
Chapter 6  

Statistical Testing 

6.1 Introduction 
Two questions analysts might have about MaxDiff utilities have an-
swers in statistical testing: 

1. Do the utilities from one subgroup of respondents differ from
those of some other subgroup(s) of respondents?  For exam-
ple, do males and females (or Belgians and Poles, or people
from eight different income strata or three different political
parties) have different preferences for the items included in a
MaxDiff experiment?  We call these Tests for between-group differ-
ences.

2. Tests for between-item differences, on the other hand, answer the
question “Does the utility of one item differ from that of an-
other (or which items have higher utilities than which other
items)?”

In the sections below we describe omnibus statistical tests and 
then more detailed tests from both classical and Bayesian perspec-
tives.   

A significant result from a statistical test performed at 95% confi-
dence means that such a result would occur no more than 5% of the 
time by chance alone.  Say we have a small MaxDiff with 10 items.  
To compare males’ and females’ utilities we plan to run 10 independ-
ent groups t-tests.  Because we have 10 such tests rather than just one, 
the chance of at least one of the tests returning a significant result, by 
chance alone, rises to 1.00 - 0.9510 or 40%.  By running multiple tests 
our chance error rate inflated from 5% to 40%!  We call that inflated 
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error experimentwise error (and the excess significant results we call in-
stances of false discovery).     

To combat experimentwise error, a cautious analyst can do one of 
two things.  First, she can run an “omnibus” statistical test which tells 
her whether any differences at all are significant, and then only if so 
does she then follow-up with the various individual stat tests.  Or, the 
analyst can forego the omnibus test and follow her various pairwise 
tests with a post hoc correction for experimentwise error.  As these in-
volve more advanced methods, we mostly relegate omnibus tests and 
post hoc corrections for experimentwise error to this chapter’s Appen-
dix.   

6.2 Tests for Between-Group Differences 

Using Aggregate MNL Utilities 
In linear regression analysis, we test for between-group differences 

using a Chow test. Creating a dummy variable coded as 1 for one sub-
group of respondents and 0 for a second subgroup of respondents, 
we run the regression model twice:  once using the original predictor 
variables and once using both the original predictors and the interac-
tions of the dummy variable for group membership with each predic-
tor variable.  A statistical test for improvement in R2 serves as an om-
nibus test for the regression model, telling us whether or not any of 
the coefficients differ significantly between the subgroups.  A signifi-
cant omnibus test enables us check which particular regression coeffi-
cients differ between the groups, indicated by significant interaction 
terms.  

Initially analysts ran a logit equivalent of the Chow test, until Lou-
viere and Swait (1993) pointed out that the logit scale factor could 
confound the test and that possible differences in scale required a 
more complicated test, the Swait and Louviere test that appears in the 
Appendix.   

Using Individual Respondent-Level Utilities 
After learning from the Swait and Louviere omnibus test in the 

Appendix that significant between-group differences in utilities exist 
(or before confirming that we’re not being victimized by experi-
mentwise error using the Benjamini-Hochberg Procedure that also 
appears in the Appendix) we decide to run some between-group tests 
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on individual respondent-level utilities.  Classical and Bayesian statis-
tics have different ways of performing these tests.   
 
Classical Between-Groups Test 

To run the classical t-test or ANOVA, we first need to normalize 
the utilities to try to adjust for the fact that different respondents 
might have answered the MaxDiff questions with different amounts 
of consistency, for example using the Zero-Centered Diffs procedure 
described in Chapter 5.  Now imagine that we’ve done so for a 
MaxDiff survey among dog owners about how much they like various 
breeds of dogs. 

To learn whether men and women have different preferences for 
breeds we can use our favorite statistical software to compare males’ 
and females’ (normalized) utilities for any breeds of interest.  When 
comparing exactly two groups we use the t-test and in cases where we 
want to test for differences across more than two groups we use the F 
statistic from a one-way analysis of variance (ANOVA).  You can run 
these tests in your favorite statistical software or even in Excel. 

 
Bayesian Between-Groups Test 

The Bayesian test turns out to be pretty easy.  HB estimation 
(Chapter 4) uses an iterative procedure that produces thousands of 
“draws” (or estimates) for both the upper- and lower-level models 
that make up the model hierarchy.  The upper-level draws we call 
draws of alpha (where alpha is our current estimate of the population 
mean utility vector).  The lower-level draws we call draws of beta 
(where beta is our current estimate of an individual’s utility vector).  
We typically ignore the draws before the point where the model con-
verges and becomes stable (typically the first 5K or 10K draws).  We 
then use the remaining draws (which Sawtooth Software’s HB estima-
tion program can write to a convenient .CSV file) to conduct statisti-
cal tests in a way that only involves counting. 

Statistical testing for HB requires a shift in mindset.  You examine 
the distributions of draws of parameters to see if a strong majority of 
these draws falls on either one side or the other of the null hypothe-
sis.   
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For the dog breeds example, let’s imagine we conducted a MaxDiff 
experiment, estimated utilities via HB, and we were interested in de-
veloping a 95% credible interval (often referred to as a confidence in-
terval) for the Beagle utility.  We open the file containing the succes-
sive estimates of alpha for the population.  Alpha is a vector contain-
ing all the parameters in the model, but we want to focus just on one 
element (column) of that vector: the Beagle utility.  Imagine that you 
have 20,000 total draws (10,000 before convergence and then another 
10,000 after) and that the first few draws of alpha (after convergence) 
look something like the following: 

 
 Draw#  Beagle 
 10001  -0.30285 
 10002  -0.29823 
 10003  -0.29801 
 10004  -0.30114 
 10005  -0.30159 

 
One way to develop the 95% credible (confidence) interval is 

simply to sort the 10,000 “used” draws from lowest to highest and 
then pick out the 2.5th and 97.5th percentile values.  Those mark the 
endpoints of the 95% credible interval (the interval that contains 95% 
of the estimates). 

If you employ covariates in your HB model based on membership 
in the groups you want to test (e.g., males vs. females) you obtain esti-
mates of alpha by different respondent groups.  Imagine that gender 
is dummy-coded as a single covariate parameter in the design matrix, 
where one of the states (male) is assigned as the reference (0) level 
and the other state (female) is assigned to be 1.  Now, when you open 
the file containing the successive estimates of alpha draws, you’ll find 
the intercept alpha parameters (corresponding to the mean utilities 
among males for all the items) followed by the alpha parameters asso-
ciated with the adjustments to the intercept values to result in mean 
female utilities for the items in the model.  If we want to know if 
males prefer beagles more than females do (relative to the average 
breed of dog), we count for what percent of the used draws the 
males’ utility for that level exceeds the females’ utility (where the fe-
male’s utility for beagles is equal to the intercept beagle parameter 
plus the adjustment for being female parameter for beagle).  If 92% 
of the draws show the males’ mean utility exceeds the females’ utility, 
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then we are 92% confident that males like beagles more than females 
do (relative to the other breeds of dog included in the experiment).  
This procedure involves repeated runs of the HB analysis with as 
many covariates as stat tests one wants to run, so we’re not aware of 
many practitioners who use it – much more often we see folks use the 
classical between groups test described above. 

6.3 Tests for Between-Item Differences 
We don’t worry much about an omnibus test for differences among 
items.  We have yet to come across a MaxDiff study with no signifi-
cant between-item differences. 

  
Using Aggregate MNL Utilities 

Consider the utilities for our MaxDiff study of preferences for dif-
ferent dog breeds among dog owners: 

 
Breed Utility Std Error 
Toy Fox Terrier 0.474 0.133 
Chihuahua -0.127 0.129 
Dachshund 0.040 0.131 
Spanish Galgo 1.339 0.130 
. . .  . . . . . . 
Indian Pariah Dog 0.347 0.128 

 
To test if there is a statistically significant difference between items 

in a MaxDiff, realize that each respondent provides utilities for each 
breed, so that the observations of breeds are dependent.  So, you 
compute a dependent groups t-test using the following formula: 

 
t = 

𝑈𝑈1−𝑈𝑈2

�𝑆𝑆𝑆𝑆12+ 𝑆𝑆𝑆𝑆22− 2𝐶𝐶𝐶𝐶𝐶𝐶12
 

Where U1 and U2 are the utilities (effects) of the two levels and the 
expression in the denominator is the pooled standard error for the 
two levels (SE1 is the standard error for U1, SE2 is the standard error 
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for U2 , and COV12 is the covariance4 between the two levels).  If the 
covariance of the two levels is 0.0012, the t-value for the statistical 
test of difference in utilities between how much dog owners like Chi-
huahuas and Indian Pariah Dogs is  

(0.347--0.127)/�0.1282 + 0.1292 − 2(0.0012) = 2.71.   

Since this t-value has an absolute magnitude greater than 2.58, we are 
greater than 99% confident that dog owners like Indian Pariah dogs 
more than they like Chihuahuas. 

Classical Test for Between-Item Differences 
    There are again Classical and Bayesian statistical methods for running be-
tween-item tests. 

Classical Test for Between-Item Differences 
If you familiar with running post hoc tests for ANOVA models the 

easiest way to test for between item differences is using a repeated 
measures analysis of variance (or RM-ANOVA) followed by post hoc 
Tukey tests.  An (unsurprising) significant result for the RM-ANOVA 
indicates that at least one pair of items have significantly different util-
ities and the Tukey post hoc tests tell you specifically which pairs of 
items are significantly different.  For example, if we have 20 items in 
our MaxDiff, if we want to test for between-item differences, then we 
have a total of 190 paired comparisons to test.  Testing this as a RM-
ANOVA with a Tukey post hoc test will properly account for the ex-
perimentwise error from running so many tests.  See Stevens (1996) 
for a useful discussion of the Tukey test for RM-ANOVA. 

We’ve yet to come across anyone else using this approach.  Most 
folks who use classical statistical tests simply run large numbers of de-
pendent t-tests in their favorite statistical software packages.  If you 
do this, however, you should at least correct for the number of t-tests 
you run by using the Benjamini-Hochberg Procedure described in the 
Appendix.  
 
 

 

4 If using Sawtooth Software’s Lighthouse Studio to compute the aggregate logit scores, you 
can request the covariances from the Advanced Settings dialog. 
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Bayesian Test for Between-Item Differences 
Let’s imagine that we have successive estimates of alpha for Fox-

hounds and Miniature Poodles, and the first five draws (after conver-
gence) look like this: 
   Miniature  
 Draw# Foxhound Poodle  
 10001 -0.25136 -0.12476 
 10002 -0.24921 0.01873 
 10003 -0.22384 -0.08757 
 10004 -0.21998 -0.08897 
 10005 -0.23179 0.00622 

 
If we want to compute our degree of confidence that respondents 

prefer Miniature Poodles more than Foxhounds, we simply count for 
how many draws of alpha the utility estimate for the Poodles is 
greater than for Foxhounds.  If 99.17% of the alpha draws had Minia-
ture Poodles preferred to Foxhounds, then we are 99.17% confident 
that our respondents prefer Miniature Poodles to Foxhounds.  To 
correct for multiple comparison error when we run more than one of 
these tests, see the Benjamini-Hochberg procedure in the Appendix. 

6.4 Appendix   
 
Omnibus Tests and Post Hoc Corrections for Experimentwise Error 

We show these tests in the Appendix not because we find them 
unimportant, but because few analysts use them.  Certainly these 
methods add time and effort to the testing process that can pinch the 
schedules of many commercial studies.   
 
The Swait and Louviere Test for Between-Group Differences 

We know that the MNL model has a scale factor as described in 
Chapter 4.  The scale factor affects the size of the utilities such that 
respondents who answer more consistently, i.e. with less response er-
ror, tend to have utilities with larger absolute values across the board, 
while respondents who answer less consistently, i.e. with more re-
sponse error, tend to have smaller (closer to zero) utilities.  Imagine a 
situation where Poles and Belgians have the same preferences for the 
items but that the Poles make their MaxDiff choices more consist-
ently.  In this case the utilities might look different, because the Poles 

Extracted from: Applied MaxDiff: A Practitioner’s Guide to Best-Worst Scaling 
by Keith Chrzan and Bryan K. Orme 

Copyright 2019 by Sawtooth Software, Inc.



72 Applied MaxDiff 

 

would have larger positive and larger negative utilities while the Bel-
gians’ utilities would be smaller (i.e., closer to zero).  In order to test 
properly for differences in logit models we need to take into account 
differences in respondent consistency, that is, differences in the logit 
scale factor.   

Swait and Louviere (1993) supply just such a test.  Their test proce-
dure is sequential and it involves running four models for any com-
parison between two groups. 

1. We use the data matrix from the first group to be com-
pared, X1, to run an MNL model which gives us a set of 
utilities β1 and a log likelihood fit of LL1. 

2. Similarly, we use the X2, the data matrix from the second 
group of respondents, to power a model that yields a sec-
ond set of utilities, β2, and a corresponding log likelihood 
LL2. 

3. For the third model we just concatenate the two data ma-
trices X1 + X2 to get a set of utilities βP and a fit statistic 
LLP for the pooled model. 

4. Finally, we run a scale-constrained model where we use the 
pooled data matrix, only with the scale parameter µ for the 
second data matrix that maximizes the log likelihood fit of 
the model:  X1 + µ2X2.  One finds the value of the scale pa-
rameter µ2 by running the model time and again, moving 
µ2 in the direction that improves log likelihood, until the 
log likelihood stops improving.  The log likelihood func-
tion’s concavity guarantees a unique maximum discovera-
ble through this simple search procedure.  What results is a 
set of coefficients bµ and LLµ. 

 
The test procedure evaluates three related hypotheses: 

 
H1:  β1=β2 and µ1=µ2 
H1A:  β1=β2 

H1B:  µ1=µ2 (because we cannot identify both scale parameters, 
we can set µ1=1 and compute µ2 relative to it)    

 
The first test in the sequence uses the fit statistics from the two 

groups’ separate models and from the scale-constrained model, as fol-
lows:  
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λA = -2 [ LLµ - ( LL1+LL2 )] 

 
If λA exceeds the critical chi-squared value with K+1 degrees of 

freedom (K is the number of parameters in each of the three logit 
models) then we reject H1A and H1.  We conclude that the coefficients 
(utilities) differ for the two groups and we stop the testing sequence.  
Only at this point would it be appropriate to proceed to test individ-
ual coefficients to see which ones differ between the groups using t-
tests similar to those described in the body of the chapter.   

If we fail to reject H1A we can go on to test H1B as follows using 
the fit statistics from the pooled and the scale-constrained models: 

 
λB = -2 ( LLP – LLµ ) 

 
If λB exceeds the critical chi-squared value for a test with 1 degree 

of freedom, then we reject H1B and conclude that the two models 
have different scales. 

Note that with this procedure we may find that the models have 
different utilities or that they have different scales, or we may find 
that their scales and utilities do not differ significantly.  We will never 
be in a position to conclude that two models have both different 
scales and different utilities, however.  

Continuing the example above, we might reject the first hypothesis 
and conclude that the utilities of Belgians and Poles differed signifi-
cantly.  Alternatively, we might reject the second hypothesis and con-
clude that Belgians and Poles had significantly different scale factors 
(i.e., amounts of response error) but underlying utilities that did not 
differ significantly.  Finally, we might reject neither hypothesis and 
conclude that Poles and Belgians differ neither in their utilities nor in 
the consistency with which they answer their choice questions.  

Tests involving more than two groups would be analogous.  
 

The Benjamini-Hochberg Procedure for Experimentwise Error 
If we opt not to perform the omnibus test above, we can go ahead 

and run all of our various classical t-tests or their Bayesian equivalents 
and then afterwards account for the fact we’ve run lots of tests by us-
ing the Benjamini–Hochberg (BH) Procedure (Benjamini and 
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Hochberg 1995).  Unlike other corrections for experimentwise error, 
BH controls false positives without the danger of inflating the num-
ber of false negatives.   

The procedure works as follows: 
 

1. Rank the p-values of all your tests from lowest to highest 
2. Calculate a critical p-value for each rank by multiplying the 

rank by the error rate you want to allow across all tests 
(e.g., 0.05) and divide by the number of tests (so if we run 
45 statistical tests and we want a 0.05 experimentwise error 
rate the critical value for the first rank would be 1 * 0.05 
/45 = 0.00111. For the second ranked test it would be 
0.00222, etc.) 

3. Identify the highest rank for which the observed p-value is 
less than the critical p-value 

4. For that rank and all lower ranks reject the hypothesis that 
the interaction effect is 0 

 
For example, say we’ve run 45 statistical tests and five of them ap-

pear to be significant.  We now table the observed p-values and the 
BH critical p-values for the first 5 ranks:  
 

Rank  Observed p Critical p 
 1  0.0021   0.00111  
 2  0.0023   0.00222  
 3  0.0025   0.00333 
 4  0.0158   0.00444 
 5  0.0362   0.00555 

 

The third rank is the highest wherein the observed p is lower than 
the critical p, so in this study we accept the first, second and third 
ranked tests as significant.  

So Benjamini-Hochberg is a tool we can use to decide which tests 
are “really” significant when we run a number of tests and inflate our 
experimentwise error rate. 
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