
  
 

 

Chapter 12  

Statistical Testing 

12.1 Introduction 
We (or our clients) often want to know how confident we are in our 

estimates. What’s the 95% confidence interval? Is a price coefficient 

different from zero? Is one attribute level preferred to another? Do 

groups of respondents differ in their preferences? How about confi-

dence surrounding shares of preference from a choice simulator? This 

chapter deals with these topics. We start by illustrating statistical hy-

pothesis tests with aggregate logit, then change our focus to statistical 

tests involving the commonly used HB (hierarchical Bayes) approach. 

This chapter contains many sections, so it may be helpful to give 

you an outline for quick reference: 

 

12.2 Statistical Testing with Aggregate Logit 

A. Overall significance of the model 

B. Comparing two (nested) aggregate logit models 

C. Significance of attributes and levels 

D. Tests for differences between levels within attributes 

E. Testing for significant interaction effects 

 

12.3 Multiple Independent Tests and the Alpha Inflation Problem 

A. Bonferroni Correction 

B. Benjamini-Hochberg (BH) Procedure 

 

12.4 Frequentist Tests for Individual-Level Part-Worth Utilities 

A. Normalization of individual-level utilities (Diffs) 

B. F-tests and matched sample t-tests 
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12.5 Bayesian Tests for HB Estimation 

A. Confidence intervals and HB 

B. Significance of attributes and levels with HB 

C. Tests for differences between levels within attributes with 

HB 

D. Tests for differences between product concepts with HB 

E. Tests for differences between groups of respondents on 

attribute levels with HB 

F. Tests for interaction effects with HB 

 

12.6 Frequentist Tests for Shares of Preference 

A. Confidence intervals 

B. Testing differences in shares of preference 

 

12.7 HB Testing for Product Shares of Preference 

 

12.8 Appendix: The Swait and Louviere Test for Between-Group 

Differences in MNL Utilities 

 

Generally, we recommend the Bayesian tests. The frequentist tests 

based on individual-level utility estimation (point estimates) also tend 

to work quite well, though in our experience they tend to be a bit less 

conservative than the Bayesian tests (they are more apt to find signifi-

cant differences and to understate the degree of uncertainty).  

12.2 Statistical Testing with Aggregate Logit 
Pooled (aggregate) logit is often used as a quick estimation approach 

for estimating summary part-worth utility weights for a sample of re-

spondents. A typical report for an aggregate logit estimation is shown 

below (Exhibit 12.1). 
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Log-likelihood for this model -4606.05762 

  Log-likelihood for null model -5198.60385 

  Difference 592.54623 

  Chi-Square 1185.09247 

  Degrees of Freedom 7 

  P-Value 0.00000 

  

    Variable Effect Std Error T Ratio 

High-Flyer Pro, by Smith and Forester 0.54582 0.03520 15.50595 

Magnum Force, by Durango 0.36009 0.03518 10.23618 

Eclipse+, by Golfers, Inc. -0.37493 0.04087 -9.17325 

Long Shot, by Performance Plus -0.53098 0.04271 -12.43228 

    Drives 5 yards farther than the average ball -0.47410 0.03281 -14.44912 

Drives 10 yards farther than the average ball 0.12715 0.02916 4.36104 

Drives 15 yards farther than the average ball 0.34694 0.02845 12.19481 

    Price (Linear Coefficient): -0.21816 0.01010 -21.59281 

    NONE 0.00504 0.04135 0.12185 

 

Example Aggregate Logit Report 

Exhibit 12.1 

 

A. Overall significance of the model 

With aggregate logit, a single vector of part-worths is fit to all re-

spondents’ choices (see Chapter 10 for more details). A statistical test 

of the overall significance of the model is shown at the top of the re-

port in the form of the fit (log-likelihood) of the null model compared 

to the fit that the estimated part-worths provide (log-likelihood for 

this model). With frequentist statistical testing, the null hypothesis is 

that the part-worth utilities are all zero and the model fit is not statis-

tically significant. The null model is uninformative and predicts equal 

likelihood for each concept in each task. This data set has 250 re-

spondents, 15 tasks per respondent, where each task has 4 concepts. 

Thus, the null log-likelihood is equal to ln(0.25)(15)(250) = -5198.60. 

However, the model we’ve fit has part-worth utilities different from 

zero and the log-likelihood fit of this model is -4606.06. 
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Twice the difference between the model fit (-4606.06) and the null 

fit (-5198.60) is distributed as chi-square. This is called the 2 log-

likelihood test. 

 

(1)  chi-square = 2(LLm - LLn) 

 

where: 

LLm is the log-likelihood of this model 

LLn is the log-likelihood of the null model 

For the model shown in Exhibit 12.1, the chi-square is equal to 

2(-4606.05762 - -5198.60385) = 2(592.54623) = 1185.09247, with de-

grees of freedom equal to the number of parameters estimated in the 

model, or 7. The reported p-value is the likelihood of observing a chi-

square statistic this large due to chance, given 7 degrees of freedom25. 

That reported p-value is extremely small (0.00000) after rounding to 

the nearest five decimal places of precision. We are therefore better 

than 99.999% confident (1 - p) that the model provides significant fit 

to the data. 

How does one count degrees of freedom? In Chapter 10, we 

demonstrated how to dummy-code a CBC model to avoid linear de-

pendency in the design matrix. The first two attributes in this model 

are dummy-coded with k-1 levels, where k is the number of levels 

within the attribute. The Price attribute in this model is estimated as a 

single linear coefficient (1 parameter). An additional parameter is used 

to estimate the None (another 1 parameter). Therefore, the total 

number of parameters in this model is (4-1)+(3-1)+1+1=7. 

 
B. Comparing two (nested) aggregate logit models 

We might consider running a second logit model (using the same re-

spondents and choice tasks) where Price is dummy-coded rather than 

coded as a single coefficient (Price has 4 levels in this study), leading 

to a new model with 9 total parameters to estimate. We might want to 

test whether the new larger model provides better fit than the previ-

ous model—a statistically significant better fit. The new log-likelihood 

for the model (not shown here) with dummy-coded price is 

                                                           
25

 You can always turn to a chi-square table in your favorite statistics text book to look up p-

values, but a more convenient way to compute directly the exact p value is to use the 
=CHIDIST(CHI_Value, DF) formula provided in Excel. Specifying =CHIDIST(1185,7) in a 
cell returns a p-value of 1.2E-251. 
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-4600.39426. The chi-square test for the difference in model fit is 

equal to: 

 

(2)  chi-square = 2(LLn - LLo) 

 

where: 

LLn is the log-likelihood of the new model 

LLo is the log-likelihood of the old model 

The chi-square is equal to 2(-4600.39 - -4606.06) = 11.34 with de-

grees of freedom equal to the difference in number of parameters es-

timated for the two models, or 9 - 7 = 2. Again, referring to a chi-

square table, we find that the p-value associated with this chi-square 

critical value (2 degrees of freedom) is 0.00345. We are 99.655% con-

fident that the new model (with dummy-coded price) provides a bet-

ter fit than the old model (with linear price). 

Tests for non-nested models are also available which allow you to 

determine if you have included the right set of variables in the model. 

This situation usually occurs when you build a model that combines 

conjoint data with other predictors (e.g., demographics), a discussion 

that takes us beyond the scope of this book (see Ben-Akiva and Swait 

1986). 

In methodological studies we often see tests for differences in 

models with the same structure but collected from different sets of 

respondents (e.g., do the utilities of males differ from those of fe-

males; do the utilities differ for people from different regions or 

countries; do they differ between this wave of the study and the last 

wave, etc.). This test, the Swait and Louviere test, is a technical 

enough topic that we have included it in the Appendix to this chapter. 

 
C. Significance of attributes and levels 

In the model shown in Exhibit 12.1, we estimated a single coefficient 

for price. The relevant portion of that aggregate logit report is shown 

below: 
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Effect Std Err T Ratio 

Price (Linear Coefficient): -0.21816 0.01010 -21.59281 

 

It’s common to express our confidence about the precision of the 

coefficient (or a part-worth utility weight, in the case of dummy-

coding) in terms of a 95% confidence interval. The 95% confidence 

interval is calculated by taking the utility weight estimate plus or mi-

nus 1.96 standard errors. The utility weight estimate is -0.21816 and 

the standard error is 0.01010, leading to a 95% confidence interval of 

[-0.23796, -0.19836]. This interval is commonly interpreted as follows: 

if we were to draw new samples and repeated the experiment hun-

dreds or thousands of times and computed a new confidence interval 

each time based on our model, the confidence intervals would contain 

the true population mean 95% of the times. 

Often, researchers are interested in testing whether a coefficient 

such as the price weight is different from zero. We do this via hy-

pothesis testing and computing a critical value called the t-ratio (the t-

value). We calculate the t-ratio by dividing the coefficient (the effect) 

by the standard error, or in this instance -0.21816 / 0.01010 =            

-21.59281. T-values with absolute magnitudes greater than 1.96 give 

us at least 95% confidence that the coefficient is different from zero26. 

T-values with absolute values greater than 2.58 provide at least 99% 

confidence. Thus, given this t-value of -21.59281 we can reject the 

null hypothesis (that the coefficient for price is zero) with greater than 

99% confidence. 

When the part-worth utilities are estimated via effects-coding (a 

form of dummy-coding that constrains the sum of utilities within 

each attribute to be zero), the t-values associated with each part-worth 

let us compute the confidence that each part-worth utility is different 

from their average (zero). The results for the brand attribute from the 

model shown in Exhibit 12.1 are given below. 
  

                                                           
26

 For practical purposes, we assume that the number of observations is large enough such 

that the t-distribution has converged to the z-distribution. Thus, we use the critical values for 
95% and 99% confidence from the z-distribution, assuming a two-tailed test. 
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Variable Effect Std Error T-Ratio 

High-Flyer Pro, by Smith and Forester 0.54582 0.03520 15.50595 

Magnum Force, by Durango 0.36009 0.03518 10.23618 

Eclipse+, by Golfers, Inc. -0.37493 0.04087 -9.17325 

Long Shot, by Performance Plus -0.53098 0.04271 -12.43228 

 

Given that we are using effects-coding (that constrains part-worth 

utilities to be zero-centered), you would not be surprised to find one 

or more of the part-worth utilities for a multi-level attribute to be 

close to zero. Such a finding would not necessarily mean that this par-

ticular level of middling preference was being ignored by respondents. 

Another potential oddity with conducting statistical tests on aggre-

gate part-worth utilities for unordered attributes is that differences of 

opinion across people regarding fairly important attributes can nearly 

cancel out and lead to population part-worth utility weights near zero. 

Heterogeneity (differences in tastes) may make it look like the brand 

or color attribute is relatively less important or completely unim-

portant for the population, though the truth may be that the attribute 

is actually very important to most individual respondents. Imagine the 

case in which an equal number of respondents have different favorite 

brands, leading to their preferences cancelling each other out when 

viewed in the aggregate. This issue is avoided when conducting statis-

tical tests on the part-worth utilities for ordered attributes that have 

expected logical preference order (such as for the performance attrib-

ute in Exhibit 12.1). 

 
D. Tests for differences between levels within attributes 

Consider the part-worth utilities for the performance attribute: 

 

 

Effect Std Error T-Ratio 

Drives 5 yards farther than the average ball -0.47410 0.03281 -14.44912 

Drives 10 yards farther than the average ball 0.12715 0.02916 4.36104 

Drives 15 yards farther than the average ball 0.34694 0.02845 12.19481 
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If none of the part-worths for the levels within this ordered attrib-

ute (where we expect everybody to prefer higher performance to low-

er performance) has a significant t-value, then we might conclude that 

this attribute was not important. (More formally, the researcher could 

code this as a linear term such that there was a single coefficient to 

summarize the effect of performance with a single standard error for 

computing a more proper t-test of significance.) 

Often researchers want to know if there is a statistically significant 

difference between levels of the same attribute. For example, the re-

searcher may wonder if respondents on average prefer a golf ball that 

drives 15 yards further than the average ball (utility = 0.34694) com-

pared to one that drives 10 yards further (utility = 0.12715). In other 

words, is the difference we observe in the model statistically signifi-

cant? We can compute a t-value using the following formula: 

 

(3) t = 
     

           
 

where U1 and U2 are the utilities of the two levels and the denomina-

tor computes the pooled standard error for the two levels, where SE1 

and SE2 are the standard errors for U1 and U2. (Note, this is a 

shortcut formula that ignores covariances.) Thus, the t-value for the 

statistical test of difference in utilities between the levels is  

 

(0.34694 - 0.12715) /                   = 5.39501  

 

Since this t-value has an absolute magnitude greater than 2.58, we are 

greater than 99% confident that driving 15 yards is preferred to driv-

ing 10 yards further than the average ball for the population. 

 
E. Testing for significant interaction effects 

Similar to the test described in the previous section for testing dum-

my-coded part-worth terms for price vs. a linear term, you can test 

whether adding interaction effects to the model improves the model 

fit. The model shown in Exhibit 12.1 estimates the independent ef-

fects of three separate attributes: brand, performance, and price. We 

compare the log-likelihood of the model with main effects only to the 

log-likelihood of the model that includes these same main effects plus 

an interaction effect between, say, two attributes. 
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Prior to investigating potential interaction effects, we need to be 

confident that the experimental design supports the precise estima-

tion of interaction terms. This particular data set uses a randomized 

design, where respondents are randomly assigned to one of hundreds 

of different blocks (versions) of CBC tasks, where each block features 

near-perfect one-way and two-way level balance. Such a design usually 

supports the efficient estimation of all potential first-order interaction 

effects (between attributes taken two at a time). 

As shown in Exhibit 12.1, the log-likelihood fit for the main-effect 

only model is -4606.06 and the number of parameters in the model is 

7. Let’s imagine we hypothesize that the price coefficient may differ 

depending on the brand. To test the interaction effect between brand 

and price, we add additional interaction terms to the model (as de-

scribed in Chapter 9). The brand attribute is effects-coded, with 4 - 1 

= 3 parameters. Price is coded in this model (Exhibit 12.1) as a linear 

term. Thus, the interaction between brand and price adds 3 x 1 = 3 

new parameters to the model. When we run the new model, the new 

model fit is a log-likelihood of -4593.39, representing an improvement 

versus the main-effects model of -4593.39 - -4606.05 = 12.66. Two 

times that amount (25.32) is distributed as chi-square, with degrees of 

freedom equal to the difference in the number of parameters estimat-

ed between the two models, or 3, leading to a p-value of 0.00001. 

Thus, we are 99.999% confident that the interaction term between 

brand and price adds significant fit to the model. If the previous test 

suggests a significant interaction, we should examine the relevant 

price and brand x price interaction effects for the augmented and im-

proved model as shown below in Exhibit 12.2: 

 

 

Effect Std Err T-Ratio 

Price (Linear Coefficient): -0.22930 0.01058 -21.67339 

    High-Flyer Pro, by Smith and Forester x Price: 0.01431 0.01805 0.79264 

Magnum Force, by Durango x Price: 0.07772 0.01785 4.35464 

Eclipse+, by Golfers, Inc. x Price: -0.00824 0.02034 -0.40530 

Long Shot, by Performance Plus x Price: -0.08379 0.02214 -3.78408 
 

Interaction Effects between Brand and Price 

Exhibit 12.2 
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Because we used effects-coding for the brand attribute, the interac-

tion effects are zero-centered. The overall fit to the model improved 

with the addition of the three interaction terms, so we would expect 

at least one of the individual t-tests associated with the interaction 

terms to be statistically significant (actually, two of the t-ratios for in-

teraction terms are significant beyond the 99% confidence level). 

The interaction effects represent the adjustment to the price slope 

per brand after accounting for the main effect of price. The total price 

effect (slope) for Magnum Force is equal to -0.22930 + 0.07772 = 

-0.15158. Magnum Force is less sensitive to price than the average of 

the brands included in the experiment. Furthermore, the 0.07772 

weight for the interaction term between Magnum Force and price is 

statically significant, with a t-ratio of 4.35464, or better than 99% con-

fidence. 

12.3 Multiple Independent Tests and the Alpha Inflation 
Problem 

For statistical testing, it is typical to set a threshold for confidence 

such as 95%. Setting a confidence threshold of 95% means that you 

are setting the alpha (the likelihood of falsely declaring that an effect 

is significant when it actually is not) at 5% (called Type I error, or 

false positives). As you conduct more and more independent tests 

within the same “family” of hypotheses at a given alpha, the likeli-

hood of falling prey to at least one false positive increases (called ex-

periment-wise error or family-wise error). What exactly constitutes the same 

“family” is a bit elusive. It could mean the same kind of statistical test 

or multiple tests involving the same (or very similar) statistical con-

structs. 

 
A. The Bonferroni Correction 

Imagine you’ve conducted a CBC study that supports the estimation 

of all potential first-order interaction effects. Further imagine that in 

truth the only effects for the total population that are significant are 

the main effects (the independent effects of attributes). But, you’ve 

interviewed a sample and each respondent answers with error. Being 

the thorough researcher you are, you decide to conduct 2 log-

likelihood tests to investigate all potential interaction effects taken one 

at a time. For example, with six attributes there are (6)(5)/2 = 15 pos-



Statistical Testing 179 

 
 

sible interactions between attributes taken two at a time. With 10 at-

tributes, there are (10)(9)/2 = 45 possible interaction effects. 

For the first interaction effect you test, the likelihood of false posi-

tive is just 5%. But, after you have conducted 10 independent tests to 

investigate 10 potential first-order interaction effects (and this, we 

think, certainly involves tests within the same family), the likelihood 

of declaring a false positive has increased to 1 - 0.9510 = 40.1%! After 

30 independent tests where in truth there are no significant effects for 

the population, the likelihood of finding at least one significant inter-

action at the 95% confidence level has increased to 1 - 0.9530 = 

78.5%. The alpha inflation curve is illustrated in Exhibit 12.3. 

 

 

Exhibit 12.3 

The well-known Bonferroni correction adjusts your alpha values 

when conducting multiple independent tests such that the likelihood 

of finding any false positives remains at your target alpha rate. It is 

performed by simply dividing the alpha rate by the number of inde-

pendent tests within the same family. For example, if you want the 

likelihood of any false positives to remain at 5% over the course of 10 

independent tests within the same family, you divide the alpha rate by 

10, or 0.05/10 = 0.005. The new critical value for each of your tests is 

the value (e.g., from the f-test, t-test, or chi-square test) associated 

with 1 - 0.005 = 99.5% confidence. 
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Unfortunately, according to McDonald (McDonald 2014), “if you 

have a large number of multiple comparisons and you're looking for 

many that might be significant, the Bonferroni correction may lead to 

a very high rate of false negatives.” 

 
B. Benjamini-Hochberg (BH) Procedure 

A more robust approach is the Benjamini-Hochberg (BH) procedure 

for controlling family-wise error, as it controls false positives without 

the danger of inflating the number of false negatives. The procedure 

works as follows: 

1. Rank the p-values from lowest to highest. 

2. Calculate a critical p-value for each rank by multiplying the 

rank by the error rate you want to allow across all tests (e.g., 

0.05) and divide by the number of tests (so for a 45 interac-

tion study if we wanted a 0.05 experiment-wise error rate the 

critical value for the first rank would be 1 * 0.05 / 45 = 

0.00111. For the second ranked test it would be 0.00222, etc.). 

3. Identify the highest rank for which the observed p-value is 

less than the critical p-value. 

4. For that rank and all lower ranks reject the hypothesis that the 

interaction effect is 0. 

In a 45 interaction example, assume these observed and critical p-

values for the first five ranks (and that for all higher ranks the ob-

served p-value exceeds the critical p-value): 

 
Rank Observed p Critical p 
1 0.0021 0.00111 
2 0.0023 0.00222 
3 0.0025 0.00333 
4 0.0158 0.00444 
5 0.0362 0.00555 

 

The third rank is the highest wherein the observed p is lower than 

the critical p, so in this study we accept the first, second, and third 

ranked tests as significant. 

Note that we can make the process less mechanistic. For example, 

we might suspect that two of our tests in particular might reveal sig-

nificant interactions. In this case, we might run those two tests each 

with p-value cutoffs of 0.05 but then use BH on the remaining 43 
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tests (alternatively, a theory-driven analyst might conduct just those 

two tests and not run the remaining 43 at all). 

So Benjamini-Hochberg is a tool we can use to decide which inter-

actions to include in our models when we want to avoid family-wise 

error. 

Conjoint data tend to be robust, and the inclusion of a false-

positive interaction effect in an aggregate logit CBC model is typically 

not very damaging to prediction. In other research situations such as 

in medical research, avoiding false positives is much more important, 

since it avoids money spent on further research to confirm the false 

positive or the potential embarrassment if new research cannot con-

firm your finding. 

12.4 Frequentist Tests for Individual-Level Part-Worth Utili-
ties 

Individual-level modeling has become the norm, at least within the 

marketing research field for CBC experiments. HB is the most popu-

lar approach27, but other methods are available as well, such as ran-

dom parameters logit. Many conjoint analysts have become familiar 

with t-tests and f-tests and regularly use cross-tabulation software that 

conveniently produce these tests. It isn’t surprising, then, that re-

searchers lean on their familiar tools to conduct statistical testing for 

conjoint analysis when individual-level part-worth utility scores are 

available to them. 

We should note that applying the traditional frequentist tests to in-

dividual-level part-worth utilities from HB (the point estimates, repre-

senting the average of many draws) is not quite proper, but we’ll de-

scribe them anyway in this section before discussing the more proper 

Bayesian tests. 

 
A. Normalization of individual-level utilities (Diffs) 

Prior to using individual-level part-worth utilities (the point estimates 

from HB or OLS utilities for a ratings-based conjoint) in t-test or f-

tests, we should normalize them so that each respondent’s part-worth 

                                                           
27

 Prior to the popularity of HB analysis for CBC, early conjoint analysis researchers often 

used ratings-based conjoint methods with OLS regression estimation to produce individual-
level part-worths. It was common to use these part-worth utility scores in cross-tabulation 
packages for tabulating the data by different segments. 
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utilities are roughly on the same scale. A common way to do this is a 

method that Sawtooth Software calls Diffs, but there are other proce-

dures (such as equalizing the standard deviation of the scores within 

respondents) that also could be done. For Diffs we find the multiplier 

for each respondent to apply to this respondent’s part-worths such 

that the resulting sum of the differences between best and worst lev-

els across attributes is equal to some constant such as the number of 

attributes times 100 (or you could choose any other target constant 

such as 10 or 1). 

 
B. F-tests and matched sample t-tests 

Now that you have normalized the utilities (the point estimates from 

HB or OLS utilities for a ratings-based conjoint), you can conduct the 

standard t-tests and f-tests. For comparing groups of people on the 

part-worth utilities, the f-test is commonly used. 

For comparing levels within attributes, we recommend matched 

sample t-tests. Let’s assume the normalized average part-worth utility 

for level 2 is higher than level 1 for the sample (within the same at-

tribute). We want to know if that difference is statistically significant. 

For each respondent, we create a new variable called DiffUtil21 equal 

to Util2 - Util1, where Util2 is the utility for level 2 and Util1 is the 

utility for level 1. The t-test is computed by taking the mean of 

DiffUtil21 and dividing it by the standard error of DiffUtil21. If the 

resulting t has an absolute magnitude of 1.96 or greater, we are at least 

95% confident that there is a statistically significant difference be-

tween the utilities of these two levels. 

Both f-tests and matched sample t-tests can be performed on at-

tribute importance scores as well. Attribute importance scores are 

computed by percentaging the ranges of attributes within each indi-

vidual. 

12.5  Bayesian Tests for HB Estimation 
Upon reading this title for Bayesian tests for HB, you might have as-

sumed that Bayesian tests are going to be harder to understand than 

the frequentist tests we’ve described to this point. Not true! Bayesian 

statistical tests are actually easier to understand and implement. Don’t 

believe us? Keep on reading. 

HB estimation (described in Chapter 10) leads to 1000s of posteri-

or draws for both the upper- and lower-level models that make up the 
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model hierarchy. The upper-level draws we call draws of alpha (where 

alpha is our current estimate of the population mean utility vector). 

The lower-level draws we call draws of beta (where beta is our current 

estimate of an individual’s utility vector). We typically ignore the 

draws prior to assuming convergence (typically the first 5K or 10K 

draws). We can use the remaining draws (which our HB estimation 

program may have written to convenient .CSV files) to conduct statis-

tical tests and it just involves counting! 

Statistical testing for HB requires a shift in mindset. For example, 

you do not test to see if a new parameter adds significant fit to the 

model. There isn’t anything akin to the 2 log-likelihood test for aggre-

gate logit that we apply to HB models. Rather, you examine the dis-

tributions of posterior draws of parameters to see if a strong majority 

of these draws (a preponderance of the evidence) falls on either one 

side or the other of the null hypothesis. With HB, you actually do not 

want to maximize the fit of the lower-level model (the individual-level 

models). You strike a compromise between fitting the lower- and up-

per-level models that you believe based on your priors will near-

maximize the fit to new observations not included in the model. 

 
A. Confidence intervals and HB 

Let’s imagine we conducted a CBC experiment, estimated the part-

worth utilities via HB, and we were interested in developing a 95% 

confidence interval for the price coefficient. We open the file contain-

ing the successive estimates of alpha for the population. Alpha is a 

vector containing all the parameters in the model, but we want to fo-

cus just on one element (column) of that vector: the price coefficient. 

Imagine that you have 20,000 total draws, you throw away the first 

10,000 and the next few draws of alpha look something like the fol-

lowing: 
 Draw# Price 
 10001 -0.30285 
 10002 -0.29823 
 10003 -0.29801 
 10004 -0.30114 
 10005 -0.30159 

To develop the 95% confidence interval, you simply sort the 

10,000 used draws from lowest to highest and then pick out the 2.5th 
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and 97.5th percentile values. That’s the 95% confidence interval (it 

contains 95% of the estimates)! (Note: the same approach works for 

individual-level draws for developing confidence intervals within indi-

viduals on a parameter of interest.) 

 
B. Significance of attributes and levels with HB 

Following the previous example, we can compute the degree of con-

fidence that the price coefficient is less than 0. We simply count for 

how many of the used draws of alpha (those after convergence) the 

price coefficient is less than 0. If 99.925% of the draws of the price 

coefficient are negative, then we are 99.925% confident that the price 

slope is significantly less than zero. 

 
C. Tests for differences between levels within attributes with HB 

Let’s imagine that we have successive estimates of alpha for the per-

formance attribute and the first five (after convergence) look like: 

 
   5 yards 10 yards 15 yards 
 Draw# further further  further 
 10001 -0.25136 -0.12476 0.37612 
 10002 -0.24921 0.01873 0.23048 
 10003 -0.22384 -0.08757 0.31141 
 10004 -0.21998 -0.08897 0.30895 
 10005 -0.23179 0.00622 0.22557 

 

If we want to compute the degree of confidence that driving 15 

yards further is better than driving 10 yards further for a golf ball, we 

simply count for how many draws of alpha the part-worth utility es-

timate for 15 yards further is greater than 10 yards further. If 99.17% 

of the alpha draws had 15 yards preferred to 10 yards, then we are 

99.17% confident that driving 15 yards is preferred to 10 yards. 

 
D. Tests for differences between product concepts with HB 

We can sum part-worth utilities using estimates of alpha (after con-

vergence) to compare whether the preference for one product con-

cept exceeds that of a different product concept. For each alpha draw 

after convergence is assumed, sum the part-worth utilities associated 

with the two product concepts you are testing. Count for how many 
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draws of alpha one product concept’s total utility exceeds the other 

concept’s total utility. If 99.17% of the alpha draws show that the to-

tal utility for concept 1 exceeds concept 2, then we are 99.17% confi-

dent that concept 1 is preferred to concept 2. 

 
E. Tests for differences between groups of respondents on attribute levels with HB 

If you employ covariates in your HB model based on group member-

ship (e.g., males vs. females) you obtain estimates of alpha by differ-

ent respondent groups. Imagine that gender is dummy-coded as a sin-

gle covariate parameter in the design matrix, where one of the states 

(male) is assigned as the reference (0) level and the other state (fe-

male) is assigned to be 1. Now, when you open the file containing the 

successive estimates of alpha draws, you’ll find the intercept alpha 

parameters (corresponding to the mean utilities for males for all the 

parameters in your model) followed by the alpha parameters associat-

ed with the adjustment from the intercept parameters for females. In 

other words, the average female utility for a parameter is equal to the 

intercept plus the female covariate value for that parameter. If we 

wanted to know if males preferred the attribute level “drives 15 yards 

further than the average golf ball” more than females (relative to the 

other two levels of this attribute), we count for what percent of the 

used draws the males’ utility for that level exceeds the females’ utility. 

If 92.53% of the draws show the males’ mean utility exceeds the fe-

males’ utility, then we are 92.53% confident that males value this level 

more than females (relative to the other two levels of this attribute). 

 
F. Tests for interaction effects with HB 

Most of the interaction effects we observe in aggregate models like 

aggregate logit or (low-dimension) latent class solutions for CBC are 

due to unrecognized heterogeneity. Under individual-level estimation 

via an approach like HB, you will only occasionally find that interac-

tion effects help a CBC model make significantly better predictions of 

choice. Still, it is helpful to select experimental designs that permit the 

precise estimation of all first-order interaction effects and then test 

whether the inclusion of the most promising ones can improve the 

model’s predictions. Even then, it is rare to add more than just one or 

a very few interaction effects to a CBC HB model. HB models are 
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much slower to run than aggregate logit and including more than just 

a few interaction effects between attributes taken two at a time might 

lead to extremely long run times. 

When using effects-coding of categorical attributes, both the main 

effects and interaction effects are zero-centered. HB estimation pro-

vides a straightforward way for you to test interaction effects by enu-

merating the used alpha draws. For each interaction term, you can 

count what percent of the used draws fall on either side of 0. For ex-

ample, if the interaction effect between Brand A and Price 1 leads to 

99% of its draws of alpha being greater than zero, you are 99% confi-

dent this interaction is statistically significant. 

The problem with this Bayesian test of significance for interaction 

effects is that it is extremely sensitive and will tend to identify interac-

tion effects well beyond the 99% confidence level that, while statisti-

cally significant, make little change to the model predictions and slow 

HB estimation down quite a bit. One approach we’ve implemented at 

Sawtooth Software is to jack-knife repeatedly across choice tasks, 

each time holding out one or a few (randomly selected) of the calibra-

tion CBC tasks for validation. For each replication, we estimate HB 

models using the remaining tasks and then predict the held out tasks. 

We compare the hit rate (averaged across all the replicates) for main-

effects only models to the hit rate when an interaction effect is also 

included. This jack-knife procedure must be repeated many times to 

stabilize the hit rates, so it is extremely helpful if this can be run in 

parallel (across multiples machines or multiple cores on the same ma-

chine). In our experience, we look for interaction effects that can in-

crease the hit rate for holdout tasks (relative to the main-effects mod-

el) by perhaps 1%, 2%, or more. 

12.6 Frequentist Tests for Shares of Preference 
In Chapter 14, we describe how to specify simulation scenarios (typi-

cally an array of competitive product offerings) and use the part-

worth utilities within a choice simulator to predict what percent of the 

respondents would choose each of the product alternatives. Practi-

tioners tend to use individual-level models (such as estimated via HB) 

when constructing such choice simulators. 

 
  



Statistical Testing 187 

 
 

A. Confidence intervals 

Given the types of choice simulators (often built in Excel) commonly 

used in practice that usually employ point estimates (a single vector of 

part-worths for each respondent) to predict choices, most practition-

ers default to the frequentist tests and traditional ways of developing 

confidence intervals. For each individual, we obtain shares of prefer-

ence that sum to 100%. This leads to quite easy calculations of the 

standard deviation across respondents for those shares and the stand-

ard error estimates which are given by dividing the standard deviation 

by the square root of the sample size. The 95% confidence interval 

for any share of preference can be obtained by taking the mean share 

of preference +/- 1.96 times its standard error. 

 
B. Testing differences in shares of preference 

We recommend using a matched sample t-test, as follows. Let’s as-

sume the shares of preference for each individual are available and we 

see that the share of preference for product 2 is preferred to product 

1 for the sample. We want to know if that difference is statistically 

significant. For each respondent, we create a new variable called 

DiffSOP21 equal to SOP2-SOP1, where SOP2 is the share of prefer-

ence for product 2 and SOP1 is the share of preference for product 1. 

The t-test is computed by taking the mean of DiffSOP21 and dividing 

it by the standard error of DiffSOP21. If the resulting t has an abso-

lute magnitude of 1.96 or greater, we are at least 95% confident that 

there is a statistically significant difference between these two shares 

of preference. 

12.7 HB Testing for Product Shares of Preference 
Applying frequentist approaches to develop confidence intervals or t-

tests on shares of preference that were simulated from the point esti-

mates of beta (within-respondent averages of the beta draws) is not 

proper and overstates our confidence, while understating the width of 

the confidence intervals. It ignores the uncertainty in the individual-

level draws. Leading academics and practitioners recommend that if it 

is very important to obtain proper estimates of precision (such as in 

litigation), then one should simulate shares of preference from the 

upper-level model (one that includes useful and significant covari-
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ates). The draws for shares of preference from the upper-level model 

simulations then can be enumerated to obtain confidence intervals 

and for statistical testing (such as for testing whether a product that 

contains a superior feature is better than another product without that 

feature). It is well beyond the scope of this chapter to delve into this 

topic and we refer the reader to a tutorial on this subject presented at 

the American Marketing Association’s ART/Forum by Greg Allenby 

(Ohio State) and Tom Eagle (Eagle Analytics of California). We rec-

ommend you contact these authors directly to request the materials 

(Allenby and Eagle 2014). 

12.8 Appendix: The Swait and Louviere Test for Between-
Group Differences in MNL Utilities 

A common question arises when we wonder whether a statistical 

model has the same coefficients for different groups of respondents. 

In linear regression models we can use something called a Chow test 

(Chow 1960). Imagine we have a regression model we’ve built and we 

want to know whether respondents in Poland have the same coeffi-

cients as respondents from Belgium. To conduct a Chow test we run 

two models. In the first, run a regression analysis with the whole 

sample, including respondents from both Poland and Belgium. In the 

second model, we add a dummy variable for country (1 = Poland, 0 = 

Belgium) and we build a model that has (a) the main effects for all of 

our independent variables, plus (b) the main effect for country, and 

(c) the interactions of the independent variables with the country var-

iable. We want to see if the expanded model, the one with the dummy 

variable and the interactions, fits the data significantly better than 

does the other model. We can test this using a standard test for im-

provement in R2 for nested regression models. 

The aggregate multinomial logit models we use for choice experi-

ments, however, have a complication that prevents us from using a 

test as simple as the Chow test. We know that the logit model has a 

scale factor as described in Chapter 10. The scale factor affects the 

size of the utilities such that respondents who answer more consist-

ently (that is with less response error) tend to have utilities with larger 

absolute values across the board, while respondents who answer less 

consistently (i.e., with more response error) tend to have smaller 

(closer to zero) utilities. Following our example above, we can imag-

ine a situation where Poles and Belgians have the same preferences 
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for the attributes and levels but that the Poles answer their choice 

questions more consistently. In this case, the models might look dif-

ferent, because the Poles would have larger positive and larger nega-

tive utilities while the Belgians’ utilities would be smaller. In order to 

test properly for differences in logit models we need to take into ac-

count differences in respondent consistency, that is, differences in the 

logit scale factor. 

Swait and Louviere (1993) supply just such a test. Their test proce-

dure is sequential and it involves running four models for any com-

parison between two groups. First, run the four models: 

1. We use the data matrix from the first group to be compared, 

X1, to run a MNL model which gives us a set of utilities, 1, 

and a log-likelihood fit of LL1. 

2. Similarly, we use the X2, the data matrix from the second 

group of respondents, to power a model that yields a second 

set of utilities, 2, and a corresponding log-likelihood LL2. 

3. For the third model we just concatenate the two data matrices 

X1 + X2 to get a set of utilities, P, and a fit statistic LLP for 

the pooled model. 

4. Finally, we run a scale-constrained model where we use the 

pooled data matrix, only with the scale parameter  for the 

second data matrix that maximizes the log-likelihood fit of the 

model: X1 + 2X2. One finds the value of the scale parameter 

by running the model time and again, multiplying the val-

ues of X for second data matrix by a positive constant, thus 

moving in the direction that improves log-likelihood, until 

the log-likelihood stops improving. The log-likelihood func-

tion’s concavity guarantees a unique maximum discoverable 

through this simple search procedure. What results is a set of 

coefficients band LL. 

The test procedure evaluates three related hypotheses: 

 

H1: 1 = 2 and 1 = 2 

H1A: 1 = 2 

H1B: 1 = 2 (because we cannot identify both scale parame-

ters, we can set 1 = 1 and compute 2 relative to it) 
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The first test in the sequence uses the fit statistics from the two 

groups’ separate models and from the scale-constrained model, as 

follows: 

 

  A = -2 [ LL - (LL1 + LL2) 

 

If A exceeds the critical chi-squared value with K+1 degrees of 

freedom (K is the number of parameters in each of the three logit 

models) then we reject H1A and H1. We conclude that the coefficients 

(utilities) differ for the two groups and we stop the testing sequence. 

Only at this point would it be appropriate to proceed to test individu-

al coefficients to see which ones differ between the groups using t-

tests similar to those described in the body of the chapter. 

If we fail to reject H1A we can go on to test H1B as follows using 

the fit statistics from the pooled and the scale-constrained models: 

 

  B = -2 (LLP - LL) 

 

If B exceeds the critical chi-squared value for a test with 1 degree 

of freedom, then we reject H1B and conclude that the two models 

have different scales. 

Note that with this procedure we may find that they have different 

utilities or that they have different scales, or we may find that their 

scales and utilities do not differ significantly. We will never be in a 

position to conclude that two models have both different scales and 

different utilities, however. 

Continuing the example above, we might reject the first hypothesis 

and conclude that the utilities of Belgians and Poles differed signifi-

cantly. Alternatively, we might reject the second hypothesis and con-

clude that Belgians and Poles had significantly different scale factors 

(i.e., amounts of response error) but underlying utilities that did not 

differ significantly. Finally we might reject neither hypothesis and 

conclude that Poles and Belgians differ neither in their utilities nor in 

the consistency with which they answer their choice questions. 

Tests involving more than two groups would be analogous. 
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