Intro to Market Simulations & Theory

Outline

- Mechanics of conjoint simulations
- Gaps separating preference share and market share
- Preference share simulation as one component of a larger forecasting system
- Improving forecast accuracy

Why Conduct Market Simulations?

- Reflect real-world behavior
 - Represent idiosyncratic preferences of segments and individuals (remember, you don't have to appeal to the "fat" part of the market to carve out a profitable business)
- A "choice laboratory" for testing of alternative marketing strategies
- Results expressed in terms that make sense to managers

Why Conduct Market Simulations? (cont.)

- Examining utilities and importances only gets you so far
 - Average utilities cannot tell the whole story
 - Fallacy of Division
- Helps to answer strategic questions:
 - At what price will people switch to a competitor?
 - Can we modify our product to reduce cost while maintaining share?
 - Should we launch a high-end product or a budget model (or both)?
 - Will the new product cannibalize our own sales?

Preferred Color?

Consider the following utilities:

	Blue	Red	Yellow
Respondent #1	50	40	10
Respondent #2	0	65	75
Respondent #3	40	30	20
Average	30	45	35

- Red has the highest <u>average</u> preference
- But, does any <u>one</u> respondent prefer red?

Chosen Color?

Each respondent's preferred color:

	Blue	Red	Yellow	"Choice"
Respondent #1	50	40	10	Blue
Respondent #2	0	65	75	Yellow
Respondent #3	40	30	20	Blue
Average	30	45	35	

Blue "chosen" twice, Yellow once

Competitive Effects

- Assume 80% of market prefers round widgets, and 20% prefers square ones
- Which should you take to market?
- In the absence of any other information, round would be the logical choice
- But what if there currently are 10 competitors in the market, ALL only offering round widgets?

Simulations: Mechanics

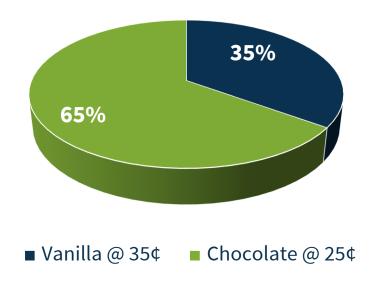
- OK, simulations are good--but how do we do it?
- First we need utilities for product features, ideally for each respondent

	Resp. 1	Resp. 2	•••	Resp. 500
Vanilla	2.5	-1.0		3.7
Chocolate	1.8	1.0		0.5
\$0.25	5.3	1.2		1.0
\$0.35	3.2	0.7		0.8
\$0.50	1.4	-1.9		0.5

Many Ways to Simulate

- First Choice Rule (also called "maximum utility rule")
- Logit Probability Rule
- Randomized First Choice

"First Choice" Market Simulations


- For each respondent, assume respondent chooses the product with the highest utility
- Count these respondent choices (be careful about calling them "Market Shares")

Market Simulation Example

	Resp. 1	Resp. 2	•••	Resp. 500
Vanilla	2.5	-1.0		3.7
Chocolate	1.8	1.0		0.5
\$0.25	5.3	1.2		1.0
\$0.35	3.2	0.7		0.8
\$0.50	1.4	-1.9		0.5
\$0.25 Choc.	7.1	2.2		1.5
\$0.35 Van.	5.7	-0.3		4.5
Winner	Chocolate	Chocolate		Vanilla

Market Simulation Results

Predict responses for 500 respondents, and we might see "shares of preference" like:

▶ 65% of respondents prefer the 25¢ Chocolate cone

How Realistic is the First Choice Rule?

- First choice model is simple to do and easy to understand, but usually oversimplifies consumer behavior
 - Assumes a product barely preferred over another is chosen 100% of the time (winner takes all)
- Less efficient use of data: we learn about which product is preferred, but don't capture anything about relative preferences of not preferred options
 - Standard errors of simulated shares relatively high

First Choice Rule: When to Use

- Despite the theoretical problems, there are certain conditions under which First Choice can work quite well
 - Large sample size
 - The situation we want to model really is "winner take all" (e.g. large purchases where consumers actually DO only ever "buy" one
 - Automobiles
 - Refrigerators
 - Etc.

The Unpredictable Buyer

- Buyers never purchase with 100% certainty the product our model says is most preferred within a set
 - Error present in model estimation, respondent choices
 - Some "random" behavior occurs
 - Other unaccounted for influences (e.g. out-of-stock, children in the cereal aisle) can alter choice
 - Variety seeking

How to Model Uncertain Behavior?

For each respondent, perhaps we can estimate continuous <u>probabilities</u> of purchase rather than either 0% or 100% each alternative (vote splitting)

	First Choice	"Share of Preference"
Α	0%	10%
В	100%	60%
С	0%	30%

But how to do it?

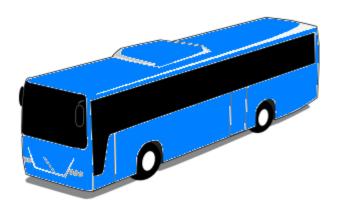
The Logit Rule (Share of Preference)

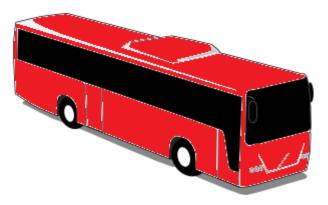
- Available when utilities estimated using a logit model
- Probability of choosing alternative A with utility U_a from set of product alternatives {A B C} is

Where "exp(U_i)" is the antilog of U_i, also known as raising the constant "e" (2.7183...) to the power U_i

Logit Rule Example

Assume three product alternatives with the following utilities (after adding up their respective part worths):


```
A 0.75
B 0.00
C -1.25
```


Share of A:

```
exp(0.75) / [exp(0.75)+exp(0.00)+exp(-1.25)]
= 2.117 / [2.117 + 1.000 + 0.287]
= 62.2%
```

Red-Bus/Blue-Bus Problem (IIA)

- Logit has a property called "Independence of Irrelevant Alternatives" or IIA
 - This property states that the ratio between any two alternatives' shares should be independent of all other alternatives
 - This property also implies constant substitution rates, which is unrealistic

IIA Example

Consider two drink alternatives, Pepsi and Milk, with the following logit utilities:

Pepsi 1.0

Milk 2.0

Share for Pepsi = $\exp(1.0)/[\exp(1.0) + \exp(2.0)]$

= 2.72/(2.72+7.39)

= 26.9%

Share for Milk = 7.39/(2.72 + 7.39) = 73.1%

Consider the Introduction of Coke

- Assume a new alternative appears, Coke, with a logit utility (like Pepsi) of 1.0
- What are the new shares for Pepsi, Milk, and Coke?
 - Pepsi = 2.72/(2.72+7.39+2.72) = 21.2%
 - Milk = 7.39/(2.72+7.39+2.72) = 57.6%
 - Coke = 2.72/(2.72+7.39+2.72) = 21.2%
- Coke takes share proportionally from Pepsi and Milk:

	<u>Original</u>	<u>New</u>	<u>Change</u>
Pepsi	26.89	21.19	-21.19%
Milk	73.11	57.61	-21.19%
Coke	N/A	21.19	

Reducing IIA Troubles

- When we use Latent Class or HB modeling to generate utilities and to accommodate heterogeneity, the Red Bus/Blue Bus problem may be reduced.
 - Similar products tend to compete more closely with one another.
- Simulation methods that directly assess and penalize product similarity can help even more.

Randomized First Choice (RFC)

- RFC sits in a middle ground between the First Choice and Logit choice rules
- Can be used with aggregate or disaggregate utilities
- "Splits" shares but reflects more accurate substitution effects for similar products than does the Logit Rule
- Is tunable, in terms of scale and product similarity

Market Simulation - One Vote/Respondent

	Resp. 1	Resp. 2	•••	Resp. 500
Vanilla	2.5	-1.0		3.7
Chocolate	1.8	1.0		0.5
\$0.25	5.3	1.2		1.0
\$0.35	3.2	0.7		0.8
\$0.50	1.4	-1.9		0.5
\$0.25 Choc.	7.1	2.2		1.5
\$0.35 Van.	5.7	-0.3		4.5
Winner	Chocolate	Chocolate		Vanilla

Splitting Respondents' Votes

	Resp. 1 Actual Util.	Resp. 1 Iteration 1	•••	Resp. 1 Iteration 10,000
Vanilla	2.5	2.5 + 0.015		2.5 + 1.5
Chocolate	1.8	1.8 - 0.75		1.8 – 1.25
\$0.25	5.3	5.3 + 0.20		5.3 – 0.75
\$0.35	3.2	3.2 – 1.33		3.2 + 0.5
\$0.50	1.4	1.4 + 2.15		1.4 - 0.14
\$0.25 Choc.	7.1	6.55		5.1
\$0.35 Van.	5.7	4.385		7.7
Winner	Chocolate	Chocolate		Vanilla

Weaknesses of RFC

- If a correction for similarity is applied to Price
 - Creates distortions in the demand curve due to severe product similarities of reference brands held all at the same price
 - But, you can turn off the "correction for product similarity" for price! (This happens almost automatically in the online simulator, but you must remember to change the setting in SMRT)
- If simulating for many (say, 20+ products) some shares can become so small that the random component introduced by RFC makes such small shares imprecise, unless you increase sampling iterations considerably.

Simulator Options

- Sawtooth Software offers two off-the-shelf options:
 - Choice Simulator integrated into Lighthouse 9 and available as a standalone simulator
 - Online Simulator: Web-based simulator
- Build-Your-Own in Excel, etc.

Conjoint Market Simulation Assumptions

- We have interviewed the right people
- Each person is in the market to buy
- Respondent answers are reliable and valid
- We've used a proper measurement technique and matched it with an appropriate statistical model
- All attributes that affect buyer choices in the real world have been accounted for

Conjoint Market Simulation Assumptions

- Equal availability (distribution)
- Respondents are aware and equally familiar with all products
- Long-range equilibrium (equal time on market)
- Equal effectiveness of sales force, social media, word-ofmouth
- No out-of-stock conditions

Shares of Preference ≠ Market Shares

- Not all conjoint simulator assumptions hold true in the real world
- But this doesn't mean that conjoint simulators are not valuable!
- Simulators turn esoteric "utilities" into concrete "shares"
- Conjoint simulators predict respondents' interest in products/services assuming a level playing field

"Tuning" Logit Simulations

- Multiplying all part worth utilities by value > 1 causes relative shares to become steeper (<1 shares become flatter)</p>
- With these utilities:

A	0.75
В	0.00
С	1.25

Shares under different multipliers:

	<u>0.01</u>	<u>1.0</u>	<u>5.0</u>
A	33.6	62.2	97.7
В	33.4	29.4	2.3
C	33.0	8.4	0.0

Scale Factor (λ)

- The multiplier applied to all utilities referred to at Sawtooth Software as the "Exponent"
- As $\lambda \rightarrow \infty$, shares become First Choice (best alternative gets 100% share)
- As $\lambda \rightarrow 0$, shares flatten to become equal

Tuning to Survey Data or Market Data

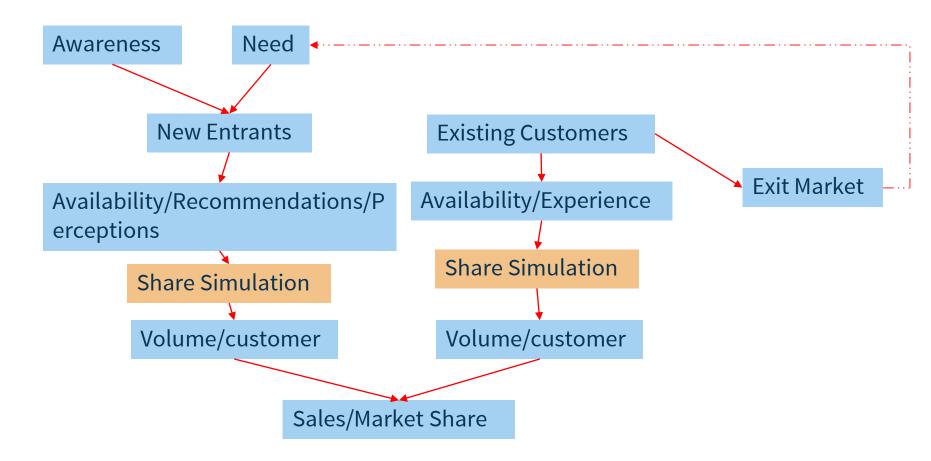
- The scale factor built into utilities reflects the degree of uncertainty in conjoint judgments within the questionnaire
- You may choose to adjust the scale factor (for all respondents) by a uniform additional degree
 - To better fit actual market share information
 - To better fit "holdout choices"
 - Within the questionnaire no reason it should be different
 - Better yet, holdout choices made by holdout respondents
- Sawtooth Software's "exponent" does that
- This is the same as if you multiply all utilities by the desired scale factor in a spreadsheet simulator

Interpolation

Straight-line interpolation often used to simulate for a level between two that were measured:

Usually a fairly accurate, safe procedure for "ordered" attributes

Extrapolation


 Extrapolation is <u>dangerous</u> - used when clients request a simulation beyond the levels included in the design

Who says that the relationship from \$30 to \$40 should continue beyond \$40?

Simulations as Part of a Forecasting System

Share simulations may be just part of a larger forecasting effort

Humility

- The Economist recently reported ("A Mean Feat" 2016)
 - The IMF, using the best data in the world, has a mean error of prediction about national growth rates of 2.6 percentage points (21 months out)
 - This is better than a random number forecast (4.3 percentage points)
 or a forecast equal to the previous year's result (2.9 percentage points)
 - But not by a lot

Accuracy in Forecasts

Forecast accuracy improves as

- Our simulations capture our market realistically
- Our simulations have enough sample size to provide precision
- We understand more of the levers that drive sales/share
- The other components of our forecast system complement our simulations, filling in information gaps about those levers
- Errors in all parts of the forecast system tend to cancel out (i.e. they are many, small and independent, so that the central limit theorem can be our friend)

QUESTIONS?

Keith Chrzan SVP, Sawtooth Analytics keith@sawtoothsoftware.com

Megan Peitz Ingenuity Ambassador megan@sawtoothsoftware.com

www.sawtoothsoftware.com +1 801 477 4700 @sawtoothsoft

References

"A Mean Feat" (2016) *The Economist*, January 9, p. 65.