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Background  

In the ‘50s and ‘60s, mathematical psychologists developed theories about how perceptions and
preferences might be related.  They considered objects to be arranged in some kind of perceptual
space, determined either with respect to perceived similarities, or with respect to ratings on
descriptive attributes.  Each individual was also thought to have an ideal direction in the space
and to prefer objects that were farther in that direction, or to have an ideal point in the space and
to prefer objects closer to that point. 

Market researchers have found these ideas very fruitful.  Use of product maps became
widespread in marketing research in the ‘60s and ‘70s, and they have proved to be useful aids for
thinking about differences among products, customer desires, and ways in which products might
be modified to become more successful.

Perceptual data have been used most often to create product spaces.  In early years judgements
about overall similarity of pairs of products were used with multidimensional scaling techniques.
However, in later years attribute ratings have been used more widely, analyzed with factor
analysis, discriminant analysis, or correspondence analysis.  

Preference data have also been used to develop product spaces in marketing research.  The first
techniques for making maps based on preferences were developed in the early ‘60s:  Coombs’
Unfolding method (which assumed each individual had an ideal point) and Tucker’s Points of
View approach (which assumed each individual had a preferred direction in space).  In an
important contribution in 1970, Carroll and Chang  showed that vector models can be regarded
as special cases of generalized ideal point models, and they also provided the first practical
method for estimating ideal points.  
 
Most methods for making product maps have used either perceptual data or preference data, but
seldom both.  And there have been problems with maps of both types. 

Maps based on perceptions are easy to interpret and good at conveying insights, but they are
often less good at predicting individual preferences.  One reason is that they may focus on
differences that are easy to see but less important in determining preferences. 

Maps based on preferences are better at accounting for preferences, but their dimensions are
sometimes hard to interpret. For example, consider cups coffee with  differences in temperature
ranging from boiling to tepid.  Most of us would probably prefer some middle temperature and
reject both extremes.  But if no perceptual information is available to establish their differences
on the underlying temperature scale, the most extreme cups may be close together in a
preference-based map, because their only recognized property is that they are both rejected by
nearly everyone.
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There is still another problem with aggregate maps of both types: a product’s position on a map
is based on the average of many individuals’ perceptions or preferences.  Because individuals
differ, a single map can seldom describe different individuals’ perceptions or preferences very
precisely. 

At the previous (1997) Sawtooth Software Conference, John Fiedler and Terry Elrod  presented
papers analyzing the same data but using different methods.  John used a discriminant-based
method which considered only perceptual data in the form of  attribute ratings, and Terry used a
technique he had developed which considered only preference data.  Their maps were
surprisingly similar.  This reinforced the underlying theory relating perceptions and preferences,
and suggested that even better maps might be produced if based on both perceptions and
preferences.  In the few instances where both types of data have been used, the usual practice has
been first to use perceptual data to make the map, and then to fit preference data to it “after-the-
fact.”  By contrast, because the methods described here use both perceptual and preference data
simultaneously, we call them “composite” methods.

Composite Methods

We have developed both “vector” and “ideal point” models.  Each model uses both  perceptual
data, consisting of product ratings on attributes, and preference data, consisting of paired-
comparison preference ratings for products.   These are the same types of data as provided by
APM, a perceptual mapping product released by Sawtooth Software in 1985.   In fact, both
composite models use APM data files, although they make no use of product familiarities or
explicit ideal point ratings.

These two new models share several characteristics:  

Every respondent has a unique perceptual space, determined by his/her own ratings of
products on attributes.  

Each dimension in the individual’s space is a weighted combination of his/her ratings of
products on attributes.  

However, the attribute weights defining the dimensions are required to be identical for all
respondents.  

Those attribute weights are determined by optimizing the fit (over all individuals)
between actual preferences and the preferences inferred from the individual perceptual
spaces.

The overall product map is just the average of the individual maps.  It is also a weighted
combination of average product ratings, so it is truly a perceptual map, although with
dimensions chosen so as to account best for preferences.  In this way we produce maps which are
firmly grounded in descriptive attributes, but which better account for individual preferences.
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Both models require the estimation of two sets of parameters.  One set consists of attribute
weights, identical for all individuals, to be applied to attribute ratings to obtain the dimensions of
individuals’ perceptual spaces.  The other parameters are unique for each individual: either
individual importance weights in the case of the vector model, or individual ideal point
coordinates in the case of the ideal point model.  For both models, estimation is done using
alternating least squares.

The vector model assumes that each individual has some preferred direction in space, and prefers
products that are “farther out” in that direction.  It is appropriate for product spaces that have
dimensions where “more (or less) is always better.”  An initial guess is made at the attribute
weights.  Based on the implied perceptual spaces, the best-fitting importance weights are
estimated for each individual.  Then, given those importance weights for all individuals, an
improved set of attribute weights is estimated.  The procedure alternates between estimation of
individual importance weights and common attribute weights, continually improving the
goodness of fit, as measured by an r-square value.  To aid interpretability, the overall map is
constrained to have orthogonal dimensions, and each dimension is scaled so that the sum of
squared product coordinates is equal to the square of the number of products. 

The ideal point model assumes that each individual’s liking for products depends on products’
perceived distances from an ideal point.   Such models are more appropriate for product
categories in which respondents may prefer combinations of attributes corresponding to interior
regions of the space.  Our approach is somewhat simpler than that of Carroll and Chang in
PREFMAP.  To keep things simple, we assume that individual preference contours are circular;
in other words, we do not permit individuals to weight dimensions differently. Also, our
implementation of the ideal point model assumes that each individual’s ideal point is interior to
the convex hull of his/her perceived product locations.  As a result, our vector model is not a
special case of our ideal point model.
 
Estimation of the ideal point model is done by minimizing a weighted sum of squared distances.
From each respondent’s preference data we obtain a set of positive weights that sum to unity,
similar to shares of preference in conjoint analysis.  We also compute the squared distances from
each respondent’s ideal point to each product in his/her perceptual space.  Finally, we sum the
products of those squared distances times the corresponding preference weights.  We minimize
this sum over all respondents, producing a solution in which more preferred products have
smaller distances from ideal points.  (This approach has some similarity to that of Desarbo and
Carroll (1985), although they use weights based on preferences to scale discrepancies between
observed and predicted distances, whereas we use the weights to scale the distances themselves.)

If the preference weights were all equal, then the algorithm would minimize the sum of squared
distances from respondents’ ideal points to all of the products, and all ideal points would be
estimated to be at the center of the space.  At the other extreme, if the preferred product had a
weight of unity and all others had weights of zero, each individual’s ideal point would be
estimated as coincident with his or her preferred product.  As with conjoint simulators, one can
choose an scale factor to apply to the preference weights that produces any behavior between
those two extremes.  For our examples we use an scale factor of 10, which requires each
individual’s ideal point to be quite close to his or her preferred product.  However, there can be a
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lot of heterogeneity in the way individuals perceive brands.  Even if each person’s ideal point
were made to coincide perfectly with his or her preferred brand, ideal points could still be
dispersed all over the aggregate map.
 
As with the vector model, we constrain the overall map to be orthogonal, with the sum of
squared product coordinates for each dimension equal the square of the number of products.
This avoids degenerate solutions in which all products and ideal points are coincident.

In what follows, we compare composite mapping results to those from discriminant analysis,
using two data sets.  The first data set is an artificial one, deliberately constructed to show the
potential superiority of composite methods.  The second data set consists of real data for
motorcycles.
 
An Artificial Example

The first data set consists of perceptual and preference data for 300 artificial respondents, with
three attributes and eight products.  Imagine the product category to be busses used in rush hour
commuting in a large city.  The first attribute is Color of the bus, with levels red or blue.  Color
is deliberately chosen as an attribute on which people would agree which color a bus actually
had, but which would have little impact on preference. The second attribute is Speed with levels
fast and slow.  The third attribute is Roominess with levels of roomy and cramped.
 
The eight busses to be rated have all combinations of levels of the three attributes.  The
perceptual data were made heterogeneous by adding an independent random variable to each
product’s design value for each individual.  Heterogeneity for Color was only half as great as for
Speed and Roominess.  

Respondent ideal points were also random, with mean near the center of the scale for each
attribute, and with a large amount of random preference heterogeneity.  Respondents’ preference
data were generated by constructing constant sum paired comparison answers for 12 pairs of bus
concepts.  Preferences were deliberately constructed so as not to be affected by Color.  The sum
of squared differences was first computed between each respondent’s ideal point and his/her
perception of each bus, considering only Speed and Roominess.  Reciprocals of those sums were
then exponentiated and percentaged, to simulate paired comparison preference values between 0
and 100.   

Perceptual and preference data are like those used by Sawtooth Software’s APM system, which
uses discriminant analysis to construct perceptual maps.  Discriminant analysis has optimal
mathematical properties, guaranteeing that its maps will contain the greatest amount of
information about how products are seen to differ from one another for a given number of
dimensions.  

Although we have data on three attributes, we desire a map using only two dimensions.  
The results for APM’s perceptual map are given in Table 1 and Figure 1.  The first dimension
consists almost entirely of Color.  This is expected, since discriminant analysis accounts for as
much variance as possible with its first dimension, and our variables are orthogonal, with Color
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having the least amount of disagreement about which color each bus has.  The second dimension
consists mostly of a combination of Speed and Roominess.  The third dimension, if we had
included it, would have consisted of another combination of Speed and Roominess, which would
account for the balance of the systematic differences among products.

Table 1
Discriminant Map for Synthetic Data

           1      2   
                          -----  -----  

                Blue/Red    1.00  -0.01  
              Fast/Slow    0.03   0.95  
                Roomy/Cramped   -0.05   0.35  

RSR     -8.61  -3.12  
RFR     -7.73   7.90  
RSC     -8.62  -7.30  
RFC     -7.48   3.99  
BSR      7.74  -3.91  
BFR      8.94   7.34  
BSC      7.46  -7.66  
BFC      8.29   2.76  

The second panel of Table 1 shows the coordinates of the 8 products in the discriminant space.
Each product is identified by a three-letter string.  The first letter is R or B indicating whether the
bus is red or blue.  The second letter is S or F, indicating whether it is slow or fast.  The final
letter is R or C, indicating whether it is roomy or cramped.  As expected, the four red busses are
all at one end of the first dimension and the four blue busses are all at the other end.  The second
dimension is characterized mostly by differences in Speed, with a small amount of information
about differences in Roominess. 
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 Since we constructed preferences to depend on Speed and Roominess but not Color, the first
dimension of this space is useless for explaining preferences, and we have failed to capture
important information about Roominess and Speed that would be required to account well for
preferences.  

We next consider maps of the same data produced using both perceptual and preference data.
First, here are results for the vector map:

Table 2
Composite Vector Map for Synthetic Data

1     2   
                           -----  -----  

    Blue/Red   -0.04   0.04
     Fast/Slow    0.99  -0.05

    Roomy/Cramped     0.00   1.00

RSR      -0.92   1.05       
RFR       1.11   0.97       
RSC      -0.93  -0.92       
RFC       1.10  -0.87       
BSR      -1.13   0.99       
BFR       0.92   0.98       
BSC      -1.01  -1.12       
BFC       0.86  -1.07       

Figure 1
Discriminant Map
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The first panel of Table 2 shows that Color scarcely enters into either dimension, and that both
dimensions are concerned almost solely with Speed and Roominess, which we know are required
to account for preferences in this example.  The second panel shows that the corresponding red
and blue products occupy similar positions in the space.

Composite maps may be subjected to any orthogonal rotation, so we have chosen to make the
vectors for Speed and Roominess nearly horizontal and vertical.  It is clear that the
corresponding red and blue products occupy similar positions in the space.  The small
differences in location between corresponding products are due to the random heterogeneity of
perception that was used in construction of the data file.   

More important, this map accounts for preference more successfully than the discriminant map.
If we find the direction in each map which best accounts for each respondent’s preferences, we
get an average r-squared between predicted and actual preferences of .59 for the discriminant
map, vs. .74 for this map.  We may also count the average number of correct orders for pairs of
products when comparing actual rank orders of preference vs. predicted rank orders.  For the
discriminant map, 74% of the pairwise comparisons are correct, vs. 80% for this map.  We
should not expect either map to work perfectly because the vector model assumes that individual
ideal points are infinitely far from the center of the space, and we constructed this data set so that
a large proportion of the ideal points were near the center of the space.

Figure 2
Composite Vector Map
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We next consider a map of the same data produced using a composite ideal point map.  

Table 3
Composite Ideal Point Map for Synthetic Data

    1     2   
                          ----- -----  

  Blue/Red   -0.07  -0.02
 Fast/Slow    0.99  -0.03

               Roomy/Cramped   -0.04   1.00

 RSR         -0.85   1.01
 RFR          1.17   0.89
 RSC         -0.92  -0.96
 RFC          1.09  -0.96
 BSR         -1.12   1.08
 BFR          0.91   1.01
 BSC         -1.07  -1.04
 BFC          0.80  -1.04

 The ideal point map, like the preceding vector map, ignores Color almost entirely, concentrating
on Speed and Roominess.   As with the vector map, the products that are identical except for
Color are nearly superimposed, and the small differences between them are due to the random
heterogeneity built into the perceptual data.   

This map also accounts for preferences far more successfully than the discriminant map.  We can
use the preference data to estimate individual ideal points for both maps, and then compute
distances from each product to each respondent’s ideal. We can evaluate the performance of each
map in accounting for preference by counting the number of product pairs for which the
preferred product is closer to the respondent’s ideal point.  For the discriminant map, 79% of the
pairs are correct, and for this composite ideal point map 92% of the product pairs are correct.
This map does not provide perfect prediction because it restricts ideal points to lie within the
convex hull of the product points, and the data set was constructed so that many of them actually
lie outside that region.

Figure 3
Composite Ideal Point Map
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In addition to the results shown, the composite vector mapping approach also estimates an ideal
direction for each respondent, and the composite ideal point mapping approach estimates an ideal
point for each respondent.  We don’t show those because the ideal points were constructed so as
to comprise an undifferentiated “blob” of little interest.  However, we shall consider individual
preference information for the next data set.

Motorcycles

The second data set concerns road-going motorcycles, and was contributed by Tom
Wittenschlaeger of Hughes Aircraft Company and John Fiedler of POPULUS, Inc.  The data
were collected in the United States in 1994 from a sample of 150 motorcycle riders.  The project
was methodological rather than substantive, so the data should not be used to develop marketing
strategy, but serve nicely to illustrate mapping techniques.

The interview was typical of an APM questionnaire.  Each respondent rated the importance of 10
attributes, and his/her familiarity with 11 motorcycle brands, and then rated the most familiar 5
motorcycles on the 5 most important attributes.   The respondent’s “ideal motorcycle” was also
rated on the same scales.  Finally, eight random pairs of motorcycles were presented and the
respondent was asked to allocate 100 points between the members of each pair, indicating the
relative likelihood of choosing each one in a purchase situation.  Neither attribute importances
ratings, product familiarity ratings, nor explicit ideal points were used in this analysis.

The attributes and products rated were as follows.  Each has been given a short label to identify it
on the maps:
 

Attributes:
 Image Has the image I prefer
 Safe Meets high standards of safety
 Perform Has high performance
 Unique Has a unique look and feel
 Value Offers good value for the money
 Service Has excellent service and support
 Quality Has high quality
 Style Has beautiful styling
 Engin Has excellent engineering
 Fun Is fun to ride
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Products:
HON Honda
KAW Kawasaki
SUZ Suzuki
YAM Yamaha
DUC Ducati
GUZ Moto Guzzi
BIM Bimota
BMW BMW
TRI Triumph
NOR Norton
HAR Harley Davidson

We have no market data with which to compare inferences from maps, but we do have
preference data from the same respondents.  Recall that each respondent selected the five
products with which he or she was most familiar, and then answered paired comparison
preference questions for eight random pairs of those products.  We can accumulate the average
preference proportions awarded to each product, which are shown in Table 4.

Table 4
Average Preference Percentages

HAR 71
HON 60
BMW 54
KAW 47
YAM 42
DUC 42
GUZ 41
SUZ 40
TRI 39
BIM 38
NOR 37

We should expect Harley Davidson, Honda, and BMW to have positions on the map indicating
relative desirability.  

The values in Table 4 do not reflect differences due to familiarity.  Harley Davidson and the four
Japanese brands were familiar to many respondents, while Bimota, Ducati, Moto Guzzi, and
Bimota were familiar only to few.  The more familiar brands will have more influence in
determining the structure of the maps. 

We now compare the maps produced by discriminant analysis with those produced by the two
composite methods, using both vector and ideal point models.
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Table 5
Discriminant Map for Motorcycle Data

      1     2   
                            ----- -----  

 Image    0.32   0.60
 Safe     0.65  -0.17
 Perform  0.25  -0.33
 Unique   0.15   0.78
 Value    0.47   0.03
 Service  0.75   0.08
 Quality  0.66  -0.12
 Style    0.36   0.52
 Engin    0.65  -0.16
 Fun      0.44   0.28

 HON      0.37  -0.21
 KAW      0.02  -0.20
 SUZ     -0.10  -0.24
 YAM     -0.01  -0.27
 DUC     -0.47  -0.00
 GUZ     -0.18  -0.02
 BIM     -0.34  -0.05
 BMW      0.42  -0.06
 TRI     -0.64   0.32
 NOR     -0.58   0.40
 HAR      0.18   0.62

The correlations of the attributes with the two largest dimensions in the discriminant space are
given in Table 5.  This map has been rotated so all attribute vectors point toward the right  side
of the space.  These attributes would all be regarded as favorable by most motorcycle riders, so
one would expect the preferred brands to be toward the right side of the space.  The graphical
representation of these data is given in Figure 4.  (The product coordinates have been scaled
down by a factor of .25 to make their average absolute values approximately equal to those of the
correlations.)
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Harley Davidson is alone in the upper right quadrant, with large projections on 
Uniqueness, Image, Style, and Fun.  BMW and Honda are in the lower right  quadrant, with large
projections on the Service, Value, Engineering, Quality, Safety, and Performance.  BMW has
larger projections on the attributes pointing upwards, and Honda is larger on  Performance.   The
British brands Norton and Triumph are in the upper left quadrant, with large projections on
Unique, Image, and Style.  The three Italian brands are in the lower left quadrant, rather close to
the center, and the Japanese brands Kawasaki, Suzuki, and Yamaha are toward the bottom of the
map, with high projections on Performance.  

In APM questionnaires the respondent is asked to describe his ideal product on the same
attributes as he describes existing products.  These explicit ideal points can also be incorporated
into the map, although there is some question about the reasonableness of this procedure with
attributes where the ideal levels might be at infinity.  Rather than show all 150 respondents’
explicit ideal points individually, we have done a cluster analysis, and show the locations of the
centers of three clusters in Table 6.

Table 6
Centroids of Ideal Point Clusters in Discriminant Map

 1       2
                             -----   -----   

Cluster A (39%) 1.16   -0.07
Cluster B (36%)   0.22    0.06
Cluster C (25%)   0.74    1.32

Cluster A, which contains 39% of the respondent sample, has an average position much farther
to the right than any product, and slightly below the horizontal axis.  Those respondents would
be expected to favor BMW and Honda.

Figure 4
Discriminant Map
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Cluster B, which contains 36% of the respondent sample, has an average position slightly to the
right of and above the origin.  Those respondents might be expected to prefer any of the
products.

Cluster C, which contains 25% of the respondent sample, has a position far to the right, and very
far above all the products, approximately in the direction of the Image vector.  Those
respondents would be expected to have very strong preferences for Harley Davidson.

We turn now to the composite vector map, for which data are given in Table 7.

Table 7
Composite Vector Map for Motorcycle Data

      1     2   
                            ----- -----  

 Image    0.40   0.91
 Safe     0.88  -0.43
 Perform  0.45  -0.77
 Unique   0.16   0.97
 Value    0.94  -0.12
 Service  0.95  -0.06
 Quality  0.91  -0.34
 Style    0.53   0.83
 Engin    0.89  -0.42
 Fun      0.84   0.52

                   HON      2.11  -1.01
 KAW     -0.11  -0.62
 SUZ     -0.57  -0.70
 YAM     -0.29  -1.01
 DUC     -0.49  -0.13
 GUZ     -0.13  -0.14
 BIM     -0.15  -0.01
 BMW      0.90  -0.27
 TRI     -1.58   0.93
 NOR     -0.96   0.32
 HAR      1.26   2.69
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This map has also been rotated so all attribute vectors point toward the right side of the space.  It
has strong similarities to the one produced by discriminant analysis.  Harley Davidson is again
alone in the first quadrant, with high projections on Unique, Image, Style, and Fun.  BMW and
Honda are again in the lower right quadrant, with strong projections on the remaining six
attributes.  The British products are again in the upper left quadrant, but this time much closer to
the center of the space.  The Italian products are very close to the center, and Suzuki, Kawasaki,
and Yamaha are again in the lower left quadrant.  The main apparent differences are that BMW
is now much closer to the center than Honda, and the relatively low-rated products, which are
those on the left side of the space, have moved toward the center.  

The fact that the discriminant map looks much like the composite map suggests that none of the
attributes captures large but unimportant differences.   This map is the average of 150 individual
maps, on which respondents have different opinions about the positioning of products.  The fact
that the less popular products are closer to the center in the aggregate map suggests that they are
in fact preferred by some respondents, who view them more favorably in terms of these
attributes.

Since this is a vector map, individual preferences are given by “ideal direction” in space.  We
summarize those data by a count of the proportion of individuals whose ideal direction lies in
each of eight “compass directions.”

Figure 5
Composite Vector Map
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Table 8
Summary of Ideal Vector Locations

   -----Bearing-----  Percent
    0 to  45 degrees    31
   46 to  90 degrees    26
   91 to 135 degrees    20
  136 to 180 degrees     7
  181 to 225 degrees     6
  226 to 270 degrees     0
  271 to 325 degrees     2
  326 to 360 degrees     6

Nearly all respondents’ ideal directions are in the right side of the space, with 57 percent in the
upper-right quadrant and 27% in the lower right quadrant.  These results are also similar to those
for the discriminant map, which suggested that the strongest demand was for products in the
upper right quadrant.  In fact, this map and the discriminant map are very similar in terms of
fitting preferences.  If we find the direction in each map which best accounts for each
respondent’s preferences, and then count the percentage of correct orders for pairs of products
when comparing actual rank orders of preference vs. predicted rank orders, we get 92% correct
for the discriminant map vs. 93% correct for this map.   

Finally, we consider the composite ideal-point map, for which data are given in Table 9. 

Table 9
Composite Ideal Point Map for Motorcycle Data

      1       2   
                            -----   -----  

 Image     0.49    0.63
 Safe      0.61   -0.30
 Perform   0.43   -0.49
 Unique    0.21    0.91
 Value     0.63   -0.18
 Service   0.71   -0.24
 Quality   0.78   -0.32
 Style     0.60    0.54
 Engin     0.77   -0.44
 Fun       0.70    0.16

  HON      1.80   -1.29
  KAW     -0.02   -0.73
  SUZ     -0.76   -0.67
  YAM     -0.55   -1.09
  DUC     -0.56   -0.05
  GUZ      0.02    0.15
  BIM     -0.24    0.02
  BMW      1.15   -0.25
  TRI     -1.23    1.37
  NOR     -1.15    0.28
  HAR      1.54    2.26
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This map is very similar to the vector map of Figure 5.  Both products and attribute vectors are in
similar positions, and it seems doubtful that one would reach different conclusions from the two
maps.

The mapping computation creates a file of individual ideal point estimates.  We have subjected
those to a cluster analysis, and have chosen to report three clusters.  The coordinates of their
centroids are given in Table 10.

Table 10
Centroids of Ideal Point Clusters in Ideal Point Map

 1       2
                             -----   -----   

Cluster A (62%) 2.61    0.63
Cluster B (27%)  13.49    1.95
Cluster C (11%)  15.72   14.19

It may seem surprising that clusters B and C have locations far to the right of all of the products,
when ideal points are required to be close to those individuals’ preferred products.  The reason
for this is that there is considerable variation in individual product perceptions.  Some
individuals see their preferred product as very far to the right of its average location, and their
ideal points are estimated to be near those locations.

As with the discriminant and vector maps, there is clear evidence of preference for products to
the right of and above the horizontal axis.  The largest cluster (62%) is centered to the right of
and slightly above the origin.  Since there is a lot of dispersion within each cluster, those
individuals might prefer any of the products.

Figure 6
Composite Ideal Point Map
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The second largest cluster (27%) is centered very far to the right, and moderately above the
horizontal axis.    Those respondents seem likely to favor Harley Davidson, Honda, and BMW.  

The third largest cluster (11%) are extremely far to the right and extremely high, in the direction
of Harley Davidson but much farther.  They seem likely to be strong Harley preferrers.

This map also accounts for preferences slightly more successfully than the discriminant map.
We can use the preference data to estimate individual ideal points for both this map and the
discriminant map, and then compute distances from each product to each respondent’s ideal. We
can evaluate the performance of each map in accounting for preference by counting the number
of product pairs for which the preferred product is closer to the respondent’s ideal point.  For the
discriminant map, 89% of the pairs are correct, and for this composite ideal point map 92% of
the product pairs are correct.  

Estimating Demand

Since composite maps provide a relatively tight linkage between perceptions and preferences, it
is tempting to consider ways of using composite maps to estimate demand for new products.
There are at least two ways to do so.

One way might be to construct a simulator to predict preferences for new products, or products
modified on one or more attributes.  That approach was used in Sawtooth Software’s APM
product, although the manual listed several reasons why it might not be completely successful.
The basic problem is that there is a many-to-one mapping of attributes into dimensions.  Products
can have quite different levels on several attributes, and yet occupy the same point in space.
Multicolinearity among attributes makes it difficult to infer the relative importance of each.
Also, if a product is changed on one attribute without corresponding changes on others, then the
space itself may change, and with it the capability of making inferences.  

The other way to estimate demand for modified products is to consider products that differ in
terms of locations in the existing space, rather than differing on specific attributes.  That is the
approach used in what follows. 

Figures 7 and 8 present that information for the composite vector and ideal point maps,
respectively.  Relative demand is estimated using a “first choice rule.”  For the vector map, we
see whether a product at each grid point would be the “farthest out” in each respondent’s ideal
direction (relative to other products), and score a 1 if so and a 0 if not.  For the ideal point map
we see whether a product at each grid point would be closest to each respondent’s ideal point
(relative to other products), and score a 1 if so and a 0 if not.  The total number of hits is thus
computed for a hypothetical new product at each grid point.  The grid points are divided into
quintiles in terms of their numbers of “hits,” and each point is given background shading to
indicate its quintile.  The darker regions indicate higher demand.
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As is evident in Figure 7, which provides a display for the composite vector model, the demand
for new products would be greatest if they were positioned far to the right and in the upper half
of the space.   

Similar conclusions would be reached from Figure 8, which provides a similar display for the
composite ideal point model, although in this map the region of highest demand seems to extend
somewhat further downward, suggesting that there is more opportunity for the attributes pointing
in that direction.  

Their ability to portray relative demand for new or modified products is a major benefit of
composite maps.  Because composite maps are based on simultaneous analysis of perceptual and
preference data from the same individuals, they have a strong advantage in this regard over other
methods, which enhances their usefulness to managers.  (However, we should repeat our earlier
caveat, that the data for our examples were collected for methodological rather than substantive
purposes, and these particular maps should not be used for marketing strategy purposes.)
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Although the two maps produce similar information about likely demand for new products, it is
reasonable to inquire which is better.  The vector model accounts for preferences slightly more
effectively, correctly fitting 93% of the pairwise judgements as opposed to 92% for the ideal
point model.  However, the product points seem to be more spread out in the ideal point map,
suggesting that it supports finer distinctions among products.  It would be premature to decide
that one method is better than the other based just on this data set.

Summary and Conclusions

We have introduced techniques for Composite Mapping, which make use of both perceptual and
preference data.  The basic idea is that each respondent has an individual map in which product
locations are weighted combinations of attribute ratings, and the weights are identical for all
individuals.  The aggregate map is the average of the individual maps.  The weights used for all
individuals are determined so as to maximize the correspondence between individuals’ stated
preferences and the preferences that would be inferred from the resulting maps.  There are
separate algorithms for vector maps and ideal-point maps.

Our results lead to these conclusions:

Although mapping based on perceptual data alone can portray product images efficiently
in maps of few dimensions, it can err by concentrating on differences among products
that are easy to see but not important for preference.

For an artificial data set in which two attributes were involved in preferences but a third
had larger perceived differences among products, a perceptual map using discriminant
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analysis failed to account for preferences, but both composite mapping methods
reproduced the known preference structure of the data.

Although mapping based on preference data alone may be successful at explaining
product preferences, the lack of perceptual information may lead to maps that are difficult
to interpret.

For a real data set, the perceptual map using discriminant analysis predicted preferences
quite well, and was visually very similar to both the composite vector map and the
composite ideal point map.  This should occur when the attributes are approximately
equal in importance for predicting preferences. 

The fact that the composite methods appear to produce better results when attributes
differ strongly in their importances in affecting preference, but similar results when
attributes are well chosen, suggests that composite maps can provide insurance against
unfortunate choices of attributes

Since composite maps provide a relatively tight linkage between perceptions and
preferences, they may be used for forecasting relative demand for new or modified
products.  

All in all, there seems to be no downside to using composite mapping methods, and the benefit
of possibly improved interpretation and prediction can be great.
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Appendix

Estimation of Composite Mapping Models

The vector model and the ideal point model both use the following definitions:

Let there be N respondents, n products, p attributes, d dimensions.

For the i-th individual, let:

Xi = an (n x p) matrix of product ratings, with column sums of zero.
 
Yi = an (n) vector of product preference values. APM provides constant-sum preference
information obtained by having respondents divide 100 points among members of each of
several product pairs.  We construct Yi by taking logits of those preference percentages, and
awarding half the logit value to the winning product in that pair, and penalizing the losing
product with half of the logit value.  This results in Yi values similar to conjoint utilities and that
sum to zero for each individual.

T = a (p x d) matrix of weights used to transform attribute ratings into dimensional coordinates.
T is common to all respondents.  We want to find a T which permits the best fit to all
respondent’s preferences.  We start with an approximation obtained from a principal components
analysis of attribute ratings, and then improve it iteratively.

Ci = an (n x d) matrix giving the configuration of products for the i-th individual.

Ci  =  Xi  T (1)

The Vector Model

In the vector model each individual is thought of as having an ideal direction in the space,
represented by a vector, and should prefer products according to their projections onto that
vector. 
 
Let Wi = a (d) vector of importance weights to be applied to columns of the individual’s
configuration to best predict that individual’s preferences.   Our basic individual preference
equation is 

Ci  Wi   -  Yi  =  Ei  (2) 

where Ei is a vector of errors of fit.  Equation 2 says that the individual’s configuration of
products in space Ci is weighted by the elements of Wi  to get a prediction of  Yi.   

Substituting from (1) into (2), we get 



22

Xi  T Wi   =  Yi + Ei  (3) 

If we knew T, we could solve for Wi , using ordinary least squares.  We start with an initial
approximation of T and improve it in subsequent iterations.  After estimating a Wi  for each
individual, we then combine information from all individuals to find a T that fits individuals
better on average.  By alternating between re-estimation of the W’s and T, we eventually find
estimates for the W’s and T that best fit the data.

An initial estimate of T is obtained either from random numbers or from the principal
components of the sum of all individuals’ X matrices.  In each iteration we solve for weights for
each individual using ordinary least squares, minimizing the sum of squared errors in Ei:

(4)

We also record the r-square for each individual as a measure of how well the model fits that
individual’s preferences.

To produce an improved estimate of T, we could use the partial derivatives of the sum of squared
errors with respect to T.  For the i-th individual, those partials are given in equation (5):

                                                                                                        (5)

The partial derivatives of the total sum of squared errors involves summing equation (5) over all
respondents   Setting the partial derivatives of that sum to zero yields an expression for T which
minimizes the sum of squared errors.

(6)

However, this equation appears to be intractable.  In each term of the sum, T is premultiplied by
Xi’Xi and postmultiplied by WiWi’, so it is not clear how to solve for T. 

One possibility would be separately to sum the products Xi’Xi , WiWi’, and Xi’YiWi’ and then to
premultiply the sum of Xi’YiWi’  by the inverse of the sum of Xi’Xi and postmultiply by the
inverse of the sum of WiWi’.  We have tried that, but find that the sum of squared errors obtained
with that approximation does not decrease monotonically from iteration to iteration.  

However, we have had success with a slightly different procedure.  In equation (3) the weights
Wi   are applied to the product Xi T to predict Yi , but it is also true that the weights TWi are
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applied to the matrix of attribute ratings, Xi, to predict Yi.  We may estimate weights (T Wi ) by
premultiplying equation (3) by (X’i Xi) -1 X’i :

 T Wi   =  (Xi’Xi) -1 Xi’Yi + (Xi’Xi) -1 Xi’Ei  (7) 

The first term on the right hand side of (7) is the estimate of regression weights that would be
obtained in trying to predict Yi  from the individual’s entire set of attribute ratings, Xi.  The
second term on the right hand side is an error term that we hope is small.  If it were zero, then
equation (7) would state that the individual’s weights for predicting his/her preferences in his/her
entire attribute space would be expressible as a weighted combination of the columns of T.  If
that were true, then there would be no loss of predictive ability from using a subspace of small
dimensionality common to all respondents.  Our method of estimation improves T in each
iteration so as to minimize the sum of squares of the last term in equation (7).

To show this more clearly we define 

Vi = (Xi’Xi) -1 Xi’Yi (8) 

Fi = (Xi’Xi) -1 Xi’Ei (9) 

Vi is the vector of weights that would best predict Yi from Xi.  Consider a new regression
computation for each individual, fitting Vi as a weighted combination of the columns of T.
Equation (10) is obtained by substituting from (8) and (9) into (7).  Since the errors are different,
(F rather than E), the estimated coefficients will be different as well.  Call these coefficients Ui
(rather than Wi ).
 

T Ui   = Vi + Fi                     (10)

The OLS solution for Ui is:

Ui = (T’T) -1 T’ Vi                                       (11)

 
Assemble the Ui  = and Vi  vectors as columns of matrices U and V:

U = (U1  , U2,...UN)

V = (V1  , V2,...VN)

Then  the OLS estimate of T that best fits equation (10) for all individuals is: 

 (12)
$T = VU'(UU')-1
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Each iteration consists of two steps.  During the first step, individual r-squares are computed
using the regression indicated in equation (3) to measure the goodness of fit to each individual’s
preferences with the current estimate of T.  A second r-square value is also computed for each
individual using equation (11), to indicate how successfully the individual’s preference structure
is captured by the T matrix.  The  Ui  and Vi vectors are also saved for each individual, as
determined in equations (8) and (11).  

In the second step, the Ui  and Vi vectors are assembled and used as in equation (12) to re-
estimate T. 

Because the same T is used for all individuals, the aggregate product configuration is obtained
by averaging the individual Ci matrices.  Since the goodness of fit to individual data is not
affected by a linear transformation of the columns of T, we also adjust T in each iteration so that
the columns of the aggregate configuration are orthogonal and each has sum of squares of n. 

As iterations progress, the sum of goodness-of-fit r-squares from the regression of 
equation (3) tends to increase, but it is not required to do so, and it often fluctuates in later
iterations.  However, the sum of “preference structure capture” r-squares from the regression of
equation (10) increases monotonically, and iterations are terminated when the increases fall to
less than a small positive value.

There are some numerical problems that must be overcome.  Some respondents produce little or
no useful information in their attribute ratings, and there may be more attributes than products.
In either case the inverse of Xi’Xi  will not exist.  Therefore all matrices to be inverted first have
a small positive amount added to their diagonal elements.  This “ridge regression” trick remedies
both problems.

The individual weights Wi are saved in a file, together with the goodness-of-fit r-square value for
that individual.  Coordinates of a map are provided, showing the average positions of products
and attribute vectors in a space.  The product configuration is just the average of individuals’
configurations.  The attribute vector positions are indicated by correlations between average
product attribute ratings and product coordinates on each dimension.

The Ideal Point Model

For convenience, we repeat definitions stated above.  For the i-th individual, let:

Xi = an (n x p) matrix of product ratings, with column sums of zero, and X=  
1/ N ∑ Xi 

 
Yi = an (n) vector of product preference values. APM provides constant-sum preference
information obtained by having respondents divide 100 points among members of each of
several product pairs.  We construct Yi by taking logits of those preference percentages, and
awarding half the logit value to the winning product in that pair, and penalizing the losing
product with half of the logit value.  This results in Yi values similar to conjoint utilities and that
sum to zero for each individual.
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T = a (p x d) matrix of weights used to transform attribute ratings into dimensional coordinates.
T is common to all respondents.  We want to find a T which permits the best fit to all
respondent’s preferences.  We start with an approximation obtained from a principal components
analysis of attribute ratings, and then improve it iteratively.

Ci = an (n x d) matrix giving the configuration of products for the i-th individual.

Ci  =  Xi  T (1)

We start by exponentiating and then percentaging each individual’s Yi values to get a set of
positive values that sum to unity, similar to “shares of preference” in conjoint analysis.   
Call this vector of preference information Ri. 

We assume each individual to have an “ideal point” in his/her perceptual space, defined as the
row vector Pi’.  The squared distance from each product to that ideal point is obtained by
subtracting Pi’ from each row of Ci and then summing the squared differences.  Call the vector
of squared distances ∆i

2.

We expect that the distances should be small for products most preferred, and larger for
products less preferred.  We can express this desired relationship between preferences and
distances in terms of the sum over products of the individual’s preference weights times his/her
squared distances, which we wish were small.  Call this value for the ith individual θi .

θi  = Ri’ ∆i
2            (13)

If θi is small, then for the ith individual the products with large preferences must have small
distances from the ideal.  Our goal is to find an ideal point for each respondent (Pi’) and a matrix
of weights common to all respondent (T) that minimize the sum of the θ values for all
respondents:

 θ  = ∑ θi                     (14)

To estimate the ideal point for the ith respondent, we differentiate θi with respect to Pi’ and set
the result to zero.  Observing that the sum of the R’s is unity, we get the equation:

Pi’ = Ri’ Ci (15)

The estimate of the individual’s ideal point (Pi’) which minimizes θi  is simply the weighted
average of the rows of his/her matrix of perceived product locations, where the weights are the
Ri values.  Recall that the Ri values are positive and sum to unity.  If the respondent has such
extreme preference for one product that its value is unity and the rest are all zero, then the ideal
point will be estimated to be coincident with that product’s location.  If the respondent is
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indifferent among products so that all Ri values are equal, then the ideal point will be estimated
to be at the center of the perceptual space.  No matter what the respondent’s preferences, ideal
points estimated this way will always lie within the convex hull of that respondent’s perceived
product locations. 

Given an estimate of the ideal points for each individual, an improved estimate of T can be
obtained as follows.  Let Di be a diagonal matrix whose diagonal elements are corresponding
elements of Ri .   Then, differentiating θ with respect to T and setting the partial derivatives to
zero and summing over respondents gives the equation:

∑ Xi’ Di Xi  T  =  ∑ Xi’ Ri Pi’    (16)

It would seem that one way to estimate T would be to cumulate the two sums

A = ∑ Xi’ Di Xi  (17)

and
B = ∑ Xi’ Ri Pi’ (18)

so that 
A T = B

and then simply estimate T as A –1 B.

However, the problem with this approach is that θ is minimized trivially by a T of zero, and an
iterative process which estimates T in this way eventually converges to a T of zero.  To avoid
that, it is necessary to impose constraints on T.  We choose to make columns of the overall
configuration XT orthogonal, and for each column to have sum of squares equal to the number
of products, n.  (Recall that X is the average of the Xi matrices.)

This is done with a symmetric matrix of Lagrange multipliers, following Schonemann (1965).
We differentiate the sum of  θ  + φ  with respect to T, where

φ = trace(S T’ X’ X T) (19)

with S an unknown symmetric matrix.   

Setting the sum of partial derivatives to zero yields:

AT = B +  X’X T S (20)
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Premultiplying by T’ and recalling that T’X’X T is constrained to equal the identity matrix,  we
get:

S = T’( AT – B) (21)

Premultiplying (20) by the inverse of A, 

T = A-1B + A-1 X’X T S (22)

Equation (20) cannot be solved explicitly for T, but does submit to an iterative solution
consisting of the following steps:

1) Use the value of T from the previous iteration or some initial value, to compute S as in
equation (21).  Early estimates of S will not be symmetric, so force symmetry by averaging
corresponding elements above and below the diagonal.

2) Obtain the product A-1 X’X T S, using current estimates of T and S.

3) Determine a scalar α by which to multiply the product obtained in step 2) so that  XA-1B +
αXA-1 X’X T S has sum of squares equal to n* d .

4) Use the sum of terms: A-1B + αA-1 X’X T S as an interim estimate of T to obtain an interim
(not necessarily orthogonal) estimate of the configuration of products in space, X T.  

5) Find the matrix with orthogonal columns and column sums of squares equal to n which is
closest in the least squares sense to X T, using the procedure of Johnson (1966), as well as the
right-hand transformation matrix that performs that orthogonalization.

6) Finally, postmultiply the interim estimate of T from step 4) by the transformation matrix
determined in step 5) to get the estimate of T for the current iteration.

Repeat steps 1-6 until estimates of T stabilize.  
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