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Importance of CBC (Choice-Based Conjoint) 
 
Over the last decade, hierarchical Bayes (HB) estimation of part-worths has had a significant and 
positive impact on the analysis of discrete choice (CBC) data.  Certainly, HB has been key to the 
emergence of CBC (Choice-Based Conjoint) as the most popular conjoint-related method 
(Sawtooth Software, 2003).  Sawtooth Software released its CBC/HB software for estimating 
part-worths from CBC questionnaires in 1999, based on earlier work published by Greg Allenby 
and Peter Lenk (Allenby et al. 1995, Lenk et al. 1996), as well as workshops given by Allenby & 
Lenk at the American Marketing Association’s ART/Forum conferences.  Although the focus of 
this paper is on the use of CBC/HB for analyzing CBC data, similar data such as MaxDiff will 
also benefit from the use of covariates. 
 
The Basic Hierarchical Model 
 
Hierachical Bayes models require repeated measures per respondent.  In CBC questionnaires 
each respondent picks the best alternative from multiple choice tasks.  Repeated measures are 
needed to measure within- and between-respondent variation.  The hierarchical Bayes model is 
called hierarchical because it models respondents’ preferences as a function of an upper-level 
(pooled across respondents) model and a lower level (within-respondents) individual-level 
model.  At the individual-level, the respondent is assumed to choose product concepts according 
to the sums of part-worths as specified in the logit model.  The lower-level model is also a 
standard feature of non-Bayesian models.  The upper-level model describes the heterogeneity in 
the individual part-worths across the population of respondents.  At the upper-level, the basic HB 
approach assumes that respondents are drawn from a multivariate normal distribution, with part-
worths (ßi) distributed with means α and covariance matrix D,  ßi  ~ Normal(α, D), where the 
subscript i is the respondent.  HB determines the optimal weight of the upper level and lower 
level models in estimating part-worth estimates for each individual, resulting in high posterior 
probability that the part-worths (ßi) fit respondent choices, given that respondents are drawn 
from the population distribution.  In application, the upper-level model plays the role of a prior 
when estimating each respondent’s part-worths, and the lower-level model provides the 
likelihood.  Because it leverages information from the population parameters α and D, HB is able 
to estimate stable and useful part-worths for each individual even in the case of relatively sparse 
data. 
 
Versions 1 through 4 of Sawtooth Software’s CBC/HB program used a simple assumption: that 
respondents were drawn from a single population of normally distributed part-worths.  

                                                            
1 The authors gratefully acknowledge Rich Johnson, Peter Lenk, and Jeffrey Dotson who provided helpful 
comments and suggestions regarding this article. 
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Throughout this paper we will refer to this as generic HB.  While this assumption may seem 
overly simple, it actually performs quite well in practice.  The single-normal-population 
assumption is only an influencing factor on the final part-worth estimates, and does not constrain 
the final part-worths to reflect normality.  Since HB represents a weighted combination of the 
upper- and lower-level models, if enough information (i.e. choice tasks) is available at the 
individual-level, the influence of the upper-level model is much less than the lower-level model, 
which seeks only to fit each individual’s choices.  For example, the authors have seen bimodal 
distributions for a brand part-worth result from HB estimation of CBC data, because the strong 
bimodal preference for the brand as exhibited by individuals in the sample was an overriding 
factor in the weighting.  The influence of the upper-level model provides some degree of 
Bayesian shrinkage toward the global mean, which tends to smooth the distribution somewhat, 
with a tendency toward normality.  But again, if a substantial number of choice tasks are 
available relative to the number of parameters to be estimated (as is typical with CBC 
applications in practice), the Bayesian shrinkage is usually modest, making the troughs less deep 
in multi-modal distributions of preference, and drawing the means for distinct populations of 
respondents closer together.  The bottom line based on extensive simulation studies and 
experience is that HB estimation is fairly robust to the normal assumption of part-worth 
heterogeneity. 
 
The Possibility of Covariates 
 
Despite the general success of CBC/HB software with the assumption of single population 
normality, there are some instances where CBC/HB users have raised concerns: 
 

• In situations in which a segment of respondents (with divergent preferences) is 
oversampled, this can bias the estimates for the segment means as well as the overall 
population means – which especially can bias the betas for the undersampled group of 
respondents (Howell, 2007). 

• When conducting segmentation studies, some researchers have expressed concern that 
distances between segment means are diminished (because HB shrinks the individual 
estimates of the part-worths towards the population mean), whereas clients like to see 
large differences between segments. 

• Advanced HB practitioners have recommended that in many cases, well-chosen 
covariates can provide additional information to improve parameter estimates and 
predictions. 

• The notion that respondents are drawn from a single normal population has struck many 
researchers and their clients as unrealistic. 

 
Some early applications of HB estimation of part-worths for conjoint experiments used a more 
flexible definition of the upper-level model in HB (Lenk et al. 1996).  Rather than assuming that 
all respondents were drawn from a single multivariate-normal distribution, they allowed a more 
flexible definition of the population distribution based on respondent characteristics (covariates).  
Covariates is another term for additional independent variables that may be predictive of some 
outcome (the dependent variable).  Often, we think of covariates such as common demographics 
like gender, age, income, company size, geographic location, etc.  Unfortunately, these variables 
often have low correlation with preferences within choice contexts.  The most useful covariates 
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bring exogenous information (outside the information already available in the choice tasks) to the 
model to improve the estimates of part-worths and improve market predictions.  In the example 
shown in this paper, the dollar amount respondents expected to pay for their next PC purchase 
was a useful covariate to improve part-worth estimates that included such attributes as brand 
preference, PC performance, and price sensitivity. 
 
More formally, rather than assume respondents are drawn from a normal distribution with mean 
vector α and covariance matrix D, an HB model with upper-level covariates assumes that 
respondents’ part-worths are related to the covariates through a multivariate regression model: 
 

βi = Θ’zi + εi where εi ~ Normal(0,D) 
 
where Θ is a q by b matrix of regression parameters, zi is a q vector of covariates, and εi is a b 
vector of random error terms.  The part-worths are drawn from a normal distribution with means 
Θ’zi.  Instead of shrinking the individual estimates to the population mean α, the multivariate 
regression model shrinks them to the conditional mean Θzi given the subject’s covariates.  For 
example, if gender is a covariate, and preferences differ between the genders, then a woman’s 
part-worths are shrunk toward those of other women, while a man’s part-worths are shrunk 
toward those of other men.  In contrast, generic HB shrinks both men’s and women’s part-worths 
to a common population mean for all subjects. In this way, the multivariate regression, upper-
level model can automatically use observed, segment basis variables (e.g. Gender, Security 
Seeking, Experience, etc.) to refine the estimation of the part-worths and increase the distinction 
between segments. 
 
If there are n subjects in the study, the model for all of the {βi} can be written in matrix notation, 
which we give here for completeness.  Let B be a n by b matrix where the ith row consists of the 
part-worths βi for subject i.  Then 
 

B = ZΘ + Δ  
 
where Z is a n x q matrix with zi in the ith row; Θ is a q by b matrix of regression coefficients, 
and Δ is a matrix normal distribution with εi in the ith row. 
 
In the generic HB model with the single normal population assumptions, there are b + [b(b+1)]/2 
parameters to be estimated in the upper-level model, where b is the number of part-worths for 
each individual.  Breaking that equation down, assuming there are b parameters for the mean 
population parameters (α), and since the covariance matrix (D) is symmetric, there are [b(b+1)]/2 
parameters to estimate on and above the diagonal.  With covariates in the upper-level model, 
there are bq parameters to be estimated in the upper model, where b is the number of part-worths 
and q is the number of covarariate parameters (dummy-coded for categorical variables, and with 
the possibility of continuous variables).  If Gender was the covariate, consisting of males and 
females, q would equal 2.  There would be one set of parameters (for each part-worth) for the 
intercept and one additional set of parameters (again, one for each part-worth) for the dummy 
contrast between males and females. Including covariates in the upper-level model doesn’t alter 
the estimation of covariance matrix D.  This makes it a more parsimonious model than separating 
the sample by gender and running generic HB within the separate samples.  In that case, the 
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vector of sample means (16 parameters, in our example that follows)) plus the covariance matrix 
consisting of [16(16+1)]/2 = 136 parameters would have to be estimated for the upper model in 
each sample.  Estimating as a single HB run with a dummy-coded covariate for gender saves 136 
parameters in the upper-level model versus segmenting the data set and running generic HB 
within the separate samples.  A few covariate columns (when dummy-coded) added to an HB run 
increases the length of the run time, but typically by only about 10 to 25%.   
 
The covariates HB model can be estimated in much the same way as the generic HB model using 
MCMC and a Gibbs Sampler.  The only difference is that instead of using a common α for all 
respondents, respondents are compared to their predicted mean based on the characteristics in 
their specific ZΘ vector.  In addition, instead of estimating α from a multivariate normal 
distribution, Θ is drawn from a Matrix Normal distribution with means 0 and variances 100.  For 
more details on MCMC and the Gibbs Sampler please see the CBC/HB Technical Paper from 
Sawtooth Software (Sawtooth Software 2005). 
 
Sawtooth Software investigated extending the CBC/HB software to include covariates in the 
upper-level model as early as about 2001.  Peter Lenk was helpful to us as we developed code 
for that investigation.  After examining a few data sets, our feeling was that although covariates 
seemed to offer modest benefit in specific cases, we worried about burdening our CBC/HB users 
with additional decisions about the choice of covariates.  We were more concerned that users 
could obtain good results quite automatically, without giving rise to user angst regarding whether 
more should be done by investigating a number of potential covariates.  Because HB was a 
relatively new technique at the time, and because each HB run often took 4 hours or more given 
hardware technology in 2001, we decided to keep our CBC/HB software as straightforward and 
parsimonious as we could. 
 
In 2001, Sentis and Li undertook a large investigation using our CBC/HB software to determine 
if improvements in hit rates could be seen by first segmenting the sample by meaningful 
covariates and running generic HB separately within each sample (Sentis and Li, 2001).  The 
overall hit rates after recombining the samples were no better across 7 datasets (each with n=320 
to n=800) than when respondents were simply combined.  The additional parameters involved in 
estimating a new covariance matrix D for each subsample likely swamped the possible 
improvements that could have been seen by allowing respondents’ part-worth estimates to be 
influenced (via Bayesian shrinkage) only by their peers. 
 
Example Using the PC Dataset 
 
In the early 1990s, IntelliQuest and McKinsey collected a CBC dataset regarding the purchase of 
PCs by purchase managers at organizations.  They shared the data with Sawtooth Software, and 
we have shipped the data set as an example with installations of our SMRT platform.  The data 
set includes 326 respondents who answered an 8-task CBC study.  Each task included 3 product 
alternatives plus a “None” option.  The products were defined on 6 attributes, as a 344151 design 
(16 parameters to be estimated, when including the “None” constant).  Twelve percent of the 
choices were “None.”  In addition to the CBC tasks, respondents were asked a number of 
questions regarding their demographics/firmographics, including questions such as “how much 
do you plan to spend on the next PC you plan to purchase?” 
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Using CBC/HB v5 under its default settings (10,000 preliminary iterations, 10,000 used 
iterations), the history of the run looks as follows: 
 

Exhibit 1 
Standard (Generic) HB Runtime Display 

 
 
The history of mean beta across iterations suggests convergence after about 5,000 iterations.  The 
mean posterior estimates of betas are summarized for each respondent as point estimates (an 
average of all 10,000 draws for each respondent) within the pc_utilities.csv file.  The average 
RLH (Root Likelihood) fit across respondents was 0.758; though in the data file, CBC/HB 
reports RLH as RLH  x 1000, so the average fit you can compute by taking the mean of the RLH 
column is 758. 
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The mean point estimates of part-worths for the sample are shown in Table 1: 
 

Table 1 
Mean Part-Worths, Generic HB Run 

 
1.78  Brand A 
1.03  Brand B 
0.32  Brand C 
‐1.01  Brand D 
‐2.12  Brand E 

‐4.78  Below average performance 
1.11  Average performance 
3.67  Above average performance 

‐0.19  Order over the telephone 
0.06  Obtain from a retail store 
0.14  Obtain from a sales person at your site 

‐1.65  90 day warranty 
0.18  1 year warranty 
1.46  5 year warranty 

‐2.21  Ship back to mfg for service 
0.66  Service at local dealer 
1.54  On‐site service 

2.10  Low Price 
1.40  Med‐Low Price 
‐0.95  Med‐High Price 
‐2.55  High Price 

0.78  NONE 
 

One of the available variables asked outside the CBC questions was the amount the respondent 
planned to spend on the next PC purchased.  It was coded as 5 categories: 
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Table 2 

Distribution of Responses, ExpectToPay Covariate 
 
 Category  # Respondents  % of Respondents 

1) $1,000 to $1,499 61   18.7% 
2) $1,500 to $2,499 194   59.5% 
3) $2,500 to $3,499 51   15.6% 
4) $3,500 to $4,299 10   3.1% 
5) $4,300 or more 7   2.1% 

Missing  3   0.1% 
 
If we collapse respondents into two groups (plan to spend <$2,500; plan to spend $2,500+), we 
can examine the differences between these two groups using simple Counting analysis of main 
effects (percent of times each level was chosen, when available): 
 

Table 3 
Counting Analysis by Segments based on ExpectToPay Covariate 

 
Brand (customized per respondent) by ExpectToPay

 Total <$2,500 $2,500+ 
Total Respondents 326 255 68 

Brand A 0.41 0.39 0.48 
Brand B 0.32 0.33 0.31 
Brand C 0.29 0.30 0.27 
Brand D 0.24 0.25 0.19 
Brand E 0.20 0.21 0.16 

    
Within Att. Chi-Square 140.93 80.61 70.94 
D.F. 4 4 4 
Significance p < .01 p < .01 p < .01 
    
Between Group Chi-Square 11.78   
D.F. 4   
Significance p < .05   
    

    
    

Performance by ExpectToPay  
 Total <$2,500 $2,500+ 

Total Respondents 326 255 68 
Below average performance 0.08 0.09 0.06 

Average performance 0.30 0.31 0.26 
Above average performance 0.50 0.50 0.52 

    
Within Att. Chi-Square 792.97 583.69 207.74 
D.F. 2 2 2 
Significance p < .01 p < .01 p < .01 
    
Between Group Chi-Square 6.13   
D.F. 2   
Significance p < .05   
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Channel by ExpectToPay   

 Total <$2,500 $2,500+ 
Total Respondents 326 255 68 

Order over the telephone 0.28 0.28 0.27 
Obtain from a retail store 0.29 0.30 0.30 

Obtain from a sales person at your 
site 

0.31 0.31 0.28 

    
Within Att. Chi-Square 3.21 3.50 0.64 
D.F. 2 2 2 
Significance not sig not sig not sig 
    
Between Group Chi-Square 0.77   
D.F. 2   
Significance not sig   
    

    
    

Warranty by ExpectToPay  
 Total <$2,500 $2,500+ 

Total Respondents 326 255 68 
90 day warranty 0.21 0.21 0.21 
1 year warranty 0.30 0.30 0.28 
5 year warranty 0.37 0.38 0.36 

    
Within Att. Chi-Square 114.69 93.85 23.03 
D.F. 2 2 2 
Significance p < .01 p < .01 p < .01 
    
Between Group Chi-Square 0.25   
D.F. 2   
Significance not sig   
    

    
    

Service by ExpctToPay   
 Total <$2,500 $2,500+ 

Total Respondents 326 255 68 
Ship back to mfg for service 0.19 0.18 0.19 

Service at local dealer 0.32 0.32 0.30 
On-site service 0.38 0.39 0.36 

    
Within Att. Chi-Square 172.02 144.22 27.99 
D.F. 2 2 2 
Significance p < .01 p < .01 p < .01 
    
Between Group Chi-Square 0.60   
D.F. 2   
Significance not sig   
    

    
    

Price (customized per respondent) by ExpectToPay
 Total <$2,500 $2,500+ 

Total Respondents 326 255 68 
Low Price 0.40 0.42 0.33 

Med-Low Price 0.36 0.37 0.31 
Med-High Price 0.23 0.22 0.28 

High Price 0.18 0.17 0.20 
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Within Att. Chi-Square 224.93 222.60 13.96 
D.F. 3 3 3 
Significance p < .01 p < .01 p < .01 
    
Between Group Chi-Square 16.12   
D.F. 3   
Significance p < .01   
    

    
    

None by ExpectToPay   
 Total <$2,500 $2,500+ 

Total Respondents 326 255 68 
None chosen: 0.12 0.11 0.15 

    
Between Group Chi-Square 7.51   
D.F. 1   
Significance p < .01   
        

We see that the percent of times different levels are chosen is often significantly different 
between the two segments of respondents.  For example, the “low expect to pay group” chose 
Brand A 39% of the time, but the “high expect to pay group” chose Brand A 48% of the time.  
The Between Group Chi-Square test shows that Brand and Performance have p values <.05, and 
the Price attribute and None parameters have p values <.01.  This indicates that the probability of 
observing these differences in the choice probabilities by chance for levels of these attributes is 
less than 5% for Brand and Performance, and less than 1% for Price and None. 
 
We might summarize some of the differences observed in Table 3 with statements like the 
following: 
 

Compared to respondents who expect to pay less than $2,500, respondents who expect to pay 
$2,500 or more for their next PC… 
 

• Are more likely to favor Brand A (a premium brand), and less likely to prefer Brands 
D or E (discount brands) 

• Are more likely to prefer better Performance 
• Are less price sensitive 
• Use the “None” option more often 

 
Given some of the strong differences in preference between the groups (especially on price 
sensitivity), it might make sense to investigate using this variable (ExpectToPay) as a covariate 
in a new HB run. 
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Including a Covariate in CBC/HB v5 Software 
 
To include a covariate in a CBC/HB run, we first need to associate a CSV formatted file with the 
project that includes the CaseID and demographic/segmentation information.   
 

Exhibit 2 
Specifying Data Files in CBC/HB v5 

 

 
 
In the demographics.csv file, we did two things to pre-process the ExpectToPay variable.  Recall 
that the ExpectToPay variable was coded as 5 categories.  First, we resolved the 3 cases with 
missing data by simply imputing the modal value (2).  Next (in Excel), we computed the mean of 
the ExpectToPay column across respondents, and then subtracted that mean value from each 
respondent’s ExpectToPay value, thus zero-centering the values.  This isn’t necessary, but it 
makes it easier to interpret the Θ weights associated with the intercept and the ExpectToPay 
variable.  These weights are written to the studyname_alpha.csv file (rather than the standard 
estimates of alpha, as in the generic HB run). 
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The demographics.csv file (when viewed in Excel) looks like: 
 

Exhibit 3 
CSV-Formatted File Containing Demographic/Covariate Information 

 

 
 
CaseID is the first variable, the zero-centered ExpectToPay variable is the second column, and 
other segmentation variables that could be employed as covariates are shown in the other 
columns. 
 
Then, on the Advanced tab in CBC/HB v5, we reveal the Covariates table, and select to include 
ExpectToPay.  The software automatically detects that the variable is type Continuous. 
 
  

11 
 



Exhibit 4 
Selecting Covariates in CBC/HB v5 
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When we estimate the model, the runtime display looks identical to the original default run: 

 
Exhibit 5 

Runtime Display of HB Run with Covariates 
 

 
 
The speed of the iterations is one per every 0.018 seconds rather than one per every 0.017 second 
with the default run.  Running HB with a single continuous covariate makes the iterations only a 
slight bit slower.  To complete 20,000 iterations takes about 6 minutes, on just a mediocre to 
ordinary PC by today’s standards.  (Quite a far cry from the 6+ hour runs commonly experienced 
a decade ago!) 
 
The summary statistics for this run look quite similar to the generic HB run shown earlier, except 
for the fit (RLH) and scale (Parameter RMS) of the parameters seem a bit higher.  Examining the 
PC_utilities.csv file, we find that the average fit for the part-worths (RLH  x 1000) is 770.  This 
compares to 758 for the generic HB run.  The fit has slightly improved, but an improvement in fit 
for the individual part-worths in predicting respondent choices does not necessarily mean a better 
set of part-worths and a better model.  Overfitting has occurred if improved fit to choices used in 
estimating part-worths does not lead to improved fit to choices held out of part-worth estimation 
and used for validation.  We’ll speak more to that later. 
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Two important files that are produced are: 
 

PC_utilities.csv (contains the point estimates of part-worths for each respondent.  The 
point estimates are the average of the 10,000 used draws of beta).  The same information 
is saved to the PC.hbu file, for those who wish to take this information to Sawtooth 
Software’s market simulator. 
 
PC_alpha.csv (contains the estimates of alpha for each of the 20,000 draws.  In the 
generic HB run, these are the estimates of population means for each of the part-worths. 
But, with our covariates run that includes a single covariate coded as a continuous 
variable, we find two sets of weights associated with each of the levels in the study.  The 
first set of weights represents the mean population estimates of part-worths (the intercept 
of the covariates regression) when the covariates are dummy-coded as a row of zeroes in 
the covariate design matrix (representing the reference/last levels if using categorical 
covariates).  In our situation, we have just one covariate, it’s a continuous variable, and it 
is zero-centered.  So, the first set of weights represents the population estimates of part-
worths when the ExpectToPay variable is at zero.  Since a zero represents the average 
value for the population on ExpectToPay, the first set of part-worth population estimates 
will correlate nearly 1.0 with the mean point estimates of beta from the PC_utilities.csv 
file.  The second set of weights associated with each part-worth level in the PC_alpha.csv 
file is the set of regression weights associated with each part-worth to represent the 
adjustment in the population mean that is expected for each unit increase in 
ExpectToPay.   
 

Table 4 contains the average of the last 10,000 draws in the PC_alpha.csv file for both the mean 
population part-worth estimates when the covariate is in its zero state (the intercept), as well as 
the regression weights associated with the ExpectToPay variable.  We have bolded any 
parameters where the draws are >95% positive or >95% negative. 
 

Table 4 
Theta Weights for Covariates Run 

 
 Intercept ExpectToPay 
Brand A  1.89 0.87 
Brand B  1.08 0.44 
Brand C  0.34 ‐0.23 
Brand D  ‐1.08 ‐0.26 
Brand E  ‐2.23 ‐0.83 
Below average performance  ‐5.28 ‐0.63 
Average performance  1.28 ‐0.01 
Above average performance  3.99 0.64 
Order over the telephone  ‐0.20 ‐0.07 
Obtain from a retail store  0.03 0.05 
Obtain from a sales person at your site  0.17 0.02 
90 day warranty  ‐1.76 0.02 
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1 year warranty  0.16 ‐0.13 
5 year warranty  1.60 0.11 
Ship back to mfg for service  ‐2.40 0.25 
Service at local dealer  0.75 ‐0.11 
On‐site service  1.65 ‐0.14 
Low Price  2.32 ‐0.81 
Med‐Low Price  1.49 ‐0.37 
Med‐High Price  ‐1.01 0.45 
High Price  ‐2.80 0.73 
NONE  0.95 0.40 

 
This output means that the expected value or regression function for the part-worth for Brand A 
is: 
 
   βBrand A  = 1.89   + 0.87*ExpectToPay 
 
If a subject expects to pay a lot, then he or she most prefers Brand A (after accounting for the 
other attributes).  

 
The mean of Theta draws for the intercept is almost perfectly correlated with the original mean 
part-worths shown in Table 1, but with a slightly larger scale (this is expected, given the slightly 
higher fit of the covariate run).  Examining the magnitude of the Theta draws associated with the 
ExpectToPay covariate as well as the percent of draws that are positive helps us determine if the 
covariate was useful and has face validity.  When the percent of draws that are positive is >95% 
or <5%, it suggests that these covariate weights are significantly different from zero, at or better 
than the 90% confidence level (two-sided test). 
 
The draws of covariate weights suggest that as ExpectToPay increases, the following part-worths 
increase: 
 

• Brand A 
• Brand B 
• Above Average Performance 
• Med-High Price 
• High Price 

 
This makes perfect sense, because brands A and B are premium brands, people who plan to 
spend more will likely place greater emphasis on getting above-average performance, and such 
people will also have lower price sensitivity (leading to relatively higher utility for higher price 
points than respondents who expect to pay less).  
 
And, the covariate weights suggest that as ExpectToPay increases, the following part-worths 
decrease: 
 

• Brand E 
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• Below Average Performance 
• Low Price 
• Med-Low Price 

 
It’s clear that these relationships also make sense, since Brand E is a discount brand, below 
average performance should appeal less to folks planning to spend more, and the two low price 
points should be less attractive to those who plan to spend more. 
 
This information very closely confirms the differences we saw from the counts analysis that 
compared respondents (by separating them into two groups) based on stated ExpectToPay (see 
Table 3).  And, since the regression weights are based on a continuous representation of the 
ExpectToPay variable (instead of the simple truncation into two groups as used in the counting 
analysis), as well as a full Bayesian estimation of the choice model following the logit rule, we 
should place much greater confidence in the HB results and its estimates of how ExpectToPay 
affects preferences and choice. 
 
Holdout Predictions 
 
In a separate analysis, we re-ran the generic HB run as well as the covariate run described above.  
We also included a second covariate run where we indiscriminately threw all five covariate 
variables available to us into the run (without examining their potential usefulness as 
discriminators of preference or looking for multicolinearity problems).  In this HB estimation, 
we held out one task for validation and used the other seven tasks for part-worth estimation 
(repeating this analysis eight times, holding out a different task in each case).  We examined both 
the hit rate for predicting the holdout choice, as well as the likelihood according to the logit rule 
that the each respondent would pick the concept he/she actually chose.  The hit rates and 
likelihood of the holdout choice (averaged across all eight replications) are given in Table 5 
below.  For each run, we bold the run that has the best performance. 
 

Table 5 
Hit Rates for HB Runs 

 
Held-Out Task  Model   Hit Rate Likelihood 
Task 1    Generic HB Run 65.0%  62.8% 
Task 1    1 Covariate Run 65.3%  63.4% 
Task 1   5 Covariate Run 62.3%  61.4% 
 
Task 2    Generic HB Run 64.7%  62.5% 
Task 2    1 Covariate Run 67.2%  64.3% 
Task 2   5 Covariate Run 65.0%  64.0% 
 
Task 3    Generic HB Run 69.0%  66.7% 
Task 3    1 Covariate Run 69.9%  66.2% 
Task 3   5 Covariate Run 69.6%  67.6% 
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Task 4    Generic HB Run 63.8%  62.8% 
Task 4    1 Covariate Run 64.7%  62.0% 
Task 4   5 Covariate Run 62.6%  61.9% 
 
Task 5    Generic HB Run 68.1%  64.8% 
Task 5    1 Covariate Run 69.3%  65.6% 
Task 5   5 Covariate Run 63.8%  63.9% 
 
Task 6    Generic HB Run 64.7%  62.8% 
Task 6    1 Covariate Run 64.1%  62.6% 
Task 6   5 Covariate Run 63.8%  64.0% 

 
Task 7    Generic HB Run 66.0%  63.6% 
Task 7    1 Covariate Run 66.3%  64.3% 
Task 7   5 Covariate Run 66.0%  64.8% 

 
Task 8    Generic HB Run 65.3%  61.9% 
Task 8    1 Covariate Run 64.4%  61.8% 
Task 8   5 Covariate Run 62.9%  62.8% 
-------------------------------------------------------------------------------- 
Average  Generic HB Run 65.8%  63.5% 
Average  1 Covariate Run 66.4%  63.8% 
Average  5 Covariate Run 64.5%  63.8% 

 
The average of all eight runs shows a slight edge for the covariates model for both measures. 
But, the covariate run with a single covariate (ExpectToPay) is the best across both the raw hit 
rate and probability of the holdout choice.  Adding covariates indiscriminately to the run has not 
improved matters.  But, the fact that holdout prediction stayed fairly consistent when fairly 
useless covariates were added to the run is evidence of general robustness to even poor 
specification of covariates. 
 
Discrimination among Respondents and Segments 
 
Holdouts, while common measures of quality of part-worths, are only one way to examine the 
usefulness of the data.  An aim when using covariates is to promote Bayesian shrinkage toward 
respondents that share meaningful characteristics (such as, in our example, ExpectToPay).  A 
common complaint about generic HB is that in the case of sparse data, it obscures differences 
between segments due to shrinkage to the global mean.  To investigate this issue, we used one of 
the replicates from the holdout analysis above (HB runs using the first 7 choice tasks).  We 
compare the importance scores (best minus worst levels for each attribute, percentaged across 
attributes to sum to 100) between three groups, segmented by the amount respondents expect to 
pay for their next PC (see Table 6).  In the final column, we compute the absolute spread in 
importance scores across the three segments of respondents.  For example, in the generic HB run, 
the absolute difference between Brand importance scores across the three segments is 23.39 
minus 17.28, or 6.10 points.  The larger the spread, the greater differentiation among segments 
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on the part-worths.  Clients typically like to see large and meaningful differences between 
groups, as it helps clarify and direct segmentation strategy. 
 

Table 6 
Importance Scores for Three Segments 

 
Average Importances by ExpectToPay (Generic HB Run)
 

 Total <$1,500 $1,500 to 
$2,499 

$2,500+ Spread 

 (n=326) (n=61) (n=194) (n=68)  
      

Brand  19.53 17.28 18.90 23.39 6.10 
Performance 31.24 29.88 31.16 32.58 2.70 

Channel 4.58 4.61 4.64 4.45 0.19 
Warranty 12.35 11.84 12.96 11.31 1.65 

Service 14.80 16.22 14.60 13.98 2.24 
Price 17.49 20.17 17.74 14.30 5.87 

Average Importances by ExpectToPay (Covariates HB Run)  
  

 Total <$1,500 $1,500 to 
$2,499 

$2,500+ Spread 

 (n=326) (n=61) (n=194) (n=68) 
 

 

Brand 20.22 15.96 19.58 25.90 9.94 
Performance 31.59 28.55 31.43 34.62 6.07 

Channel 4.30 4.65 4.30 4.00 0.65 
Warranty 11.99 11.66 12.58 10.82 1.76 

Service 14.48 15.97 14.38 13.30 2.67 
Price 17.42 23.23 17.72 11.37 11.86 

 
The second half of Table 6 shows that when the covariates run (the covariate run with a single 
covariate ExpectToPay) is used, the segments are separated much more.  The spread is nearly 
double for Price and Performance importance (vs. the generic HB run), and 50% higher for 
Brand importance.  The enhanced spread is not an artificial increase in differences between 
people, but a more true representation of their segment means because we have a more accurate 
representation of population means in the upper-level model.  Enhanced discrimination between 
meaningful segments of the population not only makes segmentation analysis more robust and 
accurate, but it should also reduce IIA problems when conducting market simulations. 
 
These results are based on a single data set, so we should be cautious in drawing general 
conclusions from this regarding the value of covariates in HB modeling.  However, academics 
and leading practitioners have been applying covariates in HB modeling of conjoint data for over 
a decade now, and we at Sawtooth Software are relative novices regarding this subject.  Leading 
academics tell us that they regularly achieve modest improvements in the predictive validity of 
models if the covariates are chosen wisely.  But, they also make it clear that improving 
predictions isn’t the main reason for using covariates; modeling heterogeneity and understanding 
segments is the primary benefit.  Our results suggest that covariates slightly improve hit rates, 
but significantly enhance discrimination between segments for sparse CBC datasets.  They also 
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allow us to test more formally (by examining the percentage of draws of theta that are negative 
or positive) the differences between segments on the part-worths. 
 
Suggestions for Practice 
 

1. Avoid trying to use too many covariates in the model.  It is generally unwise to throw lots 
of covariates into the model without first confirming their potential usefulness.  Try to 
focus on just a few covariates that add relatively few columns to the covariate design 
matrix.  If the variable can be treated as continuous, it is often helpful to do so rather than 
to categorize it as categorical dummies.  One can save many parameters to be estimated 
without sacrificing much information by using a continuous variable as a covariate. 
 

2. As with any multiple regression application, if using more than one covariate in the HB 
model, take care to examine whether the covariates are hindered by multicollinearity.  If 
covariates exhibit high multicollinearity, the analyst could use factor scores in the upper-
level model.  For example, if the study includes batteries of behavioral items that are 
measured on a Likert scale, then first factor-analyzing the behavioral items and extracting 
their factor scores for the CBC/HB covariates would be a reasonable strategy.  The 
extraction of the factor scores is done outside of CBC/HB in any general, statistical 
software package. 

 
3. Covariates work best when the variables add new (exogenous) information to the CBC 

data, and when the covariate information is strongly predictive of respondent preferences 
(part-worths).  For example, “amount expect to pay for a PC” was helpful for the data set 
described in this paper.  Variables related to behavior and preferences will tend to be 
more valuable as covariates than descriptive information such as demographics.  For 
example, segments developed from MaxDiff data on attribute preferences could be useful 
as covariates.  Brand preference, past purchase choice, budget threshold, and similar 
variables are good candidates as valuable covariates.  A segmentation solution based on a 
cluster analysis of dozens of variables including preferences, attitudes, and 
psychographics could also be valuable as a categorical covariate. 
 

4. Covariates developed using only the choice data (for example using latent class segments 
developed from the same CBC data that will be used in the HB run with covariates) tend 
not to be helpful, and generally lead to overfitting.  No new information from outside the 
CBC data is being used.  Information already available within the CBC data is in essence 
being used twice. 
 

5. The more sparse the dataset (relatively few choice tasks relative to number of parameters 
to estimate), the more the Bayesian shrinkage toward the pooled upper-level model.  
Thus, covariates are more likely to be most effective for sparse data sets.  For datasets 
where there is a great deal of information at the individual level (relative to parameters to 
estimate), the Bayesian shrinkage is already relatively small, and covariates will play a 
lesser role in improving the quality of the estimates. 
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