in control of the mechanics of
model building in MBC, absent the hassle of so much data processing work.  Analysts using MBC
software should already be familiar with coding independent variable matrices for econometric
models like regression and MNL.  Preview Design Matrix makes the entire process transparent and
reassuring, because you can see exactly how the design matrix is being coded.  

In Figure 6.5, the design matrix for the first respondent is shown (Respondent #1001).  You can
click the right arrow at the upper-left of the dialog to display the design for the next respondent, if
you wish.

The rows are alternatives in the choice task.  Since the dependent variable has two possible
outcomes: chosen/not chosen, each task is formatted with two alternatives.  The first alternative in
each set represents the chosen state, and the second represents the non-chosen (off) state.  The
off state is coded as a row of zeros.  The chosen state is coded with levels describing the
characteristics of the menu item (in this case, the hamburger).  

We capture the desirability of the menu item itself via a dummy-coded Alternative-Specific
Constant (ASC).  Then, the remaining independent variables (prices for hamburger and fries) are
coded as single columns (because we requested linear coding), zero-centered with a range of 1.0. 
Because the prices in this example were equidistant and symmetric, the lowest price (level 1) is
represented by -0.5, and the highest price (level 5) with 0.5.

(If we had chosen to code the price variables as part-worth functions, there would be 5-1 = 4
dummy-coded columns to code the 5 price levels.)

The final column records the respondent choice (the dependent variable), where 1=chosen, and
0=not chosen.
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7.2 Importing Model Specifications

The Variable Codings dialog allows you to specify models by pointing and clicking.  However, some
researchers may prefer to import their model specifications from a .CSV file to better automate the
procedure—especially if a great many dependent variables are involved.

Consider the following model specification that has been manually specified within the MBC
software:

You can create a .CSV file that when imported (by clicking the  icon in the upper-left of the
Variable Codings dialog) generates this same model specification (as if you had clicked all these
settings within the dialog).  Here is the format that generates this model specification.

DV_Index IV_Index Coding Category_1 Category_2 Category_3

17 1 1 1 1 1

17 2 2 1 0 0

17 3 3 0 1 0

17 4 3 0 0 1

17 6 3 1 1 1

17 9 3 1 1 1

The first row (labels) is optional in the .CSV file.

· DV_Index is an index number that indicates which Dependent Variable model is being

specified.  The first variable displayed in the Variables tab (whether an independent

variable or dependent variable) is index #1, the second variable in the data file is index #2,

etc.  In this data file, the first dependent variable is actually variable #17).  More than one

dependent variable index may be included in the file and may be specified in any order.
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· IV_Index is an index number that indicates which Independent Variable is being included in

the model.  As with the dependent variables, we refer to them using indices indicating

their order in the data file (refer to the Variables tab to see the list of variables and their

indices).  In this particular data file, the first Independent Variable is index #1, the second

Independent Variable is index #2, etc.

· Coding indicates which coding to use, where 1=”Part Worth”, 2=”Linear”, 3=”Log-Linear”

and 4=”Excluded”.  (If the independent variable is a Continuous variable, then the coding is

automatically set to “User-Specified” unless you specified it is 4=”Excluded”).

· Category_X indicates which column number (category) in the Variable Codings dialog is

being predicted by the independent variable.  This information is only needed if more than

one category exists in the Variable Codings dialog for the dependent variable.  A “1”

indicates selected and a “0” means not selected.  The number of columns is equal to the

number of categories for the dependent variable (number - 1 if a category has been

marked as the off-state).

Multiple dependent variable models may be imported by continuing to append additional rows
to the .CSV file, for additional dependent variables.  

Any imported models will overwrite existing models.
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7.3

Exhaustive Alternatives (Combinatorial) Coding
Approach
Let's again use the simple example introduced near the beginning of this documentation:

q Hamburger  $1.99
q Fries  $1.39
q Drink $1.19

It is probably better to model this tiny menu as a single dependent variable with eight possible
outcomes rather than three separate binary dependent variables.  Coding the data as a single
dependent variable explicitly considers the combinations of items respondents select.  The
dependent variable may be coded with eight categories as follows:

1= Hamburger & Fries & Drink
2= Hamburger & Fries
3= Hamburger & Drink
4= Fries & Drink
5= Hamburger
6= Fries
7= Drink
8= Nothing (off state)

The Variables dialog should look like Figure 6.6, with Choice as the dependent variable, with eight
categories, and three independent variables Pr_Ham (price of hamburger), Pr_Fries, and Pr_Drink.

A recommended way to code the independent variables is to estimate separate price sensitivities
for each of the three prices of menu items (hamburger price, fries price, and drinks price).  The
Variable Codings grid should look like the following:
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Preview Design Matrix displays:

Alternatively, you could code the price for each of the eight alternatives as eight "user-defined"
continuous variables (within your .csv data file).  You could then read the data file into MBC, and
code these eight independent variables as alternative-specific price variables. This would lead to 15
parameters to estimate, as opposed to the more parsimonious 10 parameters as shown in Figure
6.8. 

While it is true that most every MBC project you do will have too many possible alternatives to
code the entire menu as a single dependent variable with all exhaustive combinations as
categories, you should consider tackling logical sections of a larger menu with the Exhaustive
Alternatives coding approach.  This particularly can be useful if collapsing menu items that are
strong substitutes into all feasible combinatorial outcomes.
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7.4 A More Complex Fast-Food Example

In the next example, we'll use a restaurant study menu, and a model predicting a dependent
variable with 4 mutually-exclusive outcomes.  Consider the fast-food menu shown in Figure 6.9:

We'll demonstrate how to build the model that predicts the choice of sandwiches from the a la
carte section of the menu (indicated by the arrow).  The four possible outcomes of that dependent
variable (Sandwich_Choice) are:

1=choose Deluxe Hamburger
2=choose Chicken Sandwich
3=choose Fish Sandwich
4=no choice

When we click the Specify Models tab, and select the dependent variable Sandwich_Choice, we see
the display in Figure 6.10:
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Figure 6.10 displays a grid, where we select different independent variables to predict categorical
outcomes of the dependent variable (Sandwich_Choice).  The three categories of the dependent
variable shown are the non-off state categories.  The off state is the constant, and is represented by
a row of zeros in the design matrix, and thus doesn't require any additional coding specification
here.

Let's imagine the after studying the counts report, we hypothesized that the choice of sandwiches
was affected by the following independent variables:

Bundle_Discount  (the discount for the value meal combo)
Deluxe_Burger_Price (the price of the deluxe hamburger)
Chicken_Sandwich_Price (the price of the chicken sandwich)
Fish_Sandwich_Price (the price of the fish sandwich)

Our task now is to add those independent variables to the grid, and specify which functional form
to use for each.   To keep things simple, we'll use linear coding for the price variables.

Specifying a Generic Effect across Three Alternatives

First, let's assume that Bundle_Discount has a generic effect on the preference for each of the a la
carte sandwiches.  If the value meal discount is relatively small, there will be an increased
preference for the a la carte sandwiches.  Because we are choosing a generic effect, we are
assuming that the effect of Bundle_Discount on choice of a la carte sandwich does not differ across
the sandwiches, but leads to a uniform increase or decrease in utility for the three options.  Specify
the following as shown in Figure 6.11:

To see the independent variable matrix, click Preview Design Matrix.
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In Figure 6.12, each task is coded with four rows (alternatives).  The fourth row is the no choice
alternative (the off state), and is coded as a row of zeros across the independent variables.   The
desirability of each of the three sandwiches is captured using dummy-coded Alternative-Specific
Constants (ASCs) labeled ASC(Deluxe Hamburger Chosen), ASC(Chicken Sandwich Chosen), and
ASC(Fish Sandwich Chosen).  

The next column, Bundle_Discount (Linear) is a generic effect (because only one column is being
specified to capture a single utility weight that affects all three non-off state categories of the
dependent variable).  The prices are coded as zero-centered, with a range of 1.0.  Thus, the relative
price 0.167 applied to the value meals in the first task affects the choice (in a generic way) of the
three sandwich alternatives.

Specifying Alternative-Specific Effects across Three Alternatives

Let's imagine that we believed that the effect of Bundle_Discount on choice of sandwich was not
generic, but differed depending on the sandwich option.  We could specify three alternative-
specific effects rather than a single generic effect:

Note that we have asked for three independent variables to be coded in the design matrix, and
that each one applies only to one of the sandwich options.  When we click Preview Design Matrix,
we see the resulting alternative-specific coding:
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Note that the Bundle_Discount is represented in three columns, and each column captures a
unique utility weight associated with the effect of value meal discount on each sandwich option.

Collapsing Separate Variables as a Generic Effect

Sometimes, you will want to take multiple independent variables involved in alternative-specific
effects and collapse them into a single generic effect (to reduce the number of parameters
estimated).  We described this back in Chapter 5.

Let's imagine we are predicting the choice of sandwich (Deluxe Hamburger, Chicken Sandwich, or
Fish Sandwich) using three independent variables:

Deluxe_Burger_Price
Chicken_Sandwich_Price
Fish_Sandwich_Price

To specify the separate own-effect of price of each sandwich on each sandwich choice (alternative-
specific effects), we'd use the following configuration within the Variable Codings dialog:

Clicking the Preview Design Matrix displays the resulting alternative-specific coding:
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Note in Figure 6.16 that we are estimating separate utility effects for each of the sandwich prices
(Deluxe_Burger_Price, Chicken_Sandwich_Price, and Fish_Sandwich_Price) on each choice of
sandwich type.  But, if the effect of price on the preference for sandwich types could be assumed
to be essentially equivalent, we could consider saving two degrees of freedom and collapse the
three columns into a single column as a generic price effect.

To collapse separate independent variable columns into a single column, we select Group and
Collapse Variables from the Variable Codings tab (see Figure 6.4).  The Collapse & Group Variables
dialog is displayed (Figure 6.17).

The software suggests a name for the collapsed independent variable (Var1).  To keep things
simple, we'll use that label.  Next, select all three variables from the list to collapse (as we've shown
in Figure 6.17).  Then, click OK.
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The variables that have been grouped into a collapsed factor are shaded grey in the Variable
Codings dialog, and a bracket with the collapsed variable name is shown at the right.

(To un-collapse Var1,  click on the bracket at the far right of the display, and a red-colored "x"
appears that you can select to remove the collapsed variable relationship.)

When you click Preview Design Matrix, you see that the three variables have been collapsed into a
single continuous variable named Var1:

Since the prices differed across the sandwiches (alternative-specific pricing), the prices are mapped
to a common scale and rescaled to be zero-centered with a range of 1.0. 

Collapsing variables to save degrees of freedom is generally recommended for HB analysis,
especially if the separate utility weights don't differ much.  For aggregate logit analysis, alternative-
specific weights and larger models often perform better.
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8 Analyzing MBC Data Using Aggregate Logit

8.1 Analyzing MBC Data Using Aggregate Logit

Throughout this section, we assume the reader is already familiar with standard CBC and aggregate
logit analysis.  Logit analysis uses a gradient search procedure to find a vector of aggregate utilities
that yields a maximum likelihood fit to the data.  In other words, we find a set of average utilities
for the sample that predicts as accurately as possible what respondents actually chose in the
questionnaire.  The independent variables in MBC studies are typically the prices for the menu
items, and the choices on the menu represent the dependent variables.

Logit assumes IIA (Independence of Irrelevant Alternatives) and a choice of a single alternative
from a set of multiple alternatives.  This would seem to make it inadequate for MBC where
respondents can pick from 0 to many options on the menu.  But, we employ some strategies to
enable logit to be applied within an MBC context.  Foremost, we develop a separate logit model to
predict each item's choice.  Thus, if there are 20 items on the menu, we can develop 20 separate
logit models, each with two mutually exclusive outcomes (checked or not checked).  The likelihood
of selecting each item is modeled not only as a function of its own desirability and price, but as a
function of other items' prices as well.  Thus, the series of logit models are interrelated.

(That said, we often look for opportunities to account for multiple items' choices using a single
dependent variable.  For example, the choice among 3 binary items on the questionnaire could be
captured using 8 categories of a single dependent variable.)

We should note that some MBC menus involve options that have three or more mutually exclusive
categories from which to select.  Such dependent variables are readily analyzed using logit.  Other
menus may feature some items that can only be chosen if another item on the menu has been
selected first (a two-stage process).  We may also use logit to model such conditional
dependencies.  Only the tasks where respondents have selected the "trigger" category of the
dependent variable are used to estimate parameters for the conditional dependent variable.
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8.2 Acknowledgments and Limitations
We do not claim that the logit equation with its IIA assumption is the best approach for all MBC
studies.   However, the logit model has proven robust over four decades of application within CBC
and related work within the discrete choice paradigm (e.g. scanner data econometric modeling),
especially when employing disaggregate analysis (i.e. Latent Class and HB).  Our experience so far is
that logit is robust and flexible, able to handle a wide variety of simple to complex MBC studies.  

Elite practitioners and academics might employ other models that outperform our logit-based
approach for certain projects and data conditions.  But, our aim with this MBC software is to supply
a practical tool that empowers skilled conjoint practitioners to do MBC studies, saves them a great
deal of time in the process, is scalable to handle complex MBC problems, and produces good
results each time.  

We don't expect this software to handle all potential MBC modeling situations (just as our CBC
software doesn't handle all potential CBC-like problems), but we hope that it addresses the vast
majority of them.  There may be situations in which consultants will be called upon to conduct
MBC studies that are beyond the reach of this commercial software program.  We encourage our
MBC users to study this manual, receive training, and become skillful in using the software.  When
the situation exceeds the capabilities of the software, we recommend that you turn to other tools,
or be ready to hire able consultants to assist you.
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8.3

Testing Different Model Specifications with
Aggregate Logit
Even if you plan to use HB for your final simulation models, we recommend you test preliminary
specifications using MBC's aggregate logit tool.  Aggregate logit is much faster than HB, and it
provides well-known statistical tests for investigating which variables to include, and whether to
specify quantitative variables as linear, log-linear, or part-worth functional forms.  Counting
analysis provides guidance regarding which variables and functional forms to try in aggregate logit.
 Once you have tested different specifications, you can employ the best models within HB
estimation.

T-test

Each logit run is accompanied by a report showing the effects (utilities or coefficients) for
each independent variable, the standard error, and a t-ratio.  The t-ratio is equal to the
effect divided by the standard error, and a magnitude of 1.96 indicates a significant
parameter at 95% confidence.  A t-ratio of magnitude 1.645 or greater reflects at least 90%
confidence.

For part-worth coded variables, k-1 parameters are estimated, where the reference level is
the first level of the attribute.  The reference level is set at zero, and thus the t-ratios for
levels of a part-worth coded variable test the utility differences between each level (other
than the first) vs. the first level.

Each aggregate logit solution involves an overall fit statistic called log-likelihood.  Log-likelihood is
the sum of the natural logs of the likelihoods from each choice task.  The best possible log-
likelihood is zero (if each respondent's choices were perfectly predicted by the aggregate logit
utilities).  Generally, there are thousands of choice tasks, and the log-likelihood will be a large
magnitude negative number, such as -5,258.23.

2 Log-Likelihood Test

The 2 log-likelihood test is commonly used to compare two logit models in terms of fit to
the data.  Let's imagine that we are debating whether to include an independent variable
such as a particular cross-effect in one of our sub-models.  We could run the model (a)
without the cross-effect (record the log-likelihood: LLa) and then run it again (b) including

the cross-effect (again recording the log-likelihood: LLb).

Two times the difference in log-likelihoods between the models:

2(LLb - LLa) 

is distributed as Chi-Square, with degrees of freedom equal to the number of additional
parameters (terms estimated) included in the second model (b).  If the cross-effect is a
price variable with 5 levels, then this would involve 5-1 = 4 additional parameters to
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estimate (dummy-coded, part-worth functional form).  With a linear or log-linear form, the
inclusion of the cross-effect adds just a single parameter to the model (DF=1).  To see if the
Chi-Square value obtained indicates a statistically significant improvement in the model,
we may refer to a standard Chi-Square table available in most any statistical text book.  Or,
we may also use Excel's Chi-Square Formula:

=CHIDIST(Chi-Value, DF)

For example, let's assume that two times the difference in log-likelihood for the two
models above is 10, and there are 4 degrees of freedom in the test.  If we specify the
following in Excel: 

=CHIDIST(10,4)

Excel returns: 0.040428, which is the p-value, meaning that there is a 4.04% likelihood that
an improvement in fit this large would be observed by chance.  In other words, we are
100% - 4.04% = 95.96% confident that the difference in fit would not have occurred by
chance.

Researchers are accustomed to using 95% as the standard for determining significance,
usually because they fear declaring a difference/relationship when a
difference/relationship does not exist (a "false positive").  But, with MBC modeling, we are
typically testing whether to include an additional variable in the model or we are
comparing the difference in fit between two functional forms.  Including a variable in the
model that actually turns out to be worthless is actually not such a devastating thing for
market simulation accuracy.  It will add a little bit of time to the estimation process, and
may add a little bit of noise if the variable is indeed worthless.  Therefore, we encourage
you to relax the 95% confidence rule to something like 90% or 80%.  If the data suggest with
80% confidence that a parameter increases the fit of the model (and it has logical face
validity, with the coefficients pointing in the right preference direction), it probably makes
sense to include it in the model.  You stand better odds that it will add value than not (4:1
odds, given 80% confidence).  And, if it doesn't add value, it typically won't harm you much
in terms of predictive accuracy.
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8.4 Using the MBC Software to Perform Logit Analysis

For each Dependent Variable in your dataset you should already have specified a model (selected
the Independent Variables that predict Dependent Variables) as described previously.  During the
model specification process, you should have selected the appropriate functional form (part-
worth, linear, log-linear) and you should have previewed the design matrices to check the
suitability of the coding.

Under the Specify Models tab, there are two sub-tabs with dialogs to be concerned about when
preparing to run Logit Analysis: Model Settings, and Logit Settings.

Model Settings

Constraints:  When you want to force a utility (effect) to be positive or negative, or if you
want to force level 2 to have higher utility than level 1 (for a part-worth function), you
specify constraints.  Constraints can be useful to ensure that the model conforms to
expectations, and can be used to avoid relationships that lack face validity.  But, constraints
almost always reduce the fit of your model (if an out-of-order relationship needs to be
constrained).  Sometimes, constraints can reduce the predictive validity of your simulation
models, so you should be careful when imposing constraints.

Include Alternative-Specific Constants:  By default, MBC software inserts a part-worth
(dummy-coded) categorical variable to account for the intrinsic value of the menu options
(holding prices constant).  These terms are labeled "ASC" in the Preview Design Matrix and
in the logit utility report.  Occasionally you might need to remove the ASCs from your
model, for example, with unlabeled designs.  An unlabeled design is where the product
concepts have randomized positions within the task, and there is no fixed description that
identifies each item.  Rather, other independent variables taking on varying levels (of
brand, color, speed, etc.) fully describe the differences among concepts.  The classic
example of an unlabeled design is the common CBC task.
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8.5 Logit Settings
Logit uses a gradient-search procedure to maximize the fit or likelihood of the data.  You will rarely
need to modify the default settings.

Step Size: The gradient search procedure has a default (1) that controls how quickly to
"step" (modify the utilities from the previous iteration) in the direction specified by the
gradient vector.  Under rare occasions, you may need to decrease the step size to ensure
proper convergence.

Maximum Number of Iterations: Typically, aggregate logit for MBC problems converges
within about 4 to 20 iterations.  If you reduce the Step Size, it will take more steps to
converge, but the resulting solution might be slightly more precise.  You should rarely need
to change this setting.

Convergence Limit: The gradient search process stops when the last iteration fails to
improve the fit to the data by enough to make it worthwhile to continue.   The
convergence limit of 0.00001 leads to a high degree of precision.  Improvements in the log-
likelihood beyond this degree of precision will have essentially no practical effect on your
models.

Use respondent weights: If you have selected a .csv file containing weights on the Data Files
tab, then you may use these to weight respondents differentially.   Respondents with
relatively larger weights will exert greater influence on the final utilities (effects).  The
weights are applied during the utility estimation process for aggregate logit.
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8.6 Estimate Models
After you have specified Model Settings and Logit Settings you are ready to estimate your logit
models.  MBC datasets typically involve choices of multiple items.  You estimate a separate logit
model to predict the outcomes of each Dependent Variable.  Thus, you will typically have more
than one model to estimate.

When you click the Estimate Model tab, you see a list of Dependent Variables, with a logit  or an

HB  Icon displayed next to each.

For example, to run the Logit model to predict Dependent Variable Ch1, click the first Estimate link
shown in the first row of this table.  To run the Logit model to predict Dependent Variable Ch3,
click the third Estimate link in the third row of this table (indicated with arrows below).

After you click the Estimate link, estimation begins.  Logit is extremely fast, and a report is almost
immediately displayed to the screen:
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The report shows that it took just 5 iterations and 0.20 total seconds to obtain convergence.  (HB
runs will typically take 40,000 iterations and about 5 to 15 minutes to finish, so this is comparably
fast indeed!)

The log-likelihood for this model and the null model (which assumes no information, or utility
scores of zero) are given.  Rather than take time here to describe each of the statistics listed in the
report, we refer the interested reader to our Latent Class documentation (which may be
downloaded for free from our Technical Papers library), which describes RLH, Percent Certainty,
Consistent Akaike Information Criterion, Chi-Square, and Relative Chi-Square.
  
There are a few key statistics to pay attention to:

Log-likelihood for this model.  This fit statistic is useful for comparing models that employ
different variables or different functional forms of variables.  Log-likelihood fits that are
closer to zero are better when comparing models.  If models you are comparing include a
different number of parameters estimated, then you will need to apply the 2 log-likelihood
test, as described earlier in this section.

Percent Certainty.  Intuitively, this measure feels quite a bit like the R-squared from
regression analysis.  Percent Certainty indicates the percent of the way between the Null
model and the perfect model (where the Null model is one that assumes flat utilities with
zero information).  If your Percent Certainty is near zero, then this indicates that your
model is not doing a very good job at predicting respondents' choices.

Effect.  This is the utility or coefficient associated with each term in your model.  If using
linear or log-linear price terms, then we generally expect negative signs for own-effects and
positive signs for cross-effects between items that are substitutable.  If using part-worth
specifications, then K-1 effects are given for a K-level independent variable (resulting from
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dummy-coding).  The utility of the first level of the independent variable is not shown, and
is set to zero.  The effects of the second through Kth levels are shown (with respect to the
first level set to zero).  Thus, an effect of 0.1 for the second level of a part-worth coded
independent variable means that it is worth 0.1 utiles more than level 1.

Standard Error.  This quantifies the precision of each of the effects for the independent
variables.  Precision is improved when there is little to no correlation between
independent variables in the design matrix.  With most MBC studies, standard errors from
aggregate logit should be about 0.10 or less.  If your standard errors are much larger than
this, you should investigate why you are obtaining relatively low precision of the utility
estimates.  Common problems include small sample sizes and poor experimental designs
(with correlation among independent variables).

T-ratio.  This is simply the Effect divided by the Standard Error.  It indicates whether the
Effect is significantly different from zero.  T-ratios with absolute magnitude of 1.96 or
greater reflect at least 95% confidence that the effect of the independent variable is non-
zero.  A t-ratio of magnitude 1.645 or greater reflects at least 90% confidence.  You may
wish to prune your models of Effects that have less than 80% significance, to avoid
overfitting (but this recommendation is subject to debate and circumstances). 
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8.7 Managing Your Logit Runs
Each logit run you estimate is stored within your project folder in a subfolder named Utilities, and
may be viewed and managed from the Utility Runs tab.  The run is labeled with a combination of
the Dependent Variable name, logit or HB, and the date the run was created (you may rename
each run if you like).

You can Rename and Delete runs.  You can review the settings and results (average utilities, fit,
standard errors, etc.) by highlighting a run in the table.  You can also export the contents of a utility
run to a .csv file by clicking Export Utilities….

When you conduct market simulations, you select a utility run to use for predicting categories of
each dependent variable.  Thus, you could have multiple candidate runs stored and available for
using in the market simulator.
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9 Analyzing MBC Data Using HB

9.1 Analyzing MBC Data Using HB
In the previous section, we illustrated how to use aggregate logit to analyze MBC studies.   We
recommended that you use the faster logit routine to investigate different model specifications
prior to running the longer HB estimation.  We also acknowledged that a logit-based approach may
not be the best overall way to analyze MBC data.  In this section, we illustrate how hierarchical
Bayes (HB) may be used to analyze MBC data.  The HB approach we use is a disaggregate, logit-
based approach that estimates parameters at the individual level.  It utilizes the same algorithms as
our popular CBC/HB software program.

Researchers familiar with CBC know that the literature is replete with evidence that HB is superior
to aggregate logit for conjoint analysis.  Our research with MBC so far suggests that HB may have a
slight edge over aggregate logit with MBC data, but that both approaches lead to good results. 
Given our preliminary findings, it would be tempting to opt for aggregate logit as the utility files are
tiny, and the market simulations using aggregate are therefore extremely fast.  But, HB has two key
benefits for MBC studies:

1. If market simulations are to be done by different market segments (banner points), the
availability of individual-level data means we can simply "slice and dice" the sample during
simulations and easily report the results by segment.  With aggregate logit, one would have
to go back and re-estimate separate models for different market segments, then conduct
separate simulations for each segment.

2. HB utilities are required for combinatorial choice simulations.  Combinatorial simulations
predict the most likely combinations of items that are picked together, rather than just
describing what percent of the sample is predicted to pick each menu item.

To summarize, we recommend using aggregate logit to investigate different model specifications
(i.e. testing which independent variables to include, and selecting functional form), but using HB
results for conducting market simulations.  But, if you are not going to make separate predictions
by segment, and if you have no need for combinatorial choice simulations, then aggregate logit will
often serve you quite well for MBC analysis and simulations.

(Note: The model specification most appropriate for logit analysis is not necessarily the specification
that works best under HB analysis.  Logit analysis often benefits from larger models with more terms,
whereas HB often benefits from more parsimonious model specification.   One often selects generic
terms, or linear or log-linear specifications when using HB.)
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9.2 Using the MBC Software to Perform HB Analysis

For each Dependent Variable in your dataset you should already have specified a model (selected
the Independent Variables that predict Dependent Variables).  During the model specification
process, you should have selected the appropriate functional form (part-worth, linear, log-linear)
and you should have previewed the design matrices to check the suitability of the coding.

Under the Specify Models tab, there are two sub-tabs with dialogs to be concerned about when
preparing to run HB Analysis: Model Settings, and HB Settings.

Model Settings

Constraints:  When you want to force a utility (effect) to be positive or negative, or if you
want to force level 2 to have higher utility than level 1 (for a part-worth function), you
specify constraints.  Constraints can be useful to ensure that the model conforms to
expectations, and can be used to avoid relationships that lack face validity.  But, constraints
frequently reduce the fit of your model (if an out-of-order relationship needs to be
constrained).  Sometimes, constraints can reduce the predictive validity of your simulation
models, so you should be careful when imposing constraints.

Include Alternative-Specific Constants:  By default, MBC software inserts a part-worth
(dummy-coded) categorical variable to account for the intrinsic value of the menu options
(holding prices constant).  These terms are labeled "ASC" in the Preview Design Matrix and
in the logit utility report.  Occasionally you might need to remove the ASCs from your
model, for example, with unlabeled designs.  An unlabeled design is where the product
concepts have randomized positions within the task, and there is no fixed description that
identifies each item.  Rather, other independent variables taking on varying levels (of
brand, color, speed, etc.) fully describe the differences among concepts.  The classic
example of an unlabeled design is the common CBC task.
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9.3 HB Settings
HB involves a number of settings that govern the computation:

Number of iterations before using results:  HB usually requires thousands of iterations to
obtain good estimates of respondent utilities and of the population means and
covariances.  The preliminary iterations are the "burn-in" iterations that are not actually
used in the final utility run, but are undertaken as a means to obtain convergence. 
Typically, 20000 or more iterations should be performed before convergence is assumed in
MBC.  Only after a run is completed can one examine the history of part-worths estimated
across the iterations to assess if the model indeed has converged to a relatively stable
solution.  The part-worth utilities should oscillate randomly around their true values, with
no indication of trend.  If convergence is not obtained, then you will want to re-run the HB
estimation and specify a larger number of initial iterations.  (Note: larger models,
particularly those that use part-worth coded price parameters can take a long time to
converge, sometimes more than the default settings in the software.)

Number of draws to be used for each respondent:  Each iteration, after convergence is
assumed, leads to a candidate set of utilities for each respondent.  With the MBC software,
we have chosen to provide the option to simulate respondent choices based on these
individual draws.  Given current hardware, we have found that using more than about 200
draws per respondent can result in lengthy market simulation runs, and the extra time
required to employ more draws is probably not worth the extra effort.  Therefore, we
suggest a default number of draws per respondent of 200.

Skip factor for saving random draws:  The skip factor is a way of compensating for the fact
that successive draws of the betas are not independent. A skip factor of k means that
results will only be used for each kth iteration.  It is useful to use every kth draw for each
respondent to capture more completely the distribution of draws that characterize each
respondent's preferences.  The utilities can oscillate in rather lengthy wave-like patterns,
with cycles measured in the thousands or tens of thousands of iterations, so we
recommend using a large skip factor for saving draws.  Convergence in MBC may
sometimes take longer than standard CBC problems, so we recommend saving periodic
iterations over the duration of about 20000 or more candidate iterations (after obtaining

convergence).  By default we suggest skipping every 100th iteration for HB runs within MBC
software (note that the recommendations within CBC/HB software are different, since we
typically focus on point estimates rather than draws within CBC/HB).  

Skip factor for displaying in graph: Indicates the skip factor employed when deciding for
how many draws the results should be displayed on the graph. 

Skip factor for printing in log file: This controls the amount of detail that is saved in the
studyname.log file to record the history of the iterations.

Prior degrees of freedom: This value is the additional degrees of freedom for the prior
covariance matrix (not including the number of parameters to be estimated), and can be
set from 2 to 100000. The higher the value, the greater the influence of the prior variance
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and more data are needed to change that prior. The scaling for degrees of freedom is
relative to the sample size. If you use 50 and you only have 100 subjects, then the prior will
have a big impact on the results. If you have 1000 subjects, you will get about the same
result if you use a prior of 5 or 50. As an example of an extreme case, with 100 respondents
and a prior variance of 0.1 with prior degrees of freedom set to the number of parameters
estimated plus 50, each respondent's resulting part worths will vary relatively little from
the population means. We urge users to be careful when setting the prior degrees of
freedom, as large values (relative to sample size) can make the prior exert considerable
influence on the results.

Prior variance: The default is 1 for the prior variance for each parameter, but users can
modify this value. You can specify any value from 0.1 to 99. Increasing the prior variance
tends to place more weight on fitting each individual's data, and places less emphasis on
"borrowing" information from the population parameters. The resulting posterior
estimates are relatively insensitive to the prior variance, except a) when there is very little
information available within the unit of analysis relative to the number of estimated
parameters, and b) the prior degrees of freedom for the covariance matrix (described
above) is relatively large.  (Note that CBC/HB software uses a default prior variance of 1. 
We also employ a prior variance of 1 in MBC studies.

Note: we use the prior covariance matrix as recommended by Professor Peter Lenk and
described in the CBC/HB software documentation, Appendix G.  Part-worth and ASC
parameters are dummy-coded, and follow Lenk's recommended prior covariance structure.
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9.4 Estimate Models
After you have specified Model Settings and HB Settings you are ready to estimate your HB models.
 MBC datasets typically involve choices of multiple items.  You estimate a separate HB model to
predict the outcomes of each Dependent Variable.  Thus, you will typically have more than one
model to estimate.

When you click the Estimate Model tab, you see a list of Dependent Variables, with a logit  or an

HB  icon displayed next to each.

For example, to run the HB model to predict Dependent Variable Ch1, click the first Estimate link
shown in the HB section of this table.  To run the HB model to predict Dependent Variable Ch3,
click the third Estimate link in the HB section of this table (indicated with arrows below).

After you click the Estimate link, the estimation begins.  Multiple estimations can be run
simultaneously (by clicking on multiple Estimate links), and this will take advantage of your
hardware's multi-core processor.  
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Warning: When multiple HB runs are running simulataneously (requires multi-core preocessors),
it is quite possible for some hardware configurations to experience higher than normal processor
temperature, sometimes leading to a sudden shutdown of your system or system freeze.  This is
more likely to occur on laptops, that typically have limited ventillation and smaller heat sinks
than towers/desktops.  On some systems, there are power options or battery saving options (in
the case of laptops) that can help you slow the processor rate.  Consult your hardware manuals
and IT manager for more information.

HB estimation takes much longer than logit estimation, and it typically will take from 5 to 15
minutes to complete an HB estimation for each of your models.  

In the example above, four HB runs are currently simultaneously running.  A Cancel link is provided
to cancel any run.  Previously, four logit models were completed (one for each dependent variable.
  
There are a few key statistics to pay attention to:

Pct. Cert. and RLH.  These two measures are derived from the same likelihood
computation, so they capture the same thing, but on a different scale.  The RLH is the
"Root Likelihood" and is the geometric mean of the likelihoods across all tasks and all
respondents.  Thus an RLH of .50 means that the logit model predicts individual choices at
a 50% likelihood.  However, if there were only two alternatives in the model (chosen vs.
not chosen), then this prediction rate would be no better than chance, since the likelihood
of a model with no information would typically be ½ or 0.5.  Percent Certainty indicates the
percent of the way between the Null model and the perfect model (where the Null model
is one that assumes flat utilities with zero information).  If your Percent Certainty is near
zero, then this indicates that your model is not doing a very good job at predicting
respondents' choices.

The Pct. Cert. and RLH measures convey essentially the same information, and both are
good indicators of goodness of fit of the model to the data. The choice between them is a
matter of personal preference.

Avg  Variance and Parameter RMS: The final two statistics, "Avg Variance" and "Parameter
RMS," are also indicators of goodness of fit, though less directly so. With a logit model the
scaling of the part worths depends on goodness of fit: the better the fit, the larger the
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estimated parameters. Thus, the absolute magnitude of the parameter estimates can be
used as an indirect indicator of fit. "Avg Variance" is the average of the current estimate of
the variances of part worths, across respondents. "Parameter RMS" is the root mean
square of all part worth estimates, across all part worths and over all respondents.  As
iterations progress, all four values (Pct. Cert., RLH, Avg Variance, and Parameter RMS) tend
to increase for a while and then level off, thereafter oscillating randomly around their final
values. Their failure to increase may be taken as evidence of convergence. However, there
is no good way to identify convergence until long after it has occurred. For this reason we
suggest  planning a large number of initial iterations, such as 10,000 or more, and then
examining retrospectively whether these four measures have been stable for the last
several thousand iterations.

Viewing the history of Mean Betas across the burn-in and used iterations is one of the best way to
assess how well the model has converged.  In the graphic below, the first 10000 iterations were
initial/burn-in iterations, and the second 10000 (in the white region at the right) are the used
iterations.  Although there is some oscillation in the betas, there is certainly no remaining trend
after the first 1000 or so iterations have been completed.

A graph is available for each of the runs you have run in the queue.
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9.5 Managing Your HB Runs
Each HB run you estimate is stored within your project folder in a subfolder named Utilities, and
may be viewed and managed from the Utility Runs tab.  The run is labeled with a combination of
the Dependent Variable name, logit or HB, and the date the run was created (you may rename
each run if you like).

You can Rename and Delete runs.  You can review the settings and results (average utilities, fit,
variance statistics, etc.) by highlighting a run in the table.  You can also export the contents of a
utility run to a .csv file by clicking Export Utilities….

When you conduct market simulations, you select a utility run to use for predicting categories of
each dependent variable.  Thus, you could have multiple candidate runs stored and available for
using in the market simulator.
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10 Simulating Respondent Choices

10.1 Simulating Respondent Choices
The previous two sections dealt with building models (aggregate logit and HB) to predict
respondent choices.  An MBC study typically involves multiple models (sub-models), where each
sub-model predicts whether a given option on the menu was selected.  Those sub-models estimate
utility coefficients that characterize the preferences for menu items and the utilities of other
aspects that vary on the menu, such as prices.  Given those utility coefficients, we can use the
series of sub-models to predict which options respondents will choose on the menu given a
specific menu scenario.  This process is typically referred to as market simulation, but it goes by
other names as well including what-if analysis or just simulations.
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10.2 Aggregate vs. Individual-Level Predictions
Market simulations may be done either using utilities estimated via aggregate logit or individual-
level HB.  If using aggregate logit there is just a single vector of coefficients for each sub-model that
characterizes the average preferences for the sample.  In effect, aggregate logit treats the data as if
all respondent choices had been made by a single respondent who had taken a very long survey. 
Because there is just a single vector of utilities for each sub-model, the data storage requirements
are miniscule, and the simulation process works extremely fast.  The logit rule (also known in other
Sawtooth Software documentation as Share of Preference) is used within each sub-model to
estimate the likelihood that the sample would select each menu option.

If using HB analysis, MBC software stores 200 draws per respondent as well as point estimates (the
average of the draws for each respondent).  So, if there are 1000 respondents, there will be
200,000 vectors of utilities for each sub-model.  As when using aggregate logit, the logit rule is
applied, but we do it either for each point estimate (once per respondent) or each draw (200 times
per respondent) to predict the likelihood of selecting items on the menu.  But, given our example,
the data storage requirement is 200,000x larger than aggregate logit, and 200,000 predictions are
made (if choosing to simulate using the draws) rather than just 1.  The results are averaged across
all 200,000 predictions to summarize the probabilities of choice for the sample.  

With simulations from HB, we may also report standard errors for the predicted probabilities of
choice.  We can also report choice probabilities for each respondent.  Neither of these options is
available through aggregate logit.
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10.3 Market Simulation Math
For each of the independent variables included in the dataset, the researcher specifies which level
(or value in the case of quantitative variable) characterizes the specific market scenario.  With MBC
studies, the independent variables often refer to the prices for each option (though other
independent variables are possible, such as availability effects, or other promotion factors).

During the model-building process, you specified which independent variables to include in each
sub-model and how they were to be coded (part-worth, linear, log-linear).  The simulation process
simply repeats the same coding procedure (as described earlier) to build an independent variable
matrix representing the levels within the specific market scenario.  For each row of the
independent variable matrix, each element is simply multiplied by the corresponding coefficient in
the vector of utilities within the sub-model, and the sum of those products reflects the total utility
of that alternative.  For binary alternatives (chosen or not chosen), there are two rows in the
independent variable matrix, and we compute the utility of the menu option and the utility of not
selecting the menu option (the constant or "None" alternative).  The antilog of the total utilities is
proportional to choice within the set.  This is the logit rule, and we use it to predict the likelihood
that items will be selected on the menu.

If selecting a dependent variable is conditional on the choice of a different dependent variable,
then an additional step is required.  As an example, perhaps selecting an item a la carte is only an
option if the respondent has first rejected the value meal bundles.  In that case, the likelihood of
the respondent not selecting a value meal is multiplied by the likelihood of the respondent
selecting each item a la carte.  (Recall that the sub-model that predicts choice of the a la carte item
has been built only using the choice tasks where the conditional dependent variable was chosen. 
Therefore, the likelihood of the a la carte selection is the likelihood of its choice given that the
conditional dependent variable has been chosen.)

There is another exception that should be described.  Perhaps an item is only able to be selected if
it is available on the menu (availability design).  The independent variable signals whether the
option is available or not.  If the independent variable (which must be specified as part of the
market scenario) indicates that the option is not available, then the choice likelihood is simply set
to zero.



MBC v1.1106

10.4 The Simulations Tab
After you have estimated logit and/or HB models, you are ready to simulate respondent choices to
specific menu scenarios using the Simulation tab (the market simulator, also known as the what-if
simulator).

When you first click the Simulations tab, a Scenarios panel is shown (currently blank) along with
the Add Scenario…, Edit…, X (Remove), Simulate, Precision, Save Results… , Clear, Netted
Variables..., and Create Excel Simulator buttons.

Click the Add Scenario… button to add a Simulation Scenario.  A Simulation Scenario is a specific
menu situation (described by levels/prices of your independent variables).    The Scenario dialog is
displayed (Figure 9.2).

The Scenario dialog has a number of settings:

Simulate Choice Probabilities:  Choosing this option tells the MBC software to simulate what
percent of the respondents would select each category of each dependent variable
included in the simulations.  It returns a Choice Probability across the sample for each
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dependent variable, based on the levels (e.g. prices) you have specified for the
independent variables.

Sensitivity Analysis:  Allows you to run multiple simulations in automated mode for
generating demand curve charts.

Simulate Choice Combinations (Combinatorial Simulations):  Selecting this option tells the
MBC software to simulate the specific combinations of choices predicted to be selected by
each respondent, given the levels you have specified for the independent variables. 

Top combinations to display and Population weighting:  These settings affect the
Combinatorial Simulations.

Save individual results:  If you are using HB runs to predict respondent choices, you can ask
the simulator to display those results by respondent in the report and save the choice
probabilities of menu selections for each respondent to a .csv file.

Independent Variables:  These are the levels of the independent variables (typically the
prices) that you specify for the Simulation Scenario.  You can specify values such as 1, 2, 3,
and 4 (as in this example).  You may also specify values between levels, such as 1.3 or 3.75,
and MBC software will perform interpolation.  Values outside the valid range
(extrapolation) are not permitted.

Dependent Variable Utilities:  For each dependent variable you want to include in the
market simulation, you need to select an available utility run to use.  Either logit or HB runs
may be selected.  (For combinatorial simulations, HB runs are required).

Respondent Filters:  If you have read-in a Demographics file (from the Data Files tab) and
are using HB utility runs (containing individual-level data), you can select which
respondents to include in the simulation run.

Respondent Weights:  If you have read-in a Demographics file (from the Data Files tab) and
are using HB utility runs (containing individual-level data), you can specify which variable in
that file should be applied as respondent weights.

Exponent:  If you are using the Simulate ChoiceProbabilities simulation method, you can set
the Scale Factor multiplier (Exponent) to use.  The default scale is 1.0.  Values greater than
1.0 cause predicted choice probabilities to become more extreme.  Values less than 1.0
cause predicted choice probabilities to become less extreme.  The Exponent has no effect
on the Simulate Choice Combinations approach.

Figure 9.2 below shows a simulation run with specific prices selected for the four menu items, and
HB runs selected for use in predicting each of the dependent variable outcomes.
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In this example, variables Lahaina_Price (price for menu item 1) through Snorkel_Price (price for
menu item 4) have been specified as:

Lahaina_Price = 95
Whale_Price = 120
Surf_Price = 135
Snorkel_Price = 85

You may specify prices in-between categorical prices actually used in the survey.  This is called
interpolation.  

For each of the Dependent Variables, the user has selected which run to use when predicting
respondent choices.  Because we are requesting individual-level results to file, we must select HB
runs.  The drop-down controls are used to select available runs as appearing under the Utility Runs
tab. 

Click Save to save the run and return to the Simulations tab.
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Once you return to the Simulations tab, you see the Scenario you just created saved in the list (you
can have multiple scenarios saved on this dialog).  To simulate respondent choices for this scenario,
click the Simulate button at the top of the dialog.  After typically a minute or so of processing, the
results are displayed to the screen: 

The predicted probability that the sample would select each category of the dependent variables is
shown on the screen, with the standard errors for each.  For example, Lahaina Chosen would be
selected 35% of the time.  

To see predictions for each respondent (given as probabilities of choice, according to the logit
rule), click the Individual Results tab at the bottom of the display.   (Note, you must have clicked
the option: Save Individual Results when you edit the scenario to get individual-level predictions.)
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Results are displayed for each respondent, indicating the predicted probability that each option on
the menu would be selected, given the prices specified in the simulation scenario.

 

Create Excel Simulator...

Click this to create an Excel simulator for standard choice probability simulations (not
combinatorial simulations).  A .xlsx file is created, with macros enabled.  The simulator has multiple
sheets, which probably should be hidden when you deliver the file to your client.  Most users will
add their own attractive front sheet that provides a user interface for their client, and a place to
display results and/or graphs/charts.  That customized front sheet will interact via linked formulas
with the supporting sheets that are automatically written out to the .xlsx file.  

Click Here for more information.
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10.5 Simulator Validation
Researchers should be concerned about how well their choice models can predict new scenarios,
and especially choices made by a different set of people than used as respondents.   It is common
to include holdout scenarios, but probably less common (and certainly more expensive!) to include
holdout respondents in conjoint-related studies, including MBC.  We recommend including a
holdout task or two in your MBC studies, which you can use to compare the results of different
models and verify that your market simulation models are working well to predict choices.

One source for checking the quality of your simulator that you should not overlook is the Counts
data (assuming you have used a good-quality randomized design).  You should compare the own-
and self-elasticity curves from Counting analysis to the curves that may be generated using
sensitivity analysis within the simulator.  When the two sets of curves are in good agreement, this
is another indication that your models are working well to predict choice behavior.
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10.6 Netting Dependent Variables

This dialog lets you create netted variables: new variables for reporting purposes that simply sum across
categories of dependent variables.  Netted variables are particularly useful within the simulator when you
are using the recommended approach of collapsing dependent variables via combinatorial coding. 
(Combinatorial coding leads to fewer and often more accurate models.)

Consider the case where a combinatorial dependent variable with eight categories has been coded to
represent binary choices across three separate dependent variables.  The three original variables were:

1. Hamburger (1=choose; 2=not choose)
2. Fries (1=choose; 2=not choose)
3. Drink (1=choose; 2=not choose)

And, the new combinatorial dependent variable (recoded in the data file and being used in modeling to
stand in place of the three binary variables) has eight categories:

1 = Hamburger & Fries & Drink
2 = Hamburger & Fries
3 = Hamburger & Drink
4 = Fries & Drink
5 = Hamburger
6 = Fries
7 = Drink
8 = Nothing (off state)

The probabilities of choice across these eight categories sum to 1.0.

Three new netted variables for reporting purposes can be created for use within the simulator based on
outcomes of the 8-category combinatorial dependent variable.

Hamburger = category1+category2+category3+category5
Fries =  category1+category2+category4+category6
Drink =  category1+category3+category4+category7

If you are interested in having the simulator tell you what percent of respondents are projected to choose
the Hamburger, then it is much easier to refer to the netted variable that directly reports that information. 
Otherwise, you'll get eight separate probabilities for the eight categories, and you'd need to add across
four categories to report the percent expected to pick hamburger.

Note: The Excel simulator option doesn't move your netted variables to the simulator spreadsheet.  But,
you can easily create new cells with Excel formulas that sum across multiple categories in the Front
Page of your Excel simulator.
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10.7 Sensitivity Analysis
Sensitivity Analysis allows you to run dozens or hundreds of simulations in an automated mode,
typically with the goal of developing demand curves.  It saves you a great deal of time, because you
don't have to manually set up and run each simulation separately.

For example, you can develop a demand curve for how a particular price affects choice of a
particular item on the menu.  To develop this curve, you specify that Sensitivity Analysis should
compute the likelihood of respondents choosing this item, given each price point of interest.

You can ask sensitivity analysis to simulate across the price levels included in your design, or even
for price points in between those levels (interpolation).

Note: Combinatorial Simulations are not supported.

 

Example #1, One Demand Curve

Consider a hypothetical MBC study where four activities on the island of Maui were offered to
tourists (each at varying prices):

Shopping in Lahaina: $85, $95, $110, $130
Whale Watching: $100, $110, $120, $140
Surfing Lessons: $120, $130, $140, $160
Snorkeling: $80, $90, $100, $120

Respondents could choose which (up to 4) activities to purchase.

After you have built your logit or HB models for this menu, you should specify a simulation
scenario.  When conducting Sensitivity Analysis it is typical (but not required) to specify a base case
scenario featuring each item on the menu at its middle (or average) price.

Base Case Scenario
(items at average prices:)
Shopping in Lahaina: $105
Whale Watching: $117.50
Surfing Lessons: $137.50
Snorkeling: $97.5

From the Simulations tab, you next Add a Scenario and on the Scenario dialog specify the base case
prices for the items.  Next, you click the Sensitivity Analysis checkbox as shown below:
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Next, you click the Settings... button that is next to the Sensitivity Analysis checkbox.  The
following is displayed:

Click the Add Item... icon in the upper-left to add a sensitivity analysis specification.  

A table of results will end up being reported, so the MBC software asks you to add a new "item" to
that table of results.  Because we want to see how choosing surfing lessons is affected by the price
for surfing lessons, we select Dependent Variable = Surf Chosen along with Independent Variable =
Surf_Price, as shown below:



Simulating Respondent Choices 115

If we wanted to specify that prices in between the four prices included in the experimental design
should be simulated, we would specify Interpolation Steps.  For this example, we won't do that. 
Clicking the Add button adds this sensitivity item to the table of results that will be produced:

Click Save to return to the Scenario dialog.  Then, click Save again to return to the Simulations tab. 
When you click the Simulate button, four separate simulations are run (one for each price point),
and the results are shown:
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This table shows that for price point "120 dollars" the likelihood of choosing Surf Lessons is 0.6337,
etc.

You can paste these results into an Excel Spreadsheet, to create a demand curve.  Within Excel
below, we have highlighted a portion of the results table (as shown), clicked Insert + Scatter Plot
and chosen "Scatter with Straight Lines":

The result is then plotted within Excel:

Example 2, Multiple Demand Curves
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In this example, we add more items to the Sensitivity Table from the previous example.  In addition
to the demand curve for Surfing Lessons, we want to plot (on the same chart) the demand curves
for the other three items: Shopping in Lahaina, Whale Watching, and Snorkeling.

From the Simulations tab, we edit the Base Case Scenario, and click the Settings button (right next
to the Sensitivity Analysis checkbox).  The Sensitivity Analysis Table as we had built before (for
Example #1) is shown:

Click the Add Item... icon at the upper-left of the dialog.  Then, specify that you also want to
simulate the choice likelihood of Lahaina_Chosen as a function of Lahaina_Price:

Click the Add button.  Then, repeat the same process to add the demand curves for Whale_Choice
and Snorkel_Choice:
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Click Save, and then return to the Simulations tab to run the simulation scenario.  The following
table is produced (as shown when copied into Excel):

Within Excel, if you highlight the area as shown above and click Insert + Scatter Plot + Scatter with
Straight Lines, you get the following chart:
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Multiple Tables

If you keep adding items to the same table, they will be formatted as new columns in the output. 
If you want to start a new table in the output, do so by clicking the New Table icon.  In the example
below, we have started a new table, which will contain the cross-elasticity curves for how other
items' prices affect the likelihood of choosing the Lahaina Shopping Trip.
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Custom Steps

If you don't like the interpolation steps that MBC chooses, and you want to specify certain price
points, you can click User-specified values for the Interpolation Steps, and then type the values you
want to use (separated by commas) within the Custom Steps field, as shown below:

Prices $120.20, $130.30, $131, etc. will be used in the sensitivity run.
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10.8 Excel Simulator
MBC can automatically create an Excel simulator containing the utility runs and necessary
mathematical functions to perform standard Choice Simulations (not combinatorial choice
simulations).  The .xlsx file (Microsoft Office Excel 2007 Workbook) format is used.  Segments and
weights may be included.  The resulting simulator file is usually less than 3MB and may be emailed
to others.  It produces results exactly equal to the results of the standard MBC simulator.

To create the Excel simulator file, go to the Simulations tab.  Click the Create Excel simulator icon,
and a wizard steps you through the process.

The .xlsx file contains VBA code, so when opening the simulator file, you'll be prompted regarding
whether you want to enable the macros that are present within the file.  You should specify to
enable their functionality.

Only point estimates are supported (draws are not supported).  We have found that draws
(typically hundreds of separate estimates of the utilities for each respondent) would lead to too
much information and too many formulas to manage within the .xlsx files.  Just opening an Excel
simulator based on draws can take 5 minutes or more, which would not be tolerated by users or
their clients.  Therefore, if you know you will be delivering an Excel simulator to your client, you
should make sure that the initial work you do for your client using the MBC simulator applies the
point estimates rather than the draws.  This setting (to use point estimates rather than draws) is
on the Scenario dialog.

The simulator file has multiple sheets, which probably should be hidden when you deliver the file
to your client.  Most users will add their own attractive front sheet that provides an attractive user
interface (often mimicking the look of the original menu within the questionnaire), and a place to
display results and/or graphs/charts.  That customized front sheet should be linked via pointing
formulas to the basic front sheet that has been automatically written within the .xlsx file.  That
basic front sheet in turn points to the result of formulas within deeper sheets within the .xlsx file.

The simulator file contains VBA code that takes the independent variable levels you have specified
on the front sheet, examines the settings involved in the utility runs (model specifications), and
determines how to code the simulation scenario into design matrices appropriate for each
dependent variable model.  A matrix multiply step is then performed for each model and each
respondent (if using HB utilities), multiplying the design matrix by the respondent beta vector. 
Then, the logit rule is performed, as described in the earlier section on Market Simulation Math.
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11 Simulating Combinatorial Choice Outcomes

11.1 Simulating Combinatorial Choice Outcomes
The previous section described how MBC software can predict the likelihood of menu items being
selected across the sample of respondents using (typically) separate, but interrelated, logit-based
models.  The results were expressed in terms of percent of respondents expected to choose each
of many items on the menu, given specific menu prices.  Some researchers and clients also require
a prediction of the most likely combinatorial selections made by respondents.  For example, results
from a combinatorial prediction simulator could reveal that the combination Hamburger + Medium
Fries + Small Drink is the most likely to be chosen on the menu, given specific menu prices.  The
percent of respondents projected to choose that specific combination of menu items can be
shown, as well as the next n most likely combinations with their respective likelihoods.  The
attentive reader will notice that this output has the same format as the counting report of
combinatorial choices described earlier and shown in Figure 4.11.  Whereas the counting report
nets the combinatorial choices over all price variations shown in the experiment, the combinatorial
simulation predicts the most likely combinatorial choices given a specific set of menu prices as
specified in the simulation scenario.
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11.2 HB Draws and Combinatorial Choice Predictions
To make combinatorial predictions with our MBC software, one must be using individual-level HB
models.  And, we recommend using combinatorial coding for dependent variables, for either the
entire menu (if feasible) or logical sections of the menu.  

With Sawtooth Software's market simulation tools for standard CBC, we have advocated collapsing
the draws for each respondent into a single point estimate, representing the average of each
respondent's utility draws.   Under this approach, choice likelihoods for items are estimated by
applying the logit rule to the point estimates.  MBC can do this as well, and it is faster than
operating on individual draws.  But we recommend simulating combinatorial choices at the level of
the draws.  This is partly due to the speed of modern computers.  But the main reason we
recommend operating on the level of the draws is to make possible a special way of simulating
combinatorial choices called weighted draws (described later in this section).
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11.3 Simulating Combinatorial Outcomes
Now we will describe the mechanics of simulating combinatorial choices.  For each item on the
menu, we have an HB model (with multiple draws per respondent) that may be used to compute
the likelihood that the respondent would pick that item (given a user-specified set of prices in the
simulation scenario).  

(This of course assumes the simple approach of coding each menu selection as a separate dependent
variable.  If you have collapsed multiple selections into a single dependent variable with multiple
codes, such as three binary variables coded as a single 8-level variable, then each dependent variable
actually reflects a combination of selections from the menu.)

The likelihood is computed using the logit rule, and is a value ranging from 0.0 to 1.0.  If we have,
say, eight items in the menu (each with two categories: chosen or not chosen), we may use eight
separate HB models to predict the likelihood that each item was selected by this respondent.  For
example, for the first respondent, we might compute likelihoods of selecting the first category
(choice) of the eight items as follows:  0.42, 0.26, 0.87, 0.92, 0.01, 0.02, 0.61, 0.07.  Given those
probabilities, the most likely prediction of what the respondent would choose can be discretized as
2, 2, 1, 1, 2, 2, 1, 2, where "1" indicates chosen and "2" indicates not chosen.  For each dependent
variable, the category with the highest probability is projected to be chosen (similar to the notion
of the first choice simulation rule used in traditional conjoint simulators).

We suggest using draws for combinatorial predictions, and we use each of those draws to make
first-choice combinatorial choice predictions (as if each respondent made multiple shopping trips).
 We could simply tally these combinatorial selections across all respondents and draws to achieve a
combinatorial simulation result and distribution (listing the n most likely combinations, each
followed by the likelihood of choice across the sample).  If we had 1000 respondents, we would
have 200,000 combinatorial predictions.  However, many researchers and clients prefer to have a
single individual-level prediction (rather than 200), for classifying respondents and computing hit
rates (for holdout menu choices).  Therefore, we select the one most likely combinatorial choice for
each respondent for reporting purposes.

If operating at the level of the draws, one way to select the most likely combinatorial selection for
each respondent is to count which one combination of projected first choices occurs the most
often across a respondent's draws.  This is one of the options we have done in MBC software, but
we have provided an additional variation called "weighted draws".  A series of separate logit-based
HB models might make a prediction regarding a combinatorial choice that is not very likely to be
made by respondents.  To reduce the likelihood of this, we can incorporate additional information
about the combinatorial choices actually made by respondents to inform the simulation procedure
about likely and unlikely choices.

For each respondent we examine the tasks used in developing the models (the calibration tasks, of
which there are often 8 or more), and we tally the frequency that each combination of menu items
was selected.  For example, if eight items were included on the menu, the combination 2, 2, 1, 1, 2,
2, 1, 2 (indicating that items 3, 4, and 7 were chosen) might have been selected 3 times.  We can
use the log of this frequency (to avoid taking the natural log of 0, we add 2 to the frequency tallies
before taking the natural log) as a weight when computing which of the 200 combinatorial
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predictions for each respondent is the most likely (assuming the default 200 draws).  So, rather
than simply tallying the 200 predictions and selecting the most likely combination, we do a
weighted count that favors combinations that are actually observed to be more likely.  This type of
market simulation integrates combinatorial likelihood information directly from each respondent. 
Thus, if two items are highly substitutable and were never chosen together by the respondent, if
the simulator tries to predict that this respondent will choose those two items together, such a
result would be discouraged.  Only if a relatively large number of draws for a respondent indicate
the joint choice of those two items would such a combinatorial prediction be allowed.

Weighting the combinatorial predictions for the draws by a log transform of the frequency as
observed in the calibration tasks is a post hoc simulation approach that is not theoretically
grounded.  We do this to help overcome weaknesses in the HB-logit approach to combinatorial
predictions.  And, we have empirical evidence that this procedure can indeed improve the accuracy
of individual-level predictions.  As we collect further evidence from more datasets, we'll learn even
more regarding whether this is a robust procedure that will yield consistently better results in
practice.  If weighting the draws in this manner bothers you, you can choose the simulation option
that doesn't apply population frequency weights to the predictions from the draws.  You may also
select the quicker approach of projecting combinatorial choices using the point estimates.
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11.4 Running Combinatorial Simulations in MBC

To simulate combinatorial choices, you simply edit a simulation scenario and then select the
Simulate Choice Combinations option, as shown in Figure 10.1.  You can specify how many of the
top (most frequently predicted) combinations to display in the report.  By default, the 10 most
commonly predicted combinatorial choices will be shown on the screen.   If you select Display
individual results when available, each respondent's predicted combinatorial selection will also
given, available in a separate tab of the report.

In the previous section, we described how we can operate on the level of the draws and apply
individual-level information regarding the frequency of specific combinations of items selected
(across all relevant tasks) to improve individual-level predictions from the simulator.  The three
options supported by the software are:

Use Weighted Draws:  (Default Method) The draws are weighted by the natural log of how
often the combination suggested by the "first choice" rule for that draw was observed to
be selected by the respondent.  

Use Draws:  No additional weighting is used to influence the individual combinatorial
choice predictions.
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Use Point Estimates:  Point estimates are used to predict the individual combinatorial
choice predictions (faster method, but usually inferior).

Recommendation: we have found that the method of weighted draws works better for a few
datasets we have examined.  Weighted draws is therefore the recommended method.



Simulating Combinatorial Choice Outcomes 129

11.5 2006 Fast-Food Menu Study Results
In 2006, we conducted an MBC research study involving 681 respondents (Opinionology sample). 
The exercise involved selecting items on a fast-food menu (as shown in figure 1.6).  Each
respondent completed 10 menu tasks, and tasks 4 and 5 were held out from utility estimation. 
There were 1809 total possible combinations that respondents could select within the menu.  If we
built a simulator that made random predictions of menu choices for each respondent, we would
expect a hit rate of 1/809 = 0.06%, which would not be very good at all.

For this study, tasks 4 and 5 were held out from utility estimation, and used solely for purposes of
measuring internal predictive validity.  A simple way to predict choices is to assume that
respondents will pick the same thing in tasks 4 and 5 that they picked in task 3.  It turns out that
using task 3's choices for each respondent to predict responses to tasks 4 and 5 (where the menu
prices changed in each task) results in a hit rate of 42.2%, which is almost 800 times the chance
level!  But, we have interest in predicting combinations using our logit-based models rather than
assuming that respondents will select simply what they most recently selected, irrespective of
price changes.  

Using MBC software's approach of a series of HB models (unconstrained) with linear alternative-
specific own-effects plus significant linear cross-effects, we used MBC's simulator (on the draws)
and achieved an average predictive hit rate over tasks 4 and 5 of 50.6%.  If we weight the draws
according to the likelihood of combinations occurring across the tasks used in utility estimation,
the hit rate increases slightly to 53.0%.  Unfortunately, we don't have test-retest reliability figures
for this study, so we don't know if these predictions are about as good as we possibly could expect.
 If we had repeated tasks 4 and 5 at a later point in the survey, then we could see how likely
respondents were to choose the same menu options when presented with the same menu
scenarios.  After all, respondents will not be perfectly consistent from task to task, so there is a
theoretical upper limit to predictive validity significantly below 100%.  Perhaps our hit rate of 53%
is approaching the test-retest reliability rate, and is thus about as good as we could expect to do. 
Again, we cannot know for this study.  But, a second study we conducted (described in the next
section) did include test-retest reliability.

We also used MBC's ability to simulate shares of choice on the margin (for each item individually)
and predicted the marginal shares of choices for holdout tasks 4 and 5.    Regressing the actual
likelihoods on the predicted resulted in an R-square of 0.96.

For this restaurant dataset, the a la carte choices were not available to respondents unless they
had first rejected the value meal combos.  This would seem to justify a two-stage simulation with
conditional dependent variables for the three a la carte choices, triggered by respondents first
rejecting the combo meals.  But, we actually achieved better predictions when not specifying
conditional dependent variables.  We don't know if this result will hold for other datasets, but
mention it here to report what model specification performed best for this dataset.
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11.6 2011 Fast-Food Menu Study Results
In 2011, we fielded another fast-food restaurant menu study, this time choosing a design that was
thought would be especially challenging for our logit-based approach.  Rather than having
mutually-exclusive choices within seven categories (as we did in the 2006 study), we had 21 binary
choices on the menu, with no restrictions on the ways respondents could complete the menu.  

There were 221=2,097,152 total possible combinations that respondents could select.  1698
respondents were interviewed (again, Opinionology sample), with 850 respondents used for
building the model (calibration sample) and another 848 holdout respondents randomly selected
to serve as validation sample.  The holdout respondents received one of two versions of the
questionnaire, each with 12 menu tasks.  Calibration respondents received 12 tasks as well, where
8 of the tasks came from a (controlled) randomized design.  The other 4 tasks were fixed holdouts,
with tasks 4 and 9 being replicates, and tasks 5 and 10 also replicates (to assess test-retest
reliability).

Another interesting aspect of this study is that the "Extra Value Menu" section in the bottom right
(with its four menu items) was only available in half of the choice tasks.  

Using models developed from 8 tasks completed by the calibration respondents, we compared the
share predictions for individual items to the actual choice likelihoods observed in the holdout
sample (a total of 456 predicted choice likelihoods for menu items across 24 menu tasks). 
Regressing the actual likelihoods on the predicted likelihoods resulted in an R-square of 0.88.  We
shouldn't expect to achieve perfect prediction (R-Square of 1.0) due to sampling error, since we are
using 850 respondents to predict responses from two different sets of 424 respondents.  Based on
simulations using random draws of synthetic respondents (samples of n=850 and n=424), with
expected proportions as observed in the data, we estimate the expected R-squared for prediction
for this situation (if the only error is due to sampling) is 0.91.  So, we conclude that our prediction
model is doing almost as well as it should theoretically do.
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Calibration respondents received four holdout menu tasks, where tasks 4 and 9 were repeats, and
tasks 5 and 10 were also repeats.  The average test-retest reliability (how often respondents could
answer the same menu task in the same way) was 53.9%.  The weighted draws approach to
combinatorial simulations yielded a predictive hit rate accuracy of 49.6%.  The non-weighted draws
approach yielded hit rate accuracy of 48.2%.  Both results are approaching test-retest reliability, or
the maximum predictive accuracy that is theoretically possible.

We tried two ways of coding the dependent variables: 21 separate binary dependent variables vs.
four combinatorial dependent variables (based on logical groupings of items from the menu).   The
combinatorial dependent variable coding was more successful in predictive accuracy (we've
reported its results above), and was also a quicker model to estimate and simulate.  Formulating
the problem as 21 binary variables led to predictive accuracy of shares of 0.86 and hit rates of
46.1% using "weighted draws" (compared to 0.88 and 49.6% for the combinatorial dependent
variables model).
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12 Tutorial: Configuring an Automobile

12.1 Tutorial: Configuring an Automobile
In this section, we give a detailed description of how to use MBC software to model choices for a
real dataset that involved respondents configuring automobiles.  While there are many ways to
model these data, we'll focus on two approaches a researcher might select.  The first one follows
the "serial cross-effects" models that treat each item on the menu as a separate model.   The
second approach breaks the menu into three logical subsections and examines all possible patterns
of checked options within those subsections.  Both models use a two-stage approach for this
particular dataset, where the dependent variables in a second model are conditional upon choices
made to the dependent variable in the first stage model.

A total of 1629 respondents completed a web-based questionnaire, fielded using Opinionology
panel, during 2010. Each respondent completed 8 menu-based choice tasks as shown below.   806
respondents are included in the dataset, and represent calibration respondents.  823 additional
respondents were interviewed and became holdout respondents used for validation.

Respondent Task:

Respondents chose a column (the radio button), and then configured (added) any options within
the column they wished (the check boxes).  As they added options, the total price of the vehicle
shown at the bottom of the selected column dynamically updated.  Note that respondents were
allowed to add options only for the one vehicle they had chosen.

Experimental Design:
Respondents saw their top three considered vehicles within each choice set (as previously
specified in the questionnaire).  The top considered vehicle always appeared in the first

concept/column.  The 2nd considered vehicle always appeared in the second column, and the 3rd

considered vehicle always in the third column.  The base prices shown were set to the price
respondents expected to pay for each vehicle (as previously specified in the questionnaire).  The
prices for each of the options (alloy wheels, sunroof, XM Radio, or navigation system) could take on
4 discrete values, as shown below.   Additionally, the base price for each vehicle was varied
experimentally by -$3,000, $0, or +$3,000.
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Alloy Wheels
$1,500
$1,750
$2,000
$2,500

Sunroof
$500
$700
$900
$1,200

XM Radio
$300
$400
$500
$600

Navigation System
$1,000
$1,300
$1,600
$2,000

Base Price
-$3,000
+$0
+$3,000

We employed a randomized design, using CBC's Balanced Overlap design strategy.

Conceptualizing the Models

Referring back to Figure 11.1, we can conceptualize the respondent task as a two-stage choice
process, as follows:  Each respondent views the three cars on the screen (together with the option
prices) and first decides which column (car) to select.  Once the respondent selects the car, the
respondent then configures the selected choice with optional alloy wheels, sunroof, XM radio, and
navigation system.  Obviously, options can only be configured on a car that has been chosen, so
this represents a series of conditional dependent variables for the second-stage model.

The Data File:

Three sample datasets were installed with your MBC software, and are located in .../My
Documents/Sawtooth Software/MBC Samples.  We will first focus on the dataset named
CarBinaryDVs.csv.  (If you are using the MBC software in Demo mode, it will only analyze the first
50 respondents, so your results will be different from ours shown below).
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The first few rows of the data file look like:

ID   ----Independent Variables----   ---Dependent Variables---
 1   3 4 1 3 2 1 2 3 3 3 1 3 4 1 4   1 2 1 2 2 2 2 2 2 2 2 2 2
 1   3 1 4 2 3 2 3 3 4 1 2 4 1 2 1   3 2 2 2 2 2 2 2 2 2 1 2 2
 1   2 2 4 3 2 1 1 1 1 1 3 2 3 2 4   3 2 2 2 2 2 2 2 2 2 1 2 2
 1   1 1 2 3 2 3 4 1 2 1 2 3 2 1 4   1 1 1 2 1 2 2 2 2 2 2 2 2
 1   1 3 1 4 4 1 2 2 3 3 3 1 4 4 3   1 2 1 2 2 2 2 2 2 2 2 2 2
 1   2 1 3 4 4 3 3 4 1 2 2 4 2 1 2   3 2 2 2 2 2 2 2 2 2 1 2 1
 1   1 1 3 2 3 2 2 1 3 3 3 4 3 1 1   1 2 1 2 1 2 2 2 2 2 2 2 2
 1   3 4 2 4 1 2 3 1 2 2 2 2 4 3 4   1 2 1 2 1 2 2 2 2 2 2 2 2
 2   2 3 2 4 1 1 4 4 2 4 3 2 2 1 2   1 2 2 1 2 2 2 2 2 2 2 2 2
 2   1 3 1 4 3 2 4 4 1 1 3 1 3 3 2   1 2 2 1 2 2 2 2 2 2 2 2 2
 2   1 2 4 4 3 2 3 3 2 4 1 1 2 3 1   1 2 2 1 2 2 2 2 2 2 2 2 2
 2   3 4 3 3 2 2 2 3 1 4 3 3 2 2 3   2 2 2 2 2 2 2 1 2 2 2 2 2
 2   3 3 2 4 1 1 1 1 2 2 2 4 4 3 4   2 2 2 2 2 2 2 1 2 2 2 2 2
 2   2 2 1 1 1 1 3 1 3 3 3 4 3 4 3   1 2 2 1 2 2 2 2 2 2 2 2 2

The Data layout is as follows:

Col#  Name:                Description:                    Values:
1     RespID               Case ID                           1-893

   (Independent Variables):
2     Concept1_Pr_Base     Base Price Concept #1               1-3
3     Concept1_Pr_Alloy    Alloy Wheels Price Concept #1       1-4
4     Concept1_Pr_Sunroof  Sunroof Price Concept #1            1-4
5     Concept1_Pr_Radio    XM Radio Price Concept #1           1-4
6     Concept1_Pr_Nav      Navigation System Price Concept #1  1-4
7     Concept2_Pr_ Base    Base Price Concept #2               1-3
8     Concept2_Pr_Alloy    Alloy Wheels Price Concept #2       1-4
9     Concept2_Pr_Sunroof  Sunroof Price Concept #2            1-4
10    Concept2_Pr_Radio    XM Radio Price Concept #2           1-4
11    Concept2_Pr_Nav      Navigation System Price Concept #2  1-4
12    Concept3_Pr_Base     Base Price Concept #3               1-3
13    Concept3_Pr_Alloy    Alloy Wheels Price Concept #3       1-4
14    Concept3_Pr_Sunroof  Sunroof Price Concept #3            1-4
15    Concept3_Pr_Radio    XM Radio Price Concept #3           1-4
16    Concept3_Pr_Nav      Navigation System Price Concept #3  1-4

(Dependent Variables):
17    Ch_Auto_Concept      Choice of Column/Concept            1-3
18    Ch_Alloy1            Choice of Alloy Wheels Concept#1    1-2
                        ("1" indicates chosen; "2" not , etc.)
19    Ch_Roof1             Choice of Sunroof Concept#1         1-2 
20    Ch_Radio1            Choice of XM Radio Concept#1        1-2 
21    Ch_Nav1              Choice of Nav System Concept#1      1-2 
22    Ch_Alloy2            Choice of Alloy Wheels Concept#2    1-2
23    Ch_Roof2             Choice of Sunroof Concept#2         1-2 
24    Ch_Radio2            Choice of XM Radio Concept#2        1-2 
25    Ch_Nav2              Choice of Nav System Concept#2      1-2 
26    Ch_Alloy3            Choice of Alloy Wheels Concept#3    1-2
27    Ch_Roof3             Choice of Sunroof Concept#3         1-2 
28    Ch_Radio3            Choice of XM Radio Concept#3        1-2 
29    Ch_Nav3              Choice of Nav System Concept#3      1-2 

In this data layout, we've coded the dependent variables each as separate variables.  There are 13
dependent variables, and we will be building 13 separate models (later in this section, we'll show
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how to code the model with 4 combinatorial dependent variables, and we'll build 4 separate
models).

Reading the Data File into MBC Software

First, we open the MBC software and click File + Open… and browse to the data file (.../My
Documents/Sawtooth Software/MBC Samples/CarBinaryDVs.csv).  We have already defined our
category labels and values in the CarBinaryDVs Labels.csv, so we can click the Import Category
Labels and Values from File icon (as indicated by the black arrow in Figure 11.2) to import those
automatically.  (Click here to review the labels file layout.)

Next, on the Variables tab, we specify (using drop-down boxes) which variables are the dependent
variables, and for the twelve dependent variables representing the configuration of options we
specify that the second category for each of those is the "Not Selected" Off state.   Once that is
done, the Variables tab will look like Figure 11.2.

Next, we need to specify that variables Ch_Alloy1 through Ch_Nav3 are Conditional Dependent
Variables.  In the section at the bottom of the Variables dialog (as shown in Figure 11.2), we click
each of these variables and indicate that each is dependent on categories of Ch_Auto_Concept.  
Ch_Alloy1 through Ch_Nav1 (configurations for the automobile in the left column of the
questionnaire) are only valid if Ch_Auto_Concept = 1.  Ch_Alloy2 through Ch_Nav2 (configurations
for the automobile in the middle column of the questionnaire) are only valid if Ch_Auto_Concept =
2.  And, Ch_Alloy3 through Ch_Nav3 (configurations for the automobile in the right column of the
questionnaire) are only valid if Ch_Auto_Concept = 3. 
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Counting Analysis

It is typical to use counting analysis to examine the frequencies of each independent and
dependent variable, and to examine the relationship between independent variables and
dependent variables.   We can examine which variables appear to be significant drivers of choice of
dependent variables, and the best-fitting functional forms (linear, log-linear, or part-worth).

These steps are described in the section on Counts, and we won't take the space here to describe
them.   Counting analysis suggests that the biggest driver of choice for Ch_Auto_Concept (the
discrete choice of column in the questionnaire) is the base price of the automobile.  Only a few of
the options' prices under each automobile seem to be significant drivers of choice according to the
chi-square counting tests.  Even so, most of these relationships appear to show negative
relationships between price and choice likelihood (as prices go down, likelihood of choice goes up).
 Despite the fact that very few of these demonstrate a statistically significant relationship at the
80% confidence or higher via counting analysis, we will consider putting them into the logit-based
models.  They conceptually make a lot of sense, and especially if we collapse alternative-specific
variables into generic predictors of column choice, their stability and precision increase.

Specifying Models

For help in describing the models, we again show a task from the questionnaire:

As mentioned previously, we conceptualize this menu as a two-stage choice procedure.  First,
respondents examine the three columns (the three automobiles) in the questionnaire and decide
which one they will choose.  This first-stage model is essentially identical to a standard CBC setup:
respondents view the characteristics of each automobile and select which one to buy.  Each
automobile is characterized by variation in its base price, and variation in the prices of its four
options.  There is a single dependent variable (Ch_Auto_Concept) taking on mutually-exclusive
categories 1, 2, or 3.  We may model this as a standard MNL, where the utility of the category
(column of the questionnaire) is a function of the desirability of that column's characteristics.  As
the characteristics of a column improve (such as its prices lowering), the likelihood of choice for
this category (column) increases and the likelihood of choice of the other categories (columns)
decreases.  Referring to Figure 11.3, as the pricing characteristics of Honda Accord and its options
improve, the projected likelihood of choice for BMW 3-Series and Hyundai Elantra decrease.  
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It is also possible to consider additional cross-effect terms, wherein the utility of a column is not
only a function of that column's characteristics, but the characteristics of competing columns. 
However, this additional series of explanatory terms is probably not needed, since
substitution/competition among the columns is already largely accounted for in the standard MNL
model (especially using heterogeneous models, such as HB).

As a starting-point model, let's consider that the choice of column in the questionnaire
(automobile) is a function of all its characteristics (specified as unique relationships to each
column, meaning alternative-specific effects).  From Sawtooth Software's CBC software
perspective, this is the same thing as specifying a logit model with 2-way interaction terms
between "attribute 1 (ASCs)" and the other four attributes (price of alloy wheels, price of sunroof,
price of radio, and price of navigation system).  On the Specify Models + Variable Codings tab, this
specification looks as follows (we've kept things simple throughout this section by coding all
independent variables as Linear functional forms):

The Variable Codings dialog makes it easy to navigate and add/remove variables.  But, you should
keep in mind that the rows and columns are flipped from the actual design matrix orientation in
the estimation procedure.  In terms of utility estimation, the rows in this dialog (the Independent
Variables) really represent the columns in the design matrix.

If we click Preview Design Matrix, we can preview the design matrix for each respondent (each of
the price variables has been zero-centered, and given a range of 1.0, for more information on
design coding, see the appendix).  The first three choice tasks for Respondent #1 are shown in
Figure 11.5.  Notice there are 17 predictor columns (independent variable parameters) and the
final column is the dependent variable.
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If we are interested how well this model fits the data, we can run an aggregate logit model by
clicking the Estimate Models tab and clicking the Estimate link for the Ch_Auto_Select dependent
variable, logit run.  The results are as follows:

This particular model leads to a log-likelihood fit of -5506.70344, with 17 parameters in the
model.  

We note a few problematic issues from this run.  First, we expect all coefficients to be negative,
since lowering prices should probably always increase choice likelihood for each alternative.  
Concept3_Pr_Radio has a slightly positive coefficient (though not statistically significant from zero,
given its t-ratio of 0.94403).  We also note that many of the coefficients are relatively close to zero.
 This may be expected, since not all the variables will have a strong effect on choice.  Our personal
opinion is that we'd like to see coefficients with the expected sign, and we'd like the t-tests to
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suggest somewhere around 80% or higher significance for these coefficients (t-ratio of 1.28
absolute magnitude or higher).   We could decide to re-run the model and specify a sign constraint
(monotonicity constraint) on variable 16 to remove the reversal (or we could simply drop variable
16 from the model).  

Also, it's interesting to note how similar the coefficients are for variables predicting their respective
columns.  For example, change to the base price (-$3,000 to +$3,000) has a coefficient of -1.86
when predicting concept 1, -1.89 when predicting concept 2, and -1.82 when predicting concept 3.
 Examining the other alternative-specific variables also indicates that their slopes are quite similar,
irrespective of which concept they predict.  This is a good indicator that different coefficients to
predict each alternative (alternative-specific effects) may not be needed or justified.

We can return to the Specify Models tab to re-specify the model as generic effects rather than
alternative-specific effects.  To collapse alternative-specific into generic effects, we select the
Group and Collapse Variables… button.  We collapse the Concept1_Pr_Base, Concept2_Pr_Base,
and Concept3_Pr_Base variables into a new variable that we'll call Pr_Base (see Figure 11.6).  

We similarly collapse other triads of variables into Pr_Alloy, Pr_Sunroof, Pr_Radio, and Pr_Nav. 
When we have finished collapsing these variables, the Variable Codings dialog looks like Figure
11.6 (note the grouping brackets with the new variable names in the grey margin at the far right
side of the grid).
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When we click the Preview Design Matrix… button we can see the more compact (parsimonious)
generic effects model (Figure 11.8).

Now, rather than 17 terms in the model, we have 7 terms.  If we re-run the aggregate logit
estimation, we obtain the following report:
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This condensed model leads to a log-likelihood fit of -5509.26442 (with 7 parameters estimated)
which compares to the more expensive alternative-specific effects model with a fit of -5506.70344
(with 17 degrees of freedom).  Following the 2 log-likelihood test, 2x the difference in log-
likelihood is distributed as chi-square:  2*(5509.26442-5506.70344) = 5.12, 10 d.f. (the difference in
degrees of freedom between the two models).   Referring to a Chi-square table, the critical value
for 95% confidence is 18.31, meaning the Chi-square we observe from our 2 log-likelihood test falls
well short of the critical value.  We have not observed enough increase in fit from the alternative-
specific model specification to justify the additional 10 parameters added to the model.  The
generic-effects model with just 7 terms provides about equally good fit, and happily shows no sign
reversals (all coefficients are negative).  Furthermore, the standard errors of the terms have
decreased quite a bit from the alternative-specific effects model (precision has increased).

Respondent Choice of Options (Stage 2 Models)

In the previous section, we modeled stage 1 respondent choices.  But, we need to specify models
to account for what respondents select in terms of configured options (alloy wheels, sunroof,
radio, and navigation system) given that they have selected a column (automobile).  Earlier in this
section, we already used the Variables dialog to specify that each automobile option (sunroof,
alloy wheels, etc.) is conditional on the choice of the column (Ch_Auto_Concept).  So, when we
build models to predict which options the respondent will buy, we will only use those tasks in
which the respondent has first selected the given column.

It is tempting to think that cross-effects (between-alternative effects) will be needed when
modeling which options the respondent will configure on each automobile.  After all, the
likelihood of choosing alloy wheels for car #1 might be affected by the price of alloy wheels on car
#2.  But, we should remember that those competitive effects of alloy wheels were already
principally accounted for in the first stage model.  These second-stage models only use the tasks in
the data file given that the respondent has selected the alternative/column of interest.

To review the characteristics of our dataset, we have 12 separate dependent variables that indicate
whether each option was chosen (category 1) or not (category 2, off state).  Let's consider the first
of those dependent variables Ch_Alloy1 (choice of alloy wheels on car #1).  One conceptually
reasonable model is that the likelihood of choosing alloy wheels for car #1 (concept #1) is a
function of the desirability of alloy wheels (captured as an ASC), the base price for car #1, the price



Tutorial: Configuring an Automobile 143

of alloy wheels in car #1, and perhaps also the prices of the sunroof, radio, and navigation system
for car #1.  This model's results are given below:

Only tasks in which Concept 1 (car #1) was chosen are included in this run (because we earlier
indicated that Ch_Alloy1 was conditional upon (only relevant when) Ch_Auto_Concept=1.  As we
examine the coefficients, we see the expected result that as the price of alloy wheels for car #1
increases, the likelihood of selecting alloy wheels on car #1 decreases (-0.40714).  But, interesting
to note is that alloy wheels and sunroof seem like substitutes, because the coefficient for the price
of sunroof is a positive 0.29877 with a relatively large t-ratio of 2.42992 (suggesting that such a
strong relationship is probably not due to chance).  We have scant evidence that the price of radio
is a significant effect (0.04719, t-ratio 0.38143), and whether in truth the effect is negative or
positive.  But, price of navigation system has a negative coefficient (-0.16616, indicating a possible
complementary good) with a t-ratio of -1.31420 (better than 80% confidence).  This is not a
particularly strong effect, but it suggests a probable relationship.

A big challenge with these second-stage models is that we do not know ahead of time (other than
for the own-effect) whether the price effects for options should be negative or positive.  We don't
know ahead of time their magnitude.  So, it is challenging to know whether to aggressively prune
the models and delete some of the variables or to just leave all the variables in, due to conceptual
hypotheses and consistency of application across all 12 models.  This model only has 6 parameters
to estimate, and conceptually it makes sense that the likelihood of configuring options for car #1
depends on all car #1 option prices.  Therefore, one could make an argument to retain all such
variables in each model.

Eleven additional models would be specified and estimated for the remaining items on the menu. 
For sake of space, we don't display their logit estimation results here.

Combinatorial Second-Stage Model Specification

The data set CarCombinatorialDVs.csv should be used for this section of the tutorial.  The labels file
for this study is named CarCombinatorialDVs Labels.csv.

If a goal of our research was to predict the combinatorial selections of items that would be made
by respondents, given specific pricing scenarios, then it would especially make sense to collapse
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some of the dependent variables via combinatorial coding.  For example, with four options under

alternative 1 (car #1), there are 24 = 16 possible ways to configure car #1.

q Alloy Wheels
q Moonroof/Sunroof
q XM Radio
q Navigation System

One possible listing of these 16 possible combinations is shown below:

(1=chosen, 2=not chosen)
Code Alloy Sunrf Radio NavSys
1 1 1 1 1
2 1 1 1 2
3 1 1 2 1
4 1 1 2 2
5 1 2 1 1
6 1 2 1 2
7 1 2 2 1
8 1 2 2 2
9 2 1 1 1
10 2 1 1 2
11 2 1 2 1
12 2 1 2 2
13 2 2 1 1
14 2 2 1 2
15 2 2 2 1
16 2 2 2 2

So, rather than code four separate dependent variables for Ch_Alloy1, Ch_Sunroof1, Ch_Radio1,
and Ch_Nav1, we could recode them in the dataset as a single dependent variable Ch_Options1

with 16 possible categories, where the 16th category is the not-chosen/off state.

Employing combinatorial coding of the choice of options within each alternative (column) leads to
4 rather than 13 total models to estimate:

Stage 1 prediction of Ch_Auto_Concept (3 categories)
Stage 2 prediction of Ch_Options1 (16 categories)
Stage 2 prediction of Ch_Options2 (16 categories)
Stage 2 prediction of Ch_Options3 (16 categories)

The first (Stage 1) model is the same as we showed before.  But, the remaining three Stage 2
models would be more complex than before, with more terms involved.  This additional
complexity would likely come with a payoff: the power to predict specific combinatorial choices
made by respondents with greater accuracy.  (Individual combinatorial choice predictions are only
possible in MBC software if employing HB estimation).
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One useful way to specify which independent variables predict categories of the combinatorial
dependent variables is as follows:

Variable Predicting Categories of Ch_Options
Concept1_Pr_Alloy 1-8
Concept1_Pr_Sunroof 1-4, 9-12
Concept1_Pr_Radio 1-2, 5-6, 9-10, 13-14
Concept1_Pr_Nav 1, 3, 5, 7, 9, 11, 13, 15

Thus, for each of the three Stage 2 models, the independent variable matrix would be composed of
16-1 ASCs, plus 4 generic price effects, each relevant to predicting 8 categories of the dependent
variable.  Such models should work quite well, especially with HB estimation, for predicting the
specific combinations of items each respondent will pick. 

Results

For our presentation at the 2010 Sawtooth Software conference (Orme 2010), we reported
predictive results for models extremely similar to the ones we've described in this section.  The
models built based on the 806 calibration respondents were able to predict aggregate choice
likelihoods for the 823 holdout respondents with an R-squared of about 0.96.
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13 Polytomous Logit

13.1 Polytomous Logit
In this section, we describe a type of discrete choice analysis called Polytomous Logit that MBC
supports, but is not supported by our CBC software.

A polytomous logit discrete choice study involves a categorical dependent variable taking on three
or more states.   Often, for a given choice task, the independent variables are held constant across
the different categories (alternatives) of the dependent variable, for example when the
independent variables are respondent characteristics.  In the model specification, alternative-
specific beta weights are associated with each categorical outcome.  So that the model converges
with stable utility estimates, one category (outcome) of the dependent variable has its utility set to
zero (an offstate for that category).

Consider the following example.  Imagine you are a social scientist who is studying an existing data
set involving choices that young unmarried women have made regarding pregnancies.  You are
researching the question of what will young unmarried women aged 21 and younger (with other
varying demographic characteristics) do when facing a decision regarding pregnancy?

a) Terminate the pregnancy
b) Keep the baby
c) Adopt out the baby

The data set consists of thousands of young unmarried women aged 21 and younger who became
pregnant.  In addition to the three categories of outcomes described above (the dependent
variable), we have other independent variables describing each young woman in the data set:

Dependent Variable:
1= Terminate the pregnancy (Off_State)
2= Keep the baby
3= Adopt out the baby

IV1: Age
1= <17 years
2= 17-18 years
3= 19-21 years

IV2: IQ
(zero-centered coding, with 0= average (100) IQ score.  To be treated as continuous

variable)

IV3: Employment
1= Not employed
2= Part-time employed
3= Full-time employed
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IV4: Parent_Status 
1= Divorced/Separated
2= Married/Together

IV5: HH_Income_Parents 
1= <$25K
2= $26K-$40K
3= $41K-$79K
4= $80K+

We display the beginning of the data set below, where each case (young woman) consists of a
single row in the file.  

Note that IV2 is the zero-centered IQ score for each young woman.  Since the average IQ is 100,
CASEID #1 has an IQ of 99.  CASEID #2 has an IQ of 85.  

Within the MBC software, the Variables tab should look as follows:

Note that the dependent variable is specified to include an offstate (for identification of the model
and to obtain convergence).  The offstate is the outcome category Terminate Pregnancy and is
constrained during utility estimation to have a 0 utility.  (We can assign any one of the three
categories as the offstate; the model fit is the same.)  Also note that we treat IV2: IQ as a
Continuous independent variable (what we call User Specified variable within our popular CBC/HB
software).  We treat the other nominal independent variables as categorical.
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In the Specify Models tab, we specify the following:

Note that the independent variables are entered twice within the design matrix.  Separate sets of
betas predict the category categories Keep Baby and Adopt Out Baby.  Terminate pregnancy is the
reference state and has a utility of zero for identification. 

For this data set, since there is only one observation per case, aggregate logit is the appropriate
model.

If the data consist of multiple observations per case, then we could consider running HB.  Any
respondent characteristics would be constant across tasks, so these may be used as covariates in
HB.  Only independent variables that vary across tasks for the respondent should be estimated as
betas within HB. 

For the pregnancy example we’ve been describing, once we run the aggregate logit model, we can
run a market simulation that could answer questions such as the following: 

What’s the probability of each outcome for a young lady with the following characteristics who
became pregnant?

17 year old girl
IQ of 105 (specify “5” in simulator)
Not employed
Parents married/together
Parents’ HH income $50K

The simulator reports predicted probabilities of the different decisions for a young lady with these
characteristics, such as shown below:
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45.00%  Terminate pregnancy
28.80%  Keep baby
26.20%  Adopt out baby

Although we have shown an example here involving the social sciences and decisions regarding
pregnancy, there are many marketing applications.  Traditional conjoint designs may be fielded
where the respondent is shown multiple product concepts (one at a time) and for each product
concept selects from three or more categories of action, such as:

Buy today for myself
Buy today for another person
Buy today for myself and another person
Not buy, but would recommend to others
Not buy, would not recommend to others
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14 Appendix: Technical Details

14.1 Chi-Square Computations
MBC's counting routines use the Chi-Square statistic to test the strength of relationship between
independent variables and choices on the menu (dependent variables).  A Chi-Square statistic also
is used to test whether such relationships are potentially non-linear.  The Chi-Square statistic
quantifies the amount of deviation between actual and expected frequencies of choice.  If the
differences are strong, then the likelihood of observing such differences due to chance is small.

Consider the following example for the Fast-Food study we've cited a number of times in this
documentation.  681 respondents each completed 8 menu tasks, for a total of 5,448 choices.  In
544 (9.99%) of those menu tasks, respondents selected Hamburger from the a la carte section of
the menu.

The counts report within MBC reports the following: 

Respondents included:  681
Total tasks included:  5,448

Dependent Var: Sandwich, Hamburger
Choice probability:  9.99%

Choice probability by levels of Indep Var:  Hamburger_Prices
$1.99 12.33%
$2.29   9.69%
$2.59   8.74%
$2.89   9.18%

Relationship Chi Square 10.66
D.F. 3
P-value 0.01

Non-Linearity Chi Square 2.86
D.F. 2
P-value 0.24



MBC v1.1152

14.2 Relationship Chi-Square
The "Relationship Chi-Square" is the Chi-Square statistic associated with the relationship between
the independent variable and the dependent variable.  If this value is high, it means that the price
of the hamburger seems to have a strong influence on the choice likelihood of hamburger.  We
describe the computation below. 

Chi-Square statics are computed using actual frequencies, rather than probabilities.  So, we first
examine the actual frequencies of the choices of hamburger in each category of prices for
hamburger:

Occurrence
In Design

Actual Choice
Frequencies

$1.99 1,362 168

$2.29 1,362 132

$2.59 1,362 119

$2.89 1,362 125

The random design we employed in the study (CBC's Shortcut design strategy) led to perfect
balance in the number of times the hamburger was shown at each of the price points (1,362
times).  When hamburger was offered at $1.99 (1,362 total times), it was chosen 168 times
(168/1,362 = 12.3%), which leads to the 0.123 probability reported by MBC software.

Next, we compute the expected frequencies, given the null hypothesis (that there is no
relationship between levels of the independent variable and choice of the dependent variable).   If
there were no relationship, we'd expect the choice frequencies of hamburger by level of
hamburger price just to be proportional to their actual occurrences in the design.  Since the levels
of hamburger price occurred an equal number of times in the design, the expected choice
frequency for each level is simply the total number of choices divided by four
(168+132+119+125)/4 = 136:

Actual
Frequencies

Expected
Frequencies

(fa - fe)
2/fe

$1.99 168 136 7.52

$2.29 132 136 0.12

$2.59 119 136 2.13

$2.89 125 136 0.89

Sum: 10.66

Next, we compute (fa – fe)2/fe for each row, where fa is the actual frequency and fe is the expected

frequency.  Summing across the rows, we obtain a total of 10.66, which is the Chi-Square statistic.  
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Next, we compute a p-value associated with that Chi-Square statistic, indicating the likelihood of
observing a Chi-Square of that size due to chance.  The p-value is 0.014, obtained from established
Chi-Square tables, given 3 Degrees of Freedom (D.F. is equal to rows-1=3 degrees of freedom).  If in
truth there were no relationship between the price of the hamburger and choice of hamburger,
and we fielded the study repeated times each time using a new sample, we would expect to see
such a strong Chi-Square statistic only 1.4% of the time.  In other words, we are 100% - 1.4% or
98.6% certain that the price of the hamburger has some sort of effect on choice likelihood of
hamburger.
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14.3 Non-Linearity Chi-Square
MBC software reports a second Chi-Square statistic, which tests whether the appropriate
functional form of the logit utility for predicting choice is linear or not.   If the test suggests that
linearity is an appropriate assumption, then specifying a linear term will save degrees of freedom
and lead to more parsimonious models.  If the test suggests that it is probable that a non-linear
function is more appropriate, then we suggest you investigate the log-linear or the part-worth
functional forms for parameterizing the independent variable.

Prior to explaining how the Non-Linearity Chi-Square is calculated, we should first review principles
of the logit model.  If a linear utility is used, the outcome of the logit rule for predicted likelihood
of choice will be non-linear.   For example, consider the following linear utilities for price:

Price Utility

$1 1.0

$2 0.5

$3 0.0

$4 -0.5

$5 -1.0

When we use the logit rule to predict probabilities of choice at the different price points, we see
that the resulting predicted choice probabilities are non-linear:
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Two statements about the relationship between logit utilities and predicted choice likelihoods are
useful to remember:

· The antilog of utility is proportional to choice likelihood

· Utilities are linearly related to the natural log of choice likelihood 

If you use MBC's counts module, plot counts probabilities for the effect of price on choice, and see
a curve like Figure A.2, it is very likely that a simple linear function for the price variable is the
correct functional form.  If, however, you see a linear-looking counts probabilities plot, it is likely
that a non-linear specification for the price variable is appropriate.  This seems counterintuitive, but
the non-linear transformation involved with applying the logit rule to predict probabilities of
choice leads to this outcome.

Now that we have laid some groundwork, we are ready to describe the computation of the non-
linearity Chi-Square statistic in MBC's counts module.

First, we calculate the choice likelihood at each of the levels of the independent variable:

Price
Levels

Occurrence
In Design

Actual Choice
Frequencies

Choice
Likelihood

$1.99 1,362 168 168/1362 = 0.1233

$2.99 1,350 132 132/1350 = 0.0978

$2.59 1,356 119 119/1356 = 0.0878

$2.89 1,397 125 125/1397 = 0.0895

The Expected Frequencies assuming a linear model are calculated by fitting a linear regression,
where Y is a vector containing the choice likelihoods, ln(Y) contains the natural log of the values in
Y, and the vector X contains the prices.  We regress ln(Y) on X.   Using the estimated slope and
intercept from that linear regression, we can compute the expected probabilities (Y) at each price
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point, and then multiply those expected probabilities by the occurrences in the design to compute
the expected frequencies.

The Actual Frequencies, the Expected Frequencies (from the regression, assuming a linear
relationship) and the Chi-Square computation are as follows:

Actual
Frequencies

(X)

Expected
Frequencies

(Y)

(f
a
 - f

e
)2/f

e

$1.99 168 157.78 0.66

$2.29 132 140.50 0.51

$2.59 119 126.79 0.48

$2.89 125 117.36 0.50

Sum: 2.15

Referring to the Chi-Square table (this time with 4-2 = 2 D.F., because two degrees of freedom are
used for fitting the earlier regression step), we compute a p-value of 0.34, indicating that we are
only 100% - 34% = 66% confident that appropriate functional form for the utility of price is non-
linear (part-worth form).  So, it appears that fitting with a simple linear model may be appropriate.

We can also use the procedure just described to compare the Expected Frequencies assuming a
log-linear functional form to the actual frequencies (we regress ln(Y) on ln(X)).  This can help us
determine whether a log-linear functional form may suffice in fitting non-linear data instead of the
more costly part-worth function.  Using a log-linear functional form requires just one estimated
parameter, and can fit modestly concave curve functions.
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14.4 Coding Choice Tasks
Each choice task is submitted to logit or HB estimation as a matrix, where the rows represent
categories of the dependent variables (choice alternatives) and the columns represent
independent variables that describe the alternatives.

Many dependent variables have a "not chosen" state.   There are multiple ways to code this, and
we have chosen to code the "not chosen" state as the default/reference level and to set its utility
to zero.  To do this, we employ dummy coding.

With a binary dependent variable where one level is the "not chosen" state, we construct the task
as if there were two choice alternatives: a choice of the item (such as a hamburger) vs. choice of
the "not chosen" alternative.   In regular CBC, we would refer to the "not chosen" alternative as the
"None."  We capture the alternative specific constant (ASC) for the "chosen" state (preference for a
hamburger) using a dummy coded independent variable column, labeled var1 below.

                            var1
Alternative #2 (hamburger)    1
Alternative #1 (None)         0

Other independent variables may describe the hamburger, such as its price and the prices of other
items.  These are coded as additional columns in the design matrix (such as var2 through v4 below),
with the "None" alternative always containing zero for all columns.  For example:

                             var1   var2   var3   var4
Alternative #2 (hamburger)     1   -0.667  0.500 -0.234
Alternative #1 (None)          0    0.000  0.000  0.000

Some menus involve dependent variables that take on more than one possible mutually exclusive
state.  Consider the choice of one size of French fries, vs. the choice of no French fries at all.  The
dependent variable is coded in the original data file (the .CSV file) as:

1 = No French fries
2 = Small French fries
3 =  Medium French fries
4 = Large French fries

When MBC software codes the alternative-specific constants for these choice alternatives, it is
coded as k-1 columns in the independent variable matrix, to avoid linear dependency.  The 4-1=3
columns look like:

                               var1   var2   var3
    Small French fries          1      0      0
    Medium French fries         0      1      0
    Large French fries          0      0      1
    No French fries (None)      0      0      0

Other independent variables may describe the alternatives, such as the prices for the different
sizes of French fries, and the prices of other items on the menu.  These are coded as additional
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columns in the design matrix (such as var4 and var5 below), with the "None" alternative always
containing zero for all columns.

                              var1   var2   var3   var4   var5
    Small French fries         1      0      0    -0.242  0.000
    Medium French fries        0      1      0     0.375  0.000
    Large French fries         0      0      1     0.000  0.655
    No French fries (None)     0      0      0     0.000  0.000

In the example above, var4 is a price effect that is common (generic) to both Small and Medium
French fries.  Var5 is an alternative-specific effect to Large French fries.

Note that we choose zero-centered coding for continuous independent variables such as price (as
described earlier in this appendix).  If independent variables are coded as "part-worth" functional
form, we employ dummy coding, where the reference level is coded as a row of 0s.  The utility of
the reference level is therefore set to zero.  We choose the "off state" as the reference level if an
off state level is indicated.  Otherwise, we arbitrarily choose the first level of the independent
variable as the reference level.
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14.5 Prior Covariance Matrix for HB Estimation
In our work with the CBC/HB system, we have found that for categorical independent variables,
there can be a bias in the utility estimate of the "reference" level under HB estimation.  The greater
the number of levels of the independent variable, and the fewer choice tasks available, the greater
the bias (Orme and Lenk, 2004, Lenk and Orme, 2009).  Peter Lenk provided a solution that we
have used very successfully within CBC/HB, and it involves some adjustments to the Prior
Covariance Matrix.  We employ those same adjustments for the dummy-coded independent
variables within the MBC software (and also for the Alternative-Specific Constants, ASCs).  This
happens automatically, and we refer the interested reader to the relevant documentation on the
prior covariance matrix within the CBC/HB documentation.
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14.6 Coding Linear and Log-Linear Functions
MBC software can estimate the effect of continuous independent variables (such as price) as linear
or log-linear functions.  If the true shape of the preference function is essentially linear or log-
linear, then coding the function in this manner reduces the number of independent variables to be
estimated in the model, cuts the time to estimate models, can reduce the likelihood of observing
reversals, and can lead to models with higher predictive validity.

Estimating linear or log-linear functions leads to a single parameter (beta coefficient) to be
estimated rather than multiple parameters (dummy-coded part-worth functions) that estimate the
utility at each price level.  In the case of a linear function, the prices for the menu items might be
entered as a single column of values in the design matrix, with values such as 1.50, 1.75, 2.00, and
2.25 (MBC further transforms such price values as described further below).  For log-linear
functions, the natural log of the price values may be used in the design matrix.  MBC manages the
design matrix for the user, so the data processing and natural log transformations are done
automatically (with further zero-centering and normalization steps described below).

In standard regression or logit models, the absolute scaling of independent variables is not
consequential to the convergence, fit of the model, or simulator predictions.  Whether we use
price values of 10, 20, or 30 in the independent variable matrix or 1.0, 2.0, or 3.0, the fit of the
model will be the same; only the magnitude of the coefficient will be different, by a factor of 10. 
But, when using HB, the absolute scaling of the independent variables will affect the convergence
of the model and accuracy of the coefficients.  Because our HB routine assumes prior means of 0
and prior variances that are uniform across the parameters, it makes it difficult for HB to converge
properly if the coded values for independent variables have vastly different variance.  So that you
can obtain consistently good results and relatively fast convergence, MBC software automatically
rescales the linear and log-linear values in the independent variable matrix to be zero-centered,
with a range of 1.  

For example, consider an independent variable (price) that was shown to respondents as $10000,
$20000, and $30000.  The user specifies that certain Level Values are to be associated with those
prices and used in the market simulator to specify menu scenarios.  Let's assume the user has
associated the values 10000, 20000, 30000 with the three levels of price.

Linear Coding Example

 Level   Shown to      Assigned         Transformed
 #      Respondents   Level Values  Values for IV Matrix
 1        $10,000        10000         -0.5
 2        $20,000        20000          0.0
 3        $30,000        30000          0.5

When the internal files are prepared (built) for HB analysis, values of -0.5, 0.0, and 0.5 are used in
the independent variable (IV) matrix rather than 10000, 20000, and 30000.  (Accomplished by zero-
centering the values and giving them a range of 1.0.)  This will obtain faster convergence and
unbiased estimates for HB.  During market simulations, the user specifies values for menu items on
the original 10000 to 30000 scale, but the simulator knows to transform those values back to the -
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0.5 to 0.5 scale prior to multiplying the X values by the utility coefficients and using those utilities
for logit rule simulation computations.

Below, we show the final transformed values used in the independent variable matrix when log-
linear coding is selected:

Log-Linear Coding Example

 Level   Shown to      Assigned         Transformed
 #      Respondents   Level Values  Values for IV Matrix
 1        $10,000        10000         -0.544
 2        $20,000        20000          0.088
 3        $30,000        30000          0.457

The transformed values used in the independent variable matrix are computed as follows.  First,
we take the natural log of the assigned level values:

 Assigned      Natural
 Level Values  Log
 10000          9.210
 20000          9.903
 30000         10.309

Next, we zero-center the transformed values, by subtracting the mean (9.808) from each of the
values:

 Assigned      Natural  Centered
 Level Values  Log      Values
 10000          9.210    -0.597
 20000          9.903     0.096
 30000         10.309     0.501

Last, we have found through years of working with HB on CBC datasets that our HB routine
converges quicker if the range of the independent variables is a small number, such as 1.0. 
Currently, the range is 0.501- -0.597 = 1.099.  So, we can obtain the desired range if we multiply
the centered values above by a factor of 1.0/1.099, leading to the following Final Rescaled Values:

 Assigned      Natural  Centered  Final
 Level Values  Log      Values    Rescaled Values
 10000          9.210    -0.597    -0.544
 20000          9.903     0.096     0.088
 30000         10.309     0.501     0.457

The Final Rescaled Values remain zero-centered (sum to zero), and they have a range of 0.457 - -
0.544 = 1.0.  (There is some rounding error in representing these with 3 decimal places of
precision.)

Using transformed values with a range exactly of 1.0 isn't an absolute requirement.  In our work,
any range scaled in the single digits works reasonably well within our HB estimation (where we've
assumed means of zero and uniform prior variance across the parameters).  A range of 1.0 seems
logical, since any dummy-coded parameters also range from 0 to 1 and have a range of 1.0.
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14.7 Utility Constraints
MBC studies frequently include independent variables for which almost everyone would agree
regarding whether it has a negative or positive relationship.  However, estimated parameters
sometimes turn out not to have those expected orders.  This can be a problem, since independent
variables with the wrong signs, are likely to yield nonsense results and can undermine users'
confidence.

MBC provides the capability of enforcing constraints on orders of part worth (dummy-coded)
functions, on signs of linear (or loglinear) coefficients, and between coefficients from continuous
(user-specified) coding.  The same constraints are applied for all respondents, so constraints should
only be used for variables that have unambiguous a-priori preference orders.  

Evidence to date suggests that constraints can be useful when the researcher is primarily
interested in the prediction of individual choices, as measured by hit rates for holdout choice tasks.
 However, constraints appear to be less useful, and sometimes can be harmful, if the researcher is
primarily interested in making aggregate predictions, such as predictions of shares of choices.  

Wittink (2000) pointed out that constraints can be expected to reduce variance at the expense of
increasing bias.  He observed that hit rates are sensitive to both bias and variance, so trading a
large amount of variance for a small amount of bias is likely to improve hit rates.  He also observed
that aggregate share predictions are mostly sensitive to bias since random error is likely to average
out, and share predictions are therefore less likely to be improved by constraints.

With MBC software, we employ the same method of constraints (Simultaneous Tying) as has been
employed for over a decade within CBC/HB software.   

Simultaneous Tying

This method features a change of variables between the "upper" and "lower" parts of the HB
model.  For the upper model, we assume that each individual has a vector of (unconstrained)
utility parameters, with distribution:

 
bi  ~ Normal(a, D)

where:

bi  = unconstrained parameters for the ith individual

a = means of the distribution of unconstrained parameters
D = variances and covariances of the distribution of unconstrained parameters

For the lower model, we assume each individual has a set of constrained parameters, bi where bi is

obtained by recursively tying each pair of elements of bi that violate the specified order constraints

(or setting to zero a coefficient with the wrong sign), and the probability of the ith individual
choosing the kth alternative in a particular task is
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pk = exp(xk' bi ) / j exp(xj' bi )

With this model, we consider two sets of parameters for each respondent: unconstrained and
constrained.  The unconstrained parameters are assumed to be distributed normally in the
population, and are used in the upper model.  However, the constrained parameters are used in
the lower model to evaluate likelihoods.

For dummy-coded functions, we speak of "recursively tying" because, if there are several levels
within an attribute, tying two values to satisfy one constraint may lead to the violation of another.
 The algorithm cycles through the constraints repeatedly until they are all satisfied. 

When constraints are in force, the estimates of population means and covariances are based on
the unconstrained parameters.  However, since the constrained parameters are of primary interest,
we report the average of the constrained parameters on-screen.

When constraints are employed, two kinds of changes can be expected in the on-screen output:

Measures of fit (Pct. Cert. and RLH) will be decreased.  Constraints always decrease the goodness-
of-fit for the sample in which estimation is done.  This is accepted in the hope that the constrained
solution will work better for predictions in new choice situations.

Measures of scale (Avg. Variance and Parameter RMS), which are based on unconstrained
parameters, will be increased.  The constrained parameters have less variance than the
unconstrained parameters, because they are produced by tying unconstrained values.  Since
constrained parameters are used to assess the fit of the model to the data (by computing
likelihood), the constrained values take on the "correct" scaling, and the unconstrained values
therefore have greater variance.

You may impose constraints on dummy-coded, linear, or loglinear coded independent variables.
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