
Software for Latent Class
Estimation for CBC Data

(Updated September 26, 2012)

Latent Class v4.5

Sawtooth Software, Inc.
Orem, UT

http://www.sawtoothsoftware.com

Bryan Orme, Editor
© Copyright 1999-2012 Sawtooth Software

In this manual, we refer to product names that are trademarked. Windows, Windows XP, Windows
Vista, Excel, PowerPoint, and Word are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

We’ve designed this manual to teach you how to use our software and to serve as a reference to answer
your questions. If you still have questions after consulting the manual, we offer telephone support.

When you call us, please be at your computer and have at hand any instructions or files associated with
your problem, or a description of the sequence of keystrokes or events that led to your problem. This way,
we can attempt to duplicate your problem and quickly arrive at a solution.

For customer support, contact our Orem, Utah office at 801/477-4700, email:
support@sawtoothsoftware.com, (fax: 801/434-5493).

Outside of the U.S., contact your Sawtooth Software representative for support.

About Technical Support

Table of Contents

Getting Started

.. 1Introduction

.. 3Capacity Limitations and Hardware Recommendations

.. 4What's New in Version 4.5?

About Latent Class

.. 5Latent Class Estimation

.. 6Estimating Interaction Effects

.. 7Linear Variables

.. 9Latent Class Output
.. 11How Sawtooth Software's Simulators Use Latent Class Utilities

Using The Latent Class System

.. 12Creating Your Own Datasets in .CSV Format

.. 16Project Management

.. 18Home Tab and Estimating Parameters

.. 21Choice Data File Tab

.. 22Attribute Information Tab

.. 24Choice Task Filter Tab

.. 25Settings Tab

.. 28Monotonicity (Utility) Constraints

Numeric Results

.. 30The Data Set

.. 32A Sample Computation

.. 36Choosing the Number of Segments

.. 38Practical Problems in Latent Class Analysis

Why Latent Class?

.. 40Clusterwise Logit vs. Latent Class

.. 42HB vs. Latent Class

References

.. 44References

Appendices

.. 45Appendix A: .LCU File Format

.. 47Appendix B: .CHO and .CHS Formats

.. 53Appendix C: Directly Specifying Design Codes in the .CHO or .CHS Files

.. 55Appendix D: Analyzing Alternative-Specific and Partial-Profile Designs

.. 58Appendix E: How Constant Sum Data Are Treated in Latent Class

.. 61Appendix F: Utility Constraints for Attributes Involved in Interactions

.. 64Appendix G: Estimation for Dual-Response "None"

.. 66Appendix H: Estimation for MaxDiff Experiments

Index 70

Getting Started 1

1 Getting Started

1.1 Introduction
The Latent Class System is software for estimating part worths for Choice-Based Conjoint (CBC)
questionnaires. It can use either discrete choices, best-worst CBC, or constant sum (chip) allocations
among alternatives in choice sets. Other advanced options include the ability to enforce utility
constraints, estimate first-order interactions, and estimate linear terms.

When you purchase the Latent Class v4.5 system (currently bundled with the CBC software), latent
class capabilities also become available through additional menus integrated within your SSI Web
interface (in the Analysis + Calculate CBC Utilities using Latent Class area). However, this
standalone Latent Class sytem offers a few additional advanced capabilities that aren't available through
the SSI Web menus, including the ability to analyze MaxDiff data and user-specified design matrices for
choice data.

Latent Class uses data files that can be automatically exported from Sawtooth Software's SSI Web
System (CBC/Web). It can also use data collected in other ways, so long as the data conform to the
conventions of the text-only and .csv format files, as described in the appendices of this manual.

 Quick Start Instructions:

1. Prepare the .CHO, .CHS, or .csv file(s) that contains choice data to be
analyzed.

a. From CBC/Web (SSI Web System), select File | Data Management (v8)
or File | Export Data (earlier versions), edit an export job, and click Add to
choose among the .CHO, CHS, or .csv options. (Depending on the
response type used in the CBC questionnaire, specific file formats are
supported.)

b. Or, create your own .CHO, .CHS or .csv data files.

2. Start Latent Class, by clicking Start | Sawtooth Software Latent Class.

3. From the Latent Class Project Wizard (or using File | Open) browse to the
folder containing a .CHO file (or .CHS or .CSV file), and click Continue. (Wait a
few moments for Latent Class to read the file and prepare to perform analysis.)

4. To perform a default Latent Class estimation (2 through 5 groups), click
Estimate Parameters Now.... When complete, a file containing the part worths for
each segment (class) called studyname_solutions.CSV (easily opened with Excel)
is saved to the same folder as your original data file. The file
studyname_segment_membership.csv contains the membership assignment into
groups for each respondent. If using the Latent Class utilities in the market
simulator (SMRT software), within SMRT click Analysis | Run Manager | Import ,
specify Files of Type should be Latent Class Utilities (*.pxx). The pxx indexing
refers to how many groups are in the solution. For example, Studyname.p02 file
contains the 2-group solution for Studyname, Studyname.p03 contains the 3-group
solution, etc. Browse to the studyname.pxx file you wish to import and click
Open.

Latent Class v4.52

The earliest methods for analyzing choice-based conjoint data did so by combining data for all
individuals. Although the earliest researchers in choice analysis came to realize that aggregate
analyses for choice data obscure important aspects of the data, methods for detecting and modeling
underlying latent segments of respondents (that share similar preferences) only became available during
the 1990s.

The Latent Class Segmentation Module is an analytical tool for use with CBC (Choice-Based Conjoint)
studies. It detects segments of respondents having similar preferences based on their choices in CBC
questionnaires. It uses latent class analysis for this purpose, which simultaneously estimates part
worth utilities for each segment and the probability that each respondent belongs to each segment. The
results (part worths, plus segment membership as filters/banner points) can be taken forward to
Sawtooth Software's market simulator systems (both the separate SMRT platform and the Online Market
Simulator platform).

This documentation describes only the capabilities provided by this add-on analytical tool. Readers
unfamiliar with CBC should start with the CBC documentation.

Use of latent class analysis as a segmentation method has been examined in many articles in the
marketing literature, and it has been found to be effective for that purpose. Thus, it holds promise of
solving the problems occurring with aggregate conjoint analysis:

There is usually sparse information at the individual level for defining segments.
If there truly are segments with different preferences, an aggregate analysis may give
incorrect answers.

Latent class became popular in about the mid-1990s as a tool for analyzing CBC data sets. The model
typically provided more insight about the structure of respondent preferences than aggregate logit, and
the resulting market simulations were usually more accurate than similarly defined aggregate models.
The latent class approach was effective in reducing the negative effects of the IIA assumption in logit
analysis. At about the same time, another even more computationally intensive technique called
hierarchical Bayes (HB) became available to leading researchers and academics. Latent class provided
a discrete model of respondent heterogeneity, whereas HB assumed a continuous model of
heterogeneity following a multivariate normal distribution. During the late 1990s and through today, the
use of HB for modeling CBC data has eclipsed that of latent class in terms of popularity. However,
latent class retains a strong following and offers unique benefits (especially the ability to detect
segments and assign respondents to segments). We'll further compare and contrast HB and latent
class in the last stage of this documentation.

Getting Started 3

1.2

Capacity Limitations and Hardware
Recommendations
Because we anticipate that the Latent Class System may be used to analyze data from sources other
than our CBC software programs, it can handle data sets that are larger than the limits imposed by CBC
questionnaires. The professional license for the Latent Class System has these limitations:

The maximum number of groups (classes) is 30.

The maximum number of parameters to be estimated for any group is 1000.

The maximum number of alternatives in any choice task is 1000.

The maximum number of conjoint attributes is 1000.

The maximum number of levels in any attribute is 1000.

The maximum number of tasks for any one respondent is 1000.

The Student Lab version has the following additional limitations:

The maximum number of respondents is 250

The Demo Version (for evaluation purposes only) is limited to 50 respondents and 3 groups (classes).

Latent Class v4.54

1.3 What's New in Version 4.5?

The latest edition of Latent Class offers a number of improvements to the interface and also to the
functionality of the software:

Ability to use .csv and dual .csv data file formats. Many researchers find the .csv file formats
(as earlier introduced with our CBC/HB system) to be easier to manage than the .cho and .chs file
formats for CBC data. Latent Class v4.5 supports these newer formats.

Support for Best-Worst CBC data. SSI Web v8.1 and later supports the Best-Worst option for
collecting CBC data. For each Best-Worst CBC question, the respondent indicates the best and
worst product concepts within each choice task. A best-worst task is coded as two separate tasks
for the purpose of utility estimation, following the same pattern as we use with our MaxDiff
estimation.

Improved User Interface. The new user interface is based on the popular CBC/HB v5 platform
and allows you to do things in fewer clicks than before.

Improved Output Format in Grid (tabbed report). Previously, the output of Latent Class was
quite daunting, as it reported the results for all the replications and all the group solutions within a
very long text-only document. With v4.5, we organize the output in a grid-type layout (feels more
like a spreadsheet) with multiple tabs, where the different group solutions are summarized on each
tab. (The complete text-based output is still available within your project file folder in a .log file if
you still want to refer to it.)

.CHO to .CSV and .CHO to CHS Conversion Tools. From the Tools menu, you can take an
existing .CHO file and convert it into the much easier to read/manipulate .csv file. A tool is also
available for converting the .CHO file to .CHS format.

Improved Compatibility with Online Market Simulator. Version 4.5 writes out a .xml layout file
that the Online Market Simulator uses for importing your latent class results.

More Efficient Procedure for Constant Sum Data. A few years back, we implemented a
mathematically equivalent but faster approach for handling constant sum data within CBC/HB. With
version 4.5, we've brought that improvement over to latent class. (See Appendix E)

About Latent Class 5

2 About Latent Class

2.1 Latent Class Estimation

Latent class has a role analogous to that of CBC's logit program, but rather than finding average part
worth utilities for all respondents together, it detects subgroups with differing preferences and estimates
part worths for each segment. The subgroups have the characteristic that the respondents within each
group are relatively similar but the preferences are quite different from group to group. You may specify
how many groups are to be considered, such as the range of 2 through 6. A report of the analysis is
shown on the screen and saved to a log file, and the part worths for subgroups along with each
respondent's probabilities of membership in the groups are stored in other files for subsequent analysis
or later use by the simulator.

The latent class estimation process works like this:

1. Initially, select random estimates of each group's utility values.
2. Use each group's estimated utilities to fit each respondent's data, and estimate the relative

probability of each respondent belonging to each group.
3. Using those probabilities as weights, re-estimate the logit weights for each group. Accumulate

the log-likelihood over all groups.
4. Continue repeating steps 2 and 3 until the log-likelihood fails to improve by more than some

small amount (the convergence limit). Each iteration consists of a repetition of steps 2 and 3.

Latent class reports the part worth utilities for each subgroup or "segment." Latent class analysis does
not assume that each respondent is wholly "in" one group or another. Rather, each respondent is
considered to have some non-zero probability of belonging to each group. If the solution fits the data
very well, then those probabilities approach zero or one.

Latent Class v4.56

2.2 Estimating Interaction Effects

Our implementation of Latent Class estimation by default assumes a main effects (additive) model.
Most of the information regarding respondent preferences is usually captured with main effects.
However, sometimes interaction effects can significantly improve model fit, and CBC analysis under
Latent Class permits inclusion of first-order interaction effects (two-way interactions between attributes).

For example, consider two attributes (automobile models and colors):

Car Color
Convertible Black
Sedan Grey
Limousine Red

Under main effects assumptions, we assume that we can accurately measure preferences for car types
independent of the color. However, the color red goes exceptionally well with convertibles and generally
not so well with limousines. Therefore, there indeed may be a relatively strong and important interaction
effect between car and color. The interaction terms may indicate a decrease in the net utility of a red
limousine after accounting for the main effects of limousine and the color red, and an increase in the net
utility of a red convertible after accounting for the main effects of convertible and the color red.

CBC is an excellent tool for measuring all potential two-way interactions among attributes. However,
many of the interactions we observe in aggregate analysis (such as with aggregate logit), are largely due
to unrecognized heterogeneity. It is entirely plausible that a latent class analysis may uncover different
groups of respondents: a group that prefers convertibles, a group that prefers sedans, and a group that
prefers limousines. And, it may also detect that the group that prefers convertibles also tends to prefer
the color red, and the group that prefers limousines also tends to reject red as a color for the
automobiles they choose. If this occurs, then the latent class solution used within market simulations
will indicate a "revealed" interaction during sensitivity simulations (after accumulating shares across
segments), even though an interaction between model and color was never specified in the model. For
example, if a black limousine is changed (through sensitivity analysis) to a red color, those respondents
principally contributing share to that product would react quite strongly, reducing its share to a greater
degree than if either a convertible or a sedan were modified from black to red. To the degree that
interactions observed in conjoint data sets are due principally to unrecognized heterogeneity, methods
that model heterogeneity, such as latent class, may obtain excellent model fit using just main effects
models.

The above example involving automobiles and colors was deliberately extreme, to convey the point. It is
possible that in the real world an additional first-order interaction would be required between model and
color, because the interaction may indeed occur within each individual's utility structure, rather than be
an interaction observed due to respondent heterogeneity.

In the previous example, we argued in favor of more parsimonious models within latent class, such as
main effects only. However, some data sets may indicate the presence of significant interaction terms,
even after accounting for heterogeneity, and latent class often provides very good estimation of
interaction effects, particularly if you have relatively large sample sizes.

To specify interactions between two attributes in Latent Class software, go to the Attribute Information
tab. Click the +Add... button in the bottom Interactions panel area, and follow the prompts.

About Latent Class 7

2.3 Linear Variables

You can treat quantitative attributes as linear rather than as discrete. For example, suppose you have a
price variable with five price levels. The standard approach is to solve for separate part worth utilities for
those five discrete levels. With Latent Class, you have the option of fitting a single linear coefficient to
the five price levels, which requires estimating only one parameter rather than four (five levels, minus one
for effects-coding). This capability may be useful for several reasons:

Smoothing noisy data: Often in conjoint analysis we know that levels of an attribute have an a
priori order, and we want the resulting utilities to display that order. However, unless the sample
is very large, random error may cause some part worth values to display order reversals. For
example, we usually want higher prices to have lower utilities. Sometimes we may even be
confident of the shape of the curve relating utility to the underlying attribute. If we can assume
utility is linearly related to the log of price, then all the information in our data is concentrated on
estimating the single parameter which represents the steepness of the utility curve, and we can
be assured that the resulting utilities will lie on a smooth curve.

More power to study interactions: The usual way to handle interactions is to estimate separate
coefficients for each combination of levels. For example, with 5 brands and 5 price levels, there
are a total of 25 combinations, each of which needs to be estimated in some way. Often, the
size of the largest interaction dictates the sample size for the study. However, if we could treat
price as a linear or log-linear variable, we would only need to estimate five values, the slope of
the price curve for each brand. Even more dramatically, if we have two attributes that can be
regarded as linear, such as price and, say, speed, then we could handle both main effects and
their interaction with a total of only three coefficients.

More parsimonious models: If linear relationships hold for intermediate levels, you can conserve
degrees of freedom relative to part worth models.

Of course, to use this capability properly, you must be confident of the shapes of the underlying utility
curves. Latent class can be of some help in that regard as well, since you can use trial and error to see
whether you achieve better fit with linear values, their logs, or other transformations. We should note
that analysts often find that more parsimonious models often improve individual levels of fit (such as hit
rates), but often reduce aggregate measures of fit (such as share prediction accuracy). Therefore, the
modeling goals influence the decision regarding whether to fit linear terms rather than part worths.

To specify linear estimation for an attribute, go to the Attribute Information tab. Select Linear under
the Coding column for the attribute you wish to change to linear estimation. When you choose linear
estimation for an attribute, you should also provide information about the level values to be used in the
design matrix for this attribute (unless you want the defaults of 1, 2, 3, etc. be used for levels 1, 2, 3,
etc. of your linear attribute). Type the values to be used in the Value column at the right of the dialog.

For example, assume you have used the following price levels in a CBC study: $1200, $2000, $3000,
and you want to fit a linear term to the price attribute, rather than estimate the part worths separately for
each price point. You should let Latent Class know which values to use in the design matrix for price
(otherwise, defaults of 1, 2, and 3 are used as level values). You specify the values by typing the new
level values in the Values column. For this example, it might make sense to assign the level values 1.2,
2.0 and 3.0 to represent $1200, $2000, and $3000.

You are free to use any values you like, but it's a good idea to scale them to be fairly small numbers.
For example, if you were studying prices of multi-million dollar products, it would be better to use values
of 1, 2, and 3 instead of 1000000, 2000000, and 3000000.

Latent Class v4.58

Important: The values you use in the design matrix for estimation must be the same values you use
later when specifying products in the market simulator. You cannot use one set of values for price
during estimation, and then expect the coefficient to work properly in simulations if you later change the
assigned level values.

Please note that Latent Class automatically zero-centers the values you specify for a coefficient. So, if
you specify three values for price as 1.2 (level 1), 2.0 (level 2), and 3.0 (level 3), the actual values used in
the design matrix for the linear term for price are converted to -0.8667, -0.0667, 0.9333 (this result is
obtained by subtracting the mean value from each level value). In similar fashion, Sawtooth Software's
market simulators automatically zero-center any level values you assign to attributes estimated as linear
coefficients. So, the coefficients resulting from zero-centered independent variables are used properly in
market simulations, as the simulator always zero-centers level values prior to multiplying by coefficients.
 All this is transparent to the user, but you should be aware of this treatment, should you wish to
analyze the data outside of our market simulators, or use linear coefficients estimated using outside
tools within Sawtooth Software's simulators.

Note that if we use the logs of level values for an attribute such as price, then price would have been
treated in the analysis as the log of price. This results in a non-linear function fit to price.

About Latent Class 9

2.4 Latent Class Output

At the end of the computation, a multi-tabbed grid-style report is given (with tabs listed along the bottom)
where each tab includes information summarizing the results for different group solutions. Each
respondent's segment membership is available within the Segment Membership tab. You can click
Save Results... to save this output to an Excel .xlsx file.

There are also several files that are automatically saved to your project folder that contain results:

studyname_solutions.csv contains the final part worth estimates for each respondent group
(class). It may be opened with Excel and is organized to be easily read by humans, including
labels.

studyname_segment_membership.csv contains the respondent ID numbers, followed by
respondent weight and group membership (the group for which the respondent has the highest
likelihood of membership). This data file may be used within your cross-tabulation package, to
merge respondent group membership as a new segmentation variable.

studyname_x_groups_individual_utilities.csv contains pseudo-individual-level utilities based
on the x-group solution (where x is the number of groups requested in the latent class run).
These individual-level utilities are not as accurate as HB individual-level utilities, and are simply
based on the weighted average of the group utilities, where the weights are each respondent's
likelihood of belonging to each group. Sawtooth Software's market simulators use these pseudo
individual-level utilities if you read the latent class utilities into the simulators as utility runs. More
info.

studyname.log contains the text-based reporting output of your run, including the random seed

Latent Class v4.510

used in the estimation.

studyname.pxx contains the respondent ID numbers followed by probabilities of membership in
each group. This file is read by the SMRT program when importing the results for running market
simulations. For the two-group solution, the file extension is .p02; for the three-group solution,
the extension is .p03, etc.

studyname.lcu contains the final part worth estimates for each respondent group (class). This
file is not organized to be read easily by humans, but is read by the SMRT program when
importing the results for running market simulations. The layout is provided in Appendix A.

studyname_utility_layout.xml contains required information if you decide to import your latent
class results into the Online Market Simulator.

About Latent Class 11

2.5

How Sawtooth Software's Simulators Use Latent
Class Utilities
With Latent Class, rather than computing a set of part worths (utilities) for each respondent, the
algorithm finds groups of respondents with similar preferences and estimates average part worths within
these segments.

As when using cluster analysis, the Latent Class analyst specifies how many groups to use in the
segmentation. In contrast to cluster analysis, respondents are not assigned to different segments in a
discrete (all-or-nothing) manner under Latent Class analysis, but have probabilities of membership in
each segment that sum to unity. The sum of the probabilities of membership across respondents for
each group defines the total weight (class size) of that segment.

One can conduct overall market simulations with Latent Class results by computing shares of preference
within each segment and taking the weighted average of these shares across segments.

Another way to use Latent Class data is to convert the segment-based results into individual-level
estimates. While these estimates are not as accurate at characterizing respondent preferences as
Hierarchical Bayes analysis, they are an appropriate extension of the Latent Class model.

The Market Simulator converts the group-based Latent Class part worths into individual-level part worths
in the following way: For each respondent, a weighted combination of the group part worth vectors is
computed, where the weights are each respondent's probabilities of membership in each group.

Converting the Latent Class utilities to individual-level part worths provides added flexibility for market
simulations. It lets the analyst apply segmentation variables as filters, banner points or weights without
requiring that a new Latent Class solution be computed each time.

However, creating individual-level utilities from a segment-based solution slightly alters the results when
comparing the output of Sawtooth Software's Latent Class module to the same data used within the
Market Simulator. While the overall shares of preference for the market are nearly identical, the within-
class results reported in the Market Simulator output are slightly less differentiated between segments
(pulled toward the overall market mean). That is because for the purpose of banner points and filters, the
Market Simulator assigns respondents fully into the latent class for which they have the greatest
probability of membership. For example, consider a respondent whose preferences are characterized as
80% like group 1 and 20% like group 2. His contribution to the mean values reported in the group 1
column (banner point) includes some group 2 tendencies.

The differences between the within-class means reported by Latent Class and the Market Simulator are
not usually very great since respondents' probabilities of membership in classes usually tend toward
zero or one. The smoothing that occurs when reporting the by-segment results in the Market Simulator
will probably not substantially change your interpretation of the results. If the differences concern you,
you can always refer to the original Latent Class output.

Latent Class v4.512

3 Using The Latent Class System

3.1 Creating Your Own Datasets in .CSV Format

Most users will probably automatically prepare data files in the studyname.cho, studyname.chs, or
studyname.csv formats using Sawtooth Software's SSI Web (CBC or MaxDiff) system via the export
option (Data Management area for SSI Web v8). But, other datasets created in other ways can be
analyzed within the Latent Class system. You can prepare these datasets in the .cho or .chs format.
Or, you can use the simpler .CSV formats described below.

Single CSV Format
(Design and Responses within Same File)

You can save your data to a comma-separated values (CSV) file, for example, from Excel.

You may also convert existing .CHO files to the .CSV format described below using Tools + Convert
.cho to .csv. The layout of the file is:

Column 1: Caseid (i.e. respondent number)
Column 2: Task# (i.e. question number, or set number)
Column 3: Concept# (i.e. alternative number)
Next Columns: One column per attribute.

("None" concept is coded as a row of zeros.)
Final Column: Response/choice.

(With standard CBC questionnaires, respondents pick just one concept. The chosen concept is
coded as "1," and the non-chosen concepts are coded "0." For allocation-based data (e.g.
constant sum), you record how many chips are allocated within the response column. The
response column can also accept decimal values. For Best-Worst CBC data, the best concept is
coded as "1" and the worst concept is coded as "-1".)

Below is an example, showing the first 3 tasks for respondent #1001. This questionnaire includes 4
product concepts per task, where the 4th concept is the "None" alternative. The respondent chose
concept #2 in the first task, "None" in the second task, and concept #3 in the third task. Additional
tasks and respondents follow in later rows.

Using The Latent Class System 13

Respondent IDs should be unique. Task# and Concept# should always be coded in ascending order.
Different respondents could potentially have different numbers of tasks, and different tasks can have
different numbers concepts under this layout. Missing responses are coded as "0".

By default, Latent Class assumes each attribute column contains integer values that it will need to
expand via effects-coding (part-worth function). But, if you want to "take over" all or portions of the
design matrix and wish to specify columns that are to be used as-is (user-specified), even potentially
including decimal values, then you may do so. You will need to identify such columns as "User-
Specified" coding within Latent Class's Attribute Information tab.

Note: Dual-Response None studies (see Appendix G) cannot be coded using the Single CSV Format.

Dual CSV Format
(Design and Responses in Separate Files)

This format can be more compact that the previously described layout when just a few versions (blocks)
of the questionnaire are being used. For example, if just four versions of the questionnaire were being
employed (such as for a paper-and-pencil study), the four versions could be described just once in one
CSV file, and then respondent answers could be given in a second file (including which version# each
respondent received). The format is as follows:

Design File:

Column 1: Version#
Column 2: Task# (i.e. question number, or set number)
Column 3: Concept# (i.e. alternative number)
Next Columns: One column per attribute.

("None" concept is coded as a row of zeros.)

Below is an example, showing the first 3 tasks for version #1 of the CBC questionnaire. This
questionnaire includes 4 product concepts per task, where the 4th concept is the "None" alternative.

Latent Class v4.514

Additional tasks and versions follow in later rows.

(Any "fixed tasks" (holdout tasks) that are constant across versions are coded at the top of the design
file as Version 0.)

Task# and Concept# should always be coded in ascending order.

Respondent Answers File:

Column 1: Caseid (i.e. respondent number)
Column 2: Version# (i.e. block number)
Next Columns: Responses (one per task).

The response columns are coded differently, depending on the type of CBC questionnaire. When you
specify on the Data Files tab that your data have the CSV layout (separate design and response files),
the software asks you to provide more information regarding the type of responses in your study:

Response Type:

a) Discrete choice (single response per task)
b) Chip allocation (response for each concept)
c) Best/Worst (best and worst responses for each task)

None Option:

a) A 'none' option is not included
b) A "none' option is included
c) A "dual response none" option is included

The responses found in the Respondent Answers File must be compatible with your specification above:

Discrete choice
a) If there is a "None" option in the design file, there should be one response per task (the chosen
concept 1..n); integers only. Missing="0".

Using The Latent Class System 15

b) If there is not a "None" option in the design file:

i) If not using dual response none, there should be one response per task (the chosen concept
1..n); integers only. Missing="0".
ii) If using "Dual Response None" (see Appendix G), there should be two responses per task:

Response #1: the chosen concept 1..n or 0 if missing (integers only)
Response #2: 1=would_buy, 2=would_not_buy, 0=missing (integers only)

Chip allocation
There should be one response per concept (the number of chips); decimals allowed.
Missing="0".

Best/Worst

a) if not using dual response none, there should be two responses per concept (integers only,
missing=0):

Response #1: "best" concept
Response #2: "worst" concept

b) If using "Dual Response None" (see Appendix J), there should be three responses per task
(integers only, missing=0):

Response #1: "best" concept
Response #2: "worst" concept
Response #3: 1=would_buy, 2=would_not_buy, 0=missing (integers only)

Fixed task (holdout task) responses should be first, keeping order with the design file.

Latent Class v4.516

3.2 Project Management

This section describes the operation of the Latent Class System. To start the program, click Start |
Sawtooth Software Latent Class. You see an initial screen that identifies your license for the software.

Creating or Opening a Project

After the initial splash screen, you see the main application and the Latent Class Project Wizard (or
click File | Open... to access this Wizard). You can create a new project using your data file (produced
by CBC or other sources), or you can open a recently opened Latent Class project file by selecting from
the list of recently used projects.

The project wizard has the following options:

Create a new project from a data file
If you collected CBC data using Sawtooth Software's CBC system, you should use SSI Web to
export a studyname.cho or studyname.chs or studyname.csv file (with its accompanying labels file,
called studyname.att). A studyname.cho file is a text file that contains information about the
product concepts shown and the answers given for choose-one (standard discrete choice) tasks.
A studyname.chs file is a text file that contains information about product concepts shown and
answers given for allocation (constant-sum) tasks. The studyname.csv file contains the same
information as .cho and .chs file, but it can also support the the best-worst response type (not to

Using The Latent Class System 17

mention that it is easier to read/manipulate than .cho and .chs files).

Open an existing project
Click this option to open an existing Latent Class v4.x project with a .lclass extension.

Saving the Project

Once you have opened a project using either of the methods above and have configured your desired
settings for the Latent Class run, you can save the project by clicking File | Save. The settings for your
Latent Class run are saved under the name studyname.lclass. If you want to save a copy of the project
under a new name (perhaps containing different settings), click File | Save As and supply a new project
(study) name. A new project is stored as newstudyname.lclass.

Edit | View Data File

It is not necessary to know the layout of the studyname.cho or studyname.chs file to use Latent Class
effectively. However, if you are interested, you can click the Edit | View Data File option. Any changes
you make to this file are committed to disk (after prompting you to save changes), so take care when
viewing the data file.

Latent Class v4.518

3.3 Home Tab and Estimating Parameters

After you create or open an existing project, the main project window is displayed, with five main tabs:
Home, Data Files, Attribute Information, Choice Task Filter, and Settings.

Two panels are shown on the Home Tab. The first reports any error messages for the study. The
second is a workspace in which you can write notes, or cut-and-paste information from your Latent
Class runs for your documentation and review.

The Home Tab also includes the Estimate Parameters Now... button, the button you click when you are
ready to perform Latent Class estimation.

Performing Latent Class Estimation

When you click Estimate Parameters Now..., two things happen. First Latent Class makes temporary
binary data files that can be read much faster than the original data files. Preparation of data files takes
a moment, and then you see a screen like the following:

Using The Latent Class System 19

The first portion of the report identifies the source data file.

Next, the attribute list is shown, indicating the type of coding used and the number of levels for each
attribute. If you want to include interactions or exclude any attributes, you may do so from the Attribute
Information tab. If you want to treat any attributes as linear rather than as part worths, you may also
make these changes from the Attribute Information tab.

The number of parameters to be estimated and number of respondents included is displayed. Unless
you have specified interaction effects from the Attribute Information tab, all attributes will be included as
main effects, plus a None parameter if that option was offered in the questionnaire. The number of
parameters will depend on the number of attributes and levels and their coding. Effects coding is the
default, and the sum of part worths within each attribute is zero. Any single level can therefore be
deleted from each attribute for estimation, and recovered at the end of the computation as the negative of
the sum of the included levels. We delete the final level of each attribute, and then after iterations have
concluded we expand each individual's part worths to include the deleted levels.

The number of parameters shown on this screen is usually the number remaining after one level is
deleted from the part worth levels for each attribute (plus an additional parameter for the "None," if
present). If you include interactions, delete attributes, or use linear coding of attributes using the
Attribute Information tab, the number of parameters to be estimated will vary accordingly.

The next information is a count of the number of times respondents selected alternatives 1 through 5 of
the choice tasks. This is just incidental information about your data file that may or may not be useful.

Next are shown the total number of choice tasks and average choice tasks per respondent.

Latent Class v4.520

If you are satisfied with the way your data have been prepared and wish to use default settings for your
Latent Class run, click Continue with estimation to begin the Latent Class iterations. If not, click Do
not estimate now to return to the main menu.

Using The Latent Class System 21

3.4 Choice Data File Tab

You can ask Latent Class to give you a quick summary of your data file by clicking on the Data Files
tab, and then clicking the Browse... dropdown control and selecting Summary...

After a few moments, a report like the following is displayed:

Analysis of 'C:\temp\TV_N250.cho'

Number of respondents: 250

Total number of tasks: 4500

Average tasks per respondent: 18

Average concepts per task: 5

Average attributes per concept: 6

Note: the full path to the data file is used so that multiple projects can point to it. If you move the
location of your project or data file, it may later tell you that the data file cannot be found.

Latent Class v4.522

3.5 Attribute Information Tab

The Attribute Information tab displays information about the attributes in your project, how they are to be
coded in the design file (part worth, linear, user-specified, or excluded), and whether you wish to model
any first-order interaction effects.

In the example below, for illustration, we've changed Price to be estimated as a linear function, and have
added an interaction between Brand and Price.

The attribute list was developed when Latent Class intially read the .CHO (and optional .ATT) files. If you
did not have a .ATT file containing labels for attributes and levels, default labels are shown. You can edit
the labels by clicking with the mouse and typing the desired labels. If you have somehow changed the
.CHO or .CHS file, and the attribute list is no longer current, you can click Other Tasks and select Build
attribute information from data file to scan the data file again to update the attribute information.

Attribute Coding

There are four options for attribute coding in Latent Class:

Part worth
This is the standard approach used in the industry. The effect of each attribute level on choice is
separately estimated, resulting in separate part worth utility value for each attribute level. Latent
Class uses effects-coding to implement part worth estimation (such that the sum of part-worth
utilities within each attribute is zero).

Using The Latent Class System 23

Linear
With quantitative attributes such as price or speed, some researchers prefer to fit a single linear
coefficient to model the effect of this attribute on choice. For example, suppose you have a price
variable with 5 price levels. To estimate a linear coefficient for price, you provide a numeric value for
each of the five levels to be used in the design matrix. This is done by highlighting the price
attribute in the list, changing to Coding to Linear. For each price level shown in the window on the
right, edit the Value column. Latent Class always enforces zero-centered values within attributes
during estimation. If you do not provide values that sum to zero (within each attribute) within this
dialog, Latent class will subtract off the mean prior to running estimation to ensure that the level
values are zero-centered.

Let's assume you wish to use level values of .70, .85, 1.00, 1.15, and 1.30, which are relative values
for 5 price levels, expressed as proportions of "normal price." You can specify those level values,
and Latent Class converts them to (-0.3, -0.15, 0.0, 0.15, and 0.3) prior to estimation. If we had
used logs of the original positive values instead, then price would have been treated in the analysis
as the log of relative price (a curvi-linear function).

Important Note: If you use Linear coding and plan to use the utilities from the Latent Class run in
Sawtooth Software's SMRT program for running market simulations, you'll need to create a .VAL file
prior to importing the Latent Class run into our Market Simulator tools. Simply select Tools |
Create VAL File.

User-specified
This is an advanced option for supplying your own coding of attributes in the .CHO or .CHS file for
use in Latent Class. For example, you may have additional variables to include in the model, such
as dummy codes indicating whether an "end display" was displaying alongside a shelf-display task,
which called attention to a particular brand in the choice set. There are a multitude of other reasons
for advanced users to specify their own coding. Please see Appendix C for more information.

User-specified coding is also used for estimating parameters for .CHO datasets produced by our
MaxDiff software.

Excluded
Specify "excluded" to exclude the attribute altogether from estimation.

Specifying Interactions

Latent Class can automatically include first-order interactions (interactions between two attributes). To
add interaction terms to the model, click the +Add... button within the Attribute Interactions panel.
Choose the two attributes that are to interact. For part-worth coded attributes, interactions add (J-1)(K-
1) levels to the model, where J is the number of levels in the first attribute and K is the number of levels
in the second attribute. However, after expanding the array of part worth utilities to include the "omitted"
parameters, there are a total of JK utility values representing interaction terms written to the output file.

Latent Class v4.524

3.6 Choice Task Filter Tab

The Choice Task Filter tab displays a list of all available tasks in the data set. (If you have changed the
data set used by your project, this list may need updating. In that case, click the Refresh List link.

With Sawtooth Software's CBC data collection systems, we often distinguish between "random" tasks
and "fixed" tasks. Random tasks generally refer to those that are experimentally designed to be used in
the estimation of attribute utilities. Fixed tasks are those (such as holdout tasks) that are held constant
across all respondents and are excluded from analysis in Latent Class. Rather, they are used for
testing the internal validity of the resulting simulation model.

You can exclude any fixed holdout tasks by unchecking the box corresponding with the task to exclude.

Some researchers also prefer to omit the first few choice tasks from estimation (treating them as warm-
up tasks), so you have that option as well through this dialog.

Using The Latent Class System 25

3.7 Settings Tab

This tab displays the parameter values that govern the estimation. The numbers shown in each field are
default values that you can change if you wish.

Minimum and maximum number of groups: (defaults: Minimum = 2, Maximum = 5) are the
numbers of segments for which solutions should be computed. Up to a 30-group solution can be
modeled. We recommend that you compare latent class results to aggregate logit results (a single
group solution), if only to assess the relative gain from fitting a second group.

Number of replications for each solution (default: 5) lets you conduct automatic replications of
each solution from different random starting points. Although the results of all replications are
displayed to the screen (and saved in the studyname.log file), only the solution with the highest

Latent Class v4.526

likelihood for each number of groups is saved to the final data files (e.g. the
studyname_solutions.csv and studyname_segment_membership.csv files) and made available
for importing into the market simulator. If your problem is relatively large, you will probably want to
use only one replication in your initial investigation of the data set. However, before accepting a
particular solution as optimal, we urge that you replicate that solution from several different random
starting points.

Maximum number of iterations (default: 100) determines how long the computation is permitted
to go when it has difficulty converging. To understand what happens during each iteration, it may be
useful at this point to repeat how the latent class estimation process works:

1. Initially, select random estimates of each group's utility values.
2. Use each group's estimated utilities to fit each respondent's data, and estimate the relative

probability of each respondent belonging to each group.
3. Using those probabilities as weights, re-estimate the logit weights for each group.

Accumulate the log-likelihood over all groups.
4. Continue repeating steps 2 and 3 until the log-likelihood fails to improve by more than some

small amount (the convergence limit). Each iteration consists of a repetition of steps 2 and
3.

The default iteration limit is 100, although acceptable convergence may be achieved in many fewer
iterations. You may substitute any other iteration limit. If you find that you have specified more
iterations than you want to wait for, you can terminate the computation at any time by clicking
Cancel. The computation will be halted, but your results will be lost.

Convergence limit for log-likelihood (default: 0.01) determines how much improvement there
must be in the log-likelihood from one iteration to the next for the computation to continue. We use
a limit of .01 as a default, which leads to typically good precision, but you may substitute a different
value.

Total task weight: This option is only appropriate to modify from its default value of 1 if you are
using allocation-based responses rather than discrete choices. If you believe that respondents
allocated ten chips independently, you should use a value of ten. If you believe that the allocation of
chips within a task are entirely dependent on one another (such as if every respondent awards all
chips to the same alternative) you should use a value of one. Probably the truth lies somewhere in
between, and for that reason we suggest 5 as a default value when using constant sum data. Note:
you can use the .CHS file for formatting discrete choice data if you'd like. In that case, make
sure to select a Total task weight of 1, and the results will be identical as when using a .CHO
file (assuming the same starting seed).

Estimate 'None' parameter (if present) Although you may have included a "None" alternative in
your questionnaire, you may not want to include respondents' propensities to choose that alternative
in the information used for segmentation.

Note: For any respondents who choose None for all tasks, there is no information with which to
classify them into clusters, and they are automatically classified into the largest cluster.

Tasks to include for best/worst data If you have a dataset that includes answers of best and
worst tasks within each task, then you may select which tasks to include in analysis: Best & worst
tasks, Best tasks only, or worst tasks only.

Constraints accesses a dialog in which you can specify utility constraints (also known as
monotonicity constraints). This can be useful for constraining part worths (or signs for linear

Using The Latent Class System 27

coefficients) to conform to rational expectations. See the next section in this documentation for
more information.

Respondent filters accesses a dialog for selecting which respondents to include in the analysis,
based on merged variables (that are included in the second line of each respondent's data in the
.CHO or .CHS files).

Respondent weighting lets you select which variable in the demographics file (as selected from
the Data Files tab) to use as weights. (Weights may also be supplied on the merged variables line
in the .CHO or .CHS file). For example, select var10 as the weighting variable, and the 10th value on
the second line of the .CHO file or .CHS file is used for the respondent weight. The values used for
weights are not limited to integers, but can include decimal places of precision. When weights are
used, the maximum and minimum weights are computed and reported in the output, and a message
is printed saying that standard errors and t ratios may not be accurate.

Report standard errors: Standard errors and t ratios are only reported if this box is checked. The
numerical output of Latent Class is much more voluminous than that of Logit, so we have made this
information optional.

Display re-scaled utilities and attribute importances determines whether a table is provided
within the Latent Class output in which the part worth utilities for each group are re-scaled to be
more comparable from group to group (using the normalization method of "zero-centered diffs"). The
logit algorithm employed in Latent Class produces utilities close to zero if members of a group are
confused or inconsistent in their ratings, and produces larger values if members of a group have
consistent patterns of responses. Because groups differ in the scaling of their utilities, it is often
difficult to interpret differences from group to group. This table re-scales the part worth utilities for
each group to make them comparable: the average range of values for each attribute (the difference
between that attribute's maximum and minimum utilities) is set equal to 100. For linear attributes,
we compute maximum and minimum utilities by examining the maximum and minimum values you
supply within the Attribute Information tab. Note that even if you don't choose to include the re-
scaled utilities in the output, you can later display re-scaled part worth utilities and importances by
segment using the market simulator.

Tabulate all pairs of solutions refers to tabulations of the respondent group membership for all the
solutions with one another. Although each respondent has some probability of belonging to each
group, we also classify each respondent into the group to which he or she has highest probability of
belonging, and tabulate each solution with those adjacent to it. That is to say, the two-group
solution is tabulated against the three-group solution, the three-group solution is tabulated against
the four-group solution, etc. If you check this box, then all pairs of solutions are tabulated against
each other rather than just those that are adjacent.

Random starting seed (default: "1,") Gives you control of the random number generator that is
used to provide the initial random start. The reason for giving you this control is so you can repeat a
run later if you want to. Latent class analysis will probably give you a somewhat different solution
each time you re-run the analysis with the same data set if you use a different starting seed. The
solutions depend on the initial starting values, which are random. If you provide a value here (in the
range from 1 to 10000) you will get the same solution each time, but different values will lead to
different solutions. If you provide a value of zero, which is the default, then the time of day is used
as a seed for the random number generator. The random seed used is printed in the .log file, in
case you need to reproduce a solution.

Latent Class v4.528

3.8 Monotonicity (Utility) Constraints

Sometimes there are attributes such as speed, quality, or price, where the levels have a natural order of
preference. Higher speeds are preferred to lower speeds, higher quality to lower quality, and lower
prices to higher prices (all else being equal). Given a good study design, execution, and adequate
sample size, part worths (when summarized across groups in latent class) rarely depart from the
expected rational order for such attributes. However, some studies reflect reversals in naturally ordered
part worths. These reversals are usually due to inadequate sample size and can be explained as due to
random error. Even so, reversals can be disconcerting for clients, and in some cases can detract from
predictive accuracy. With higher-dimension solutions in latent class, reversals are quite common within
groups, though they are typically not present when viewing the summarized results across groups.

Latent class provides an effective manner for "smoothing" reversals (within group) using monotonicity
constraints. These constraints often improve individual-level predictions. They also tend to keep higher-
dimension solutions "better behaved," helping control overfitting and leading to more meaningful and
interpretable within-group preferences. But, constraints should be used with caution, as it is our
experience that they can sometimes slightly reduce share prediction accuracy.

We have described the use of constraints for attributes with discrete levels, but not for attributes treated
as linear, for which single parameters are estimated. Those attributes may be constrained to have
positive or negative signs. For example, with price, it seems reasonable to constrain the sign of the
coefficient to be negative so that higher prices correspond to larger negative utilities. With a
performance attribute, it might be reasonable to constrain the sign to be positive.

You can specify monotonicity constraints by revealing the Constraints dialog and then clicking the
Add... button. Then, select the attribute(s) you wish to constrain.

For example, we have specified that Sound Quality should be constrained from worst-to-best, meaning
that the first level is worst and the last level is best (and other levels ascend in monotonically increasing
order). Click Add to confirm the constraint and add it to the list of constraints.

Using The Latent Class System 29

If you employ constraints, a message to that effect appears in the output, and you are warned that
standard errors and t values may not be accurate.

Latent Class v4.530

4 Numeric Results

4.1 The Data Set

In this section we present and describe the latent class analysis of a sample data set named
"lsample.cho," that is provided in the installation. (You may open this project by browsing to the .cho
file within \My Documents\Sawtooth Software\Latent Class Samples.) This example uses an
artificial data set constructed as follows: First, part worth utility values were chosen for three
hypothetical groups on three attributes:

Hypothetical Utilities for Three Segments
Segment 1 Segment 2 Segment 3

(N = 80) (N = 160) (N = 240)

Brand 1 2.0 -1.0 -1.0

Brand 2 -1.0 2.0 -1.0

Brand 3 -1.0 -1.0 2.0

Pack 1 -1.0 -1.0 -1.0

Pack 2 -1.0 -1.0 2.0

Pack 3 2.0 2.0 -1.0

Price -- 2.0 2.0 2.0

Price - 1.0 1.0 1.0

Avg Price 0.0 0.0 0.0

Price + -1.0 -1.0 -1.0

Price ++ -2.0 -2.0 -2.0

One hypothetical group likes each brand best. Pack 3 is preferred by two groups and Pack 1 is
preferred by no group. All agree on the desirability of paying lower prices.

From these utilities, artificial data for 480 respondents were constructed. We drew 80 simulated
respondents from the first segment, 160 from the second, and 240 from the third. A CBC questionnaire
was created for each individual, containing 20 tasks, each presenting three alternatives plus a "None"
option. Answers for each question were simulated by first summing the respondent's utilities for each
alternative, adding a random component to each sum, and then selecting the highest of the resulting
values. The random components were distributed double-exponentially with variance of unity.

We have chosen an example based on simulated data rather than data from real respondents because
with simulated data we know what the "right answer" is: that there are really three segments of sizes 80,
160, and 240, and the pattern of utilities for each segment.

One of the problems in interpreting logit-based utilities is that logit analysis stretches or shrinks its
parameter estimates according to the goodness of its fit. If the data for a group are fit very well, its
utilities tend to be far from zero. If the data for a group are fit poorly, the utilities will be closer to zero.
Because some groups may be fit better than others, it can be confusing to compare results for different
groups. To facilitate such comparisons, we provide the option of re-scaling each group's estimated
utilities so the average range within an attribute is 100. To provide a "target" against which to later
compare the estimated utilities, we scale the above hypothetical utilities in the same way:

Numeric Results 31

Hypothetical Utilities, Re-scaled for Comparability
Segment 1 Segment 2 Segment 3

(N = 80) (N = 160) (N = 240)
Brand 1 60 -30 -30
Brand 2 -30 60 -30
Brand 3 -30 -30 60
Pack 1 -30 -30 -30
Pack 2 -30 -30 60
Pack 3 60 60 -30
Price -- 60 60 60
Price - 30 30 30
Avg. Price 0 0 0
Price + -30 -30 -30
Price ++ -60 -60 -60

In conjoint analysis we sometimes summarize the relative importance of an attribute by expressing its
range in utility to the sum of the ranges for all the attributes. We do that here, finding that for every
segment, Brand and Pack each has importances of 30%, and Price has an importance of 40%.

Attribute Importances
Segment 1 Segment 2 Segment 3

Brand 30 30 30
Pack 30 30 30
Price 40 40 40

Latent Class v4.532

4.2 A Sample Computation

The example data data set, lsample.cho, is provided in the ...My Documents\Sawtooth
Software\Latent Class Samples folder. You can obtain your own results by running Latent Class for
the tutorial data set. If you use the defaults, you will get solutions from 2 to 5 groups. Unless you use
exactly the same settings as we did (including utility constraints on price and a starting seed of 1), the
results below will probably differ from your own, since Latent Class does not guarantee that the same
solution will be obtained every time. We start with the result for three groups, treating all attributes as
discrete, and without respondent weighting. However, since we know that utilities for price should
decrease with increasing prices, we constrained the price utilities accordingly.

Latent Class output is given to you in grid format, with multiple tabs (the tabs are selected along the
bottom of the report). The first tab (Summary) is shown below for the lsample data set.

We start with estimates of respondent utilities that are just random numbers, and improve them, step by
step, until the final solution fits the data acceptably well. The latent class algorithm uses a maximum
likelihood criterion. Given its estimates of segment utilities and group sizes at each stage, the algorithm
computes the probability that each respondent should have selected the alternative he or she did. The
log likelihood is obtained by summing the logs of those probabilities, over all respondents and
questions.

In this questionnaire there are 480 respondents, each of whom answered 20 questions, each of which
had 3 product alternatives and a "none" option. Under the "null" condition of utilities of zero, any answer
would have a probability of .25. The log of .25 is -1.38629. Multiplying that by the number of
respondents (480) and the number of questions (20) gives the "null" log likelihood of -13308.42587.

If we were able to predict every respondent's answers perfectly, all the probabilities would be unity, and

Numeric Results 33

their logs would be zero. Therefore, the most favorable possible log likelihood is zero. This
computational procedure starts with a random solution that is modified iteratively, with each successive
solution having a higher likelihood. For each iteration we print the resulting likelihood as well as the gain
as compared to the previous iteration. The gains are large in initial iterations, and then become
successively smaller in later iterations.

We requested 5 replications of the latent class run, from different starting points. The Summary of best
replications reports that Replication #3 achieved the best fit (log-likelihood) of -3726.02314. Other
measures of fit are provided.

Pct Cert (Percent certainty) indicates how much better the solution is than the null solution, when
compared to an "ideal" solution. It is equal to the difference between the final log likelihood and the null
log likelihood, divided by the negative of the null log likelihood, in this case approximately (-3,726 +
13,308) / 13,308, or 72.00 This measure was first suggested by Hauser (1978), and was used in an
application similar to ours by Ogawa (1987). Although "Percent certainty" is useful for providing an idea
of the extent to which a solution fits the data, it is not very useful for deciding how many segments to
accept because it generally increases as more segments are included.

Consistent Akaike Information Criterion, (CAIC) is among the most widely used measures for
deciding how many segments to accept. CAIC was proposed by Bozdogan (1987), and an application
similar to ours is described in Ramaswamy et al. (1993). Like all measures we report here, CAIC is
closely related to the log likelihood. Our implementation of CAIC is given by the formula:

CAIC = -2 Log Likelihood + (nk + k - 1) x (ln N +1)

where k is the number of groups, n is the number of independent parameters estimated per group, and N
is the total number of choice tasks in the data set.

Akaike Information Criterion (AIC) is also related to the log likelihood, and is given by the formula:

AIC = -2 Log Likelihood + 2 (nk + k - 1)

BIC (Bayesian Information Criterion) is very similar to CAIC, and is given by the formula:

BIC = -2 Log Likelihood + (nk + k - 1) x (ln N)

ABIC (Adjusted Bayesian Information Criterion) is also closely related to the previous formulas, and
is given by:

ABIC = -2 Log Likelihood + (nk + k - 1) x [ln ((N+2) / 24)]

Unlike the Pct Cert and Chi Square statistics, smaller values of CAIC, AIC, BIC, and ABIC are preferred.
 These measures are decreased by larger log likelihoods, and are increased by larger sample sizes and
larger numbers of parameters being estimated. These measures are not very useful for assessing the
absolute level of fit of a particular solution, but are sometimes useful when looking across alternative
solutions with different numbers of groups.

Note: in previous versions of our latent class software, we reported CAIC (but not AIC, BIC, or ABIC,
which are closely related to CAIC). Because some users have requested the additional statistics, we
have included them in version 4.5.

Chi Square is twice the log likelihood for the solution, minus twice the log likelihood for the null
solution. It can be used to test whether a solution fits significantly better than the null solution,

Latent Class v4.534

although that is almost always true. Chi Square is not very useful for choosing the number of segments
because it tends to increase as the number of solutions increases.

Relative Chi Square is just Chi Square divided by the number of parameters estimated (nk + k - 1).
We know of no theoretical basis for this statistic, but Monte Carlo analyses of many data sets has led
us to believe that it may be useful for choosing the number of segments. Bigger is better.

On the second tab of the report (3 Groups) the 3-group solution (for the best replication, Replication #3)
is reported. At the top of the report, the history of iterations, log-likelihood fit, and size of each group is
shown per each iteration.

Below that are reported the "raw" utilities, which may have been stretched or shrunk by different
amounts for each group. Although the three segments are of the correct relative sizes, they are not
shown in the same order as for the table of "true" utilities above.

Notice that the values for the left-hand column (for the group containing 50% of the sample) are scaled
somewhat smaller than for the other two columns. Those differences make it harder to compare values
in adjacent columns, a difficulty which is removed in the table below, in which each column has been re-
scaled to "zero-centered diffs" so that its average range within attributes is 100.

Numeric Results 35

The true values have not been recovered perfectly, due to the random error introduced when constructing
our artificial data. However, the patterns of high and low values are nearly correct, certainly close
enough to characterize each group's preferences.

The re-scaled utilities immediately above are an option that you may request in the output. If you do,
you will also get a table of attribute importances, like the following:

We have not very accurately recovered the true importances of 30% for Brand and Pack and 40% for
price for each group, but we are dealing with small sample sizes and fairly noisy data.

One indication that the solution fits the data well is that the average respondent is assigned to a group
with probability 1.00. This is much higher than you will see with real data, and is only possible because
we started with an artificial data set in which each individual was clearly in one group or another. Finally,
if we examine which group each individual was assigned to, the recovery is perfect. We constructed a
data set in which the first 80 respondents were from one group, the next 160 from another, and the last
240 from the third. All are classified properly by this solution.

We are also given a notice that since some parameters were constrained (prices) the optional
significance tests and standard errors may not be accurate.

Latent Class v4.536

4.3 Choosing the Number of Segments

Next we examine what happens when comparing solutions with different numbers of clusters. We re-
ran this computation five times, each time estimating solutions for from 2 to 5 clusters from different
starting points (and for comparison, we ran a constrained solution using a 1-group run). For each
number of clusters we retained only the solution with highest Chi Square, and those solutions are
summarized below:

PctCert AIC CAIC BIC ABIC Chi Square RelChiSq

1 Group 26.3 19640 19714 19705 19677 6994 777

2 Groups 57.8 11275 11430 11411 11351 15380 809

3 Groups 72.1 7480 7717 7688 7596 19195 662

4 Groups 73.3 7179 7498 7459 7335 19516 500

5 Groups 75.2 6699 7100 7051 6895 20016 408

Notice that the PctCert statistic and Chi Square both increase as we increase the number of groups, but
don't increase much after the 3-group solution. This follows expectations, since in theory larger numbers
of groups should produce higher values. Also note that using a different starting point, we got a slightly
higher fit than for the previous run we reported for the 3-group solution.

AIC, CAIC, BIC, and ABIC are very closely related, and have a minimum for five groups, indicating that
they did not work at detecting the correct number of groups. Perhaps more significant is the fact that
these measures decrease dramatically until 3 groups, and then become nearly flat for larger numbers of
groups. Such an inflection point is probably a better indicator of the right number of groups than its
absolute magnitude. Relative Chi Square is maximized for two groups, a disappointment.

We have found that when analyzing real data from human respondents, these statistics are likely to
repeat such a pattern, not providing obvious information about the best choice of number of groups. It
seems that rather than choosing the solution which provides the highest absolute level of any statistic, it
is more useful to look at differences. For example, for Chi Square and Pct Cert we find large increases
going from one group to two, and large differences again going from two groups to three. However,
beyond that the differences are minimal, suggesting that three might be the right number of groups.
Likewise, AIC, CAIC, BIC, and ABIC drop sharply as we go from one to two and from two to three
groups, but then stays fairl constant for solutions with more groups.

When choosing among solutions, one also has access to other information, such as their patterns of
utilities and estimated group sizes. Here are the relative group sizes estimated for the five solutions
above:

2 Groups 0.500 0.500
3 Groups 0.500 0.167 0.333
4 Groups 0.035 0.167 0.465 0.333
5 Groups 0.179 0.155 0.176 0.324 0.167

The four-group solution contains a tiny group, emphasized in bold, so it would probably be disqualified on
that basis.

You will probably pay close attention to the estimated utilities provided by each solution. Also, each
individual can be classified into the group for which he or she has highest probability, and solutions can

Numeric Results 37

be further investigated by tabulating them with one another as well as with other variables. You are
automatically provided with tabulations of solutions with one another. For example, here is the way
respondents were classified by adjacent two-group and three-group solutions in one of the runs.

Tabulation of 2 Group vs. 3 Group Solutions
1 2 3 Total

1 0 0 240 240
2 80 160 0 240

Total 80 160 240 480

Every solution that you consider interpreting should be tested by rerunning from several different starting
points, and seeing how similar those solutions are to one another. That can be done automatically
using the "replications" parameter on the Settings dialog, and you can see if the part worth utilities,
importances, groups' sizes, and likelihoods are similar each time. Or you can merge group membership
as segmentation variables into your favorite cross-tabulation tool to cross-tab the variables to see how
similarly different solutions classify respondents.

If the goal of the latent class analysis is managerial relevancy of the segmentation solution, probably the
most important aspects to consider when choosing a solution for segmentation purposes are its
interpretability and stability (reproducibility).

One should repeat the analysis from different starting points (or by randomly splitting the sample into
two halves and running the analysis separately on each group) to observe whether similar segments and
segment sizes emerge. But if the primary goal for using Latent Class is to create an accurate share
simulator, then the accuracy of share predictions should take precedence over segment interpretability
and stability. It is sometimes the case that a latent class solution with a larger number of groups can
perform better in terms of accuracy than a lower-dimension run that may have clearer interpretability.
And, share prediction accuracy may occur with solutions that have more groups than the previously
discussed statistical criteria might justify. Some Latent Class users save one run for the purposes of
simulations, but use another run for interpretable segment classification. The interpretable segment
classification may be used as a banner point (e.g. filter), and the more accurate latent class utility run
may be used for estimating shares and reporting utilities.

Many analysts use the most interpretable latent class solution as a banner point, but will use HB
utilities instead for estimating shares and reporting utilities.

Latent Class v4.538

4.4 Practical Problems in Latent Class Analysis

We have used a sample data set for which the latent class algorithm is comparatively well behaved.
However, we want to avoid giving the impression that latent class analysis is simple, or that its
interpretation is straightforward. It does present several difficulties. To illustrate some of these, we reran
the sample problem five more times.

Timing: For very large problems, Latent Class can take many minutes to run. Latent Class v4.5 is
significantly faster than the first versions of Latent Class, and computer speeds continue to increase, so
speed is much less an issue than just a few years ago. Generally, Latent Class is slower than logit, but
faster than hierarchical Bayes (HB). However, given the time required to select among latent class
solutions with different numbers of segments, HB may be faster overall when considering both the PC's
computational effort and subsequent human effort.

Optimality: In the example described earlier, we used the default convergence limit of 0.01. For the
two-group solutions, Latent Class got the same solution every time in the sense that it always classified
respondents the same way.

For the three-group solutions, Latent Class got the solution reported earlier three times. However the
other three times it got a different solution, similar to the 2-group solution but with a tiny splinter group.
The correct solution had dramatically higher likelihood than the incorrect one, so there is no question
about which is superior.

One of the most severe problems with latent class analysis is vulnerability to local maxima. The only
way to avoid this problem is to compute several solutions from different starting points. Latent
Class will choose different starting points for each run automatically unless you specify otherwise.

For four and five groups, different solutions were found every time--the data do not naturally support
stable four- or five-group solutions. As it was, they classified respondents similarly about 80% of the
time. However, nearly all of them would be rejected for containing tiny groups.

You may find that the iterative process converges rapidly. However, depending on your data or an
unfortunate random starting point, you may also encounter either of the following:

Convergence may be slow. You may reach the limit on number of iterations before your
successive gains are smaller than the convergence limit. If that happens, you receive a warning
message both on screen and in your printed output. In that case, it is possible that no clear
segmentation involving that number of groups exists for those data, and further exploration with that
number of groups may not be worthwhile. However, we suggest that you try again, with different
starting points and a higher iteration limit.

The system may become "ill-conditioned." This means that there is not enough information to
estimate all the parameters independently of one another. This message is a symptom of too many
segments, too many parameters, or too little data. (It may also indicate an unacceptable pattern of
prohibitions in your questionnaire.) This message is often an indication that at least one group has
become tiny. If you receive this message, try again from a different starting point. If you receive it
repeatedly, but only for large numbers of segments, you may have to be satisfied with fewer
segments. If you receive it with a small number of segments, it may be necessary to remove
interaction terms (if you have imposed them) so as to estimate fewer parameters.

These difficulties may tempt you to abandon latent class analysis. Although we think it is important to
describe the difficulties presented by Latent Class, we think it is the best way currently available to find

Numeric Results 39

market segments with CBC-generated choice data. In the next section we describe how we came to
that point of view.

Latent Class v4.540

5 Why Latent Class?

5.1 Clusterwise Logit vs. Latent Class

By combining elements of cluster and logit analysis, it is possible to find segments of respondents in a
simple and straightforward way. Our initial investigation into this subject used an approach similar to
that of Moore et al. (1996). We constructed a segmentation/estimation module by combining CBC's
Logit module with elements of our K-Means cluster analysis product, CCA. We called this method
"Klogit," which went like this:

1. Set the number of clusters, and choose an initial solution for each cluster consisting of random
numbers in the interval -0.1 to 0.1.

2. Use each group's values to fit each respondent's data, using a logit model. (Of course, the initial
solutions will not fit anybody at all well.) Reallocate each respondent to the group whose
coefficients provide the best fit.

3. Estimate a logit solution for the respondents in each group.
4. Repeat steps 2 and 3 until no respondents change groups.

We used Monte Carlo methods to investigating Klogit's ability to recover known cluster structures. It did
quite well, and we would base our CBC segmentation module on Klogit if we had not also had
experience with latent class estimation.

However, because of the favorable reports on latent class methods in the references above, we further
extended CBC's Logit algorithm to perform latent class analysis. Our algorithm, Latent Class, is more
complicated than Klogit, but not very much so, and goes like this:

1. As with Klogit, set the number of clusters, and choose a random initial solution for each cluster
with values in the interval -.1 to .1.

2. As with Klogit, use each group's logit coefficients to fit each respondent's data, and estimate the
likelihood of each respondent's belonging to each class.

3. Estimate a weighted logit solution for each class. Each solution uses data for all respondents,
with each respondent weighted by his or her estimated probability of belonging to that class.

4. Underlying this method is a model which expresses the likelihood of the data, given estimates of
group coefficients and groups sizes. Compute the likelihood of the data, given those estimates.

5. Repeat steps 2 through 4 until the improvement in likelihood is sufficiently small.

Our implementation of the latent class algorithm is based on the description by DeSarbo, Ramaswamy,
and Cohen (1995), who provide the likelihood equation that we use as well as some further details of the
estimation procedure.

We do not produce the likelihood equation here because of typographic limitations. However, log-
likelihood is computed as follows:

1. For each individual, compute the probability of each choice that was made, assuming the
individual belonged to the first group. Multiply together those probabilities for all tasks to get a
likelihood of that individual's data, assuming membership in the first group. Also make a similar
computation assuming membership in each other group.

2. Weight the individual's likelihood for each group (as just described) by the current estimate of
that group's size. (The group size estimates sum to unity.) Sum the products over groups, to
get a total (weighted) likelihood for that individual.

3. Cumulate the logs of those likelihoods over individuals.

Why Latent Class? 41

4. Individual probabilities of belonging to each group are obtained by percentaging the weighted
likelihoods obtained by steps 1 and 2. Relative group size estimates are obtained by averaging
those values over respondents.

We have compared Latent Class and Klogit in many Monte Carlo studies, with these results:

Klogit is much faster than Latent Class, by an average factor of about 3.

For Monte Carlo data with random response error but no heterogeneity within segment,
Klogit and Latent Class do about equally well. With moderate response error they both
obtain the correct solution almost every time, and they do quite well even with very large
response error.

However, when the data contain within-cluster heterogeneity, Latent Class pulls ahead.
Latent Class is more reproducible when repeated solutions are computed from different
starts, recovers known solutions better, and also produces groups more nearly of the right
size.

One of our principles at Sawtooth Software is to try to produce tools that work every time. That leads us
to select the more robust and stable Latent Class method, despite the fact that Klogit is conceptually
simpler and much faster.

Latent Class v4.542

5.2 HB vs. Latent Class

As mentioned in the introduction to this documentation, hierarchical Bayes (HB) is used more often
today to analyze CBC data. Still, Latent Class offers unique benefits, and it has a strong following.

Latent class may be particularly beneficial in the following circumstances:

Often one of the goals of a CBC project is to learn more about the natural market segments that
might exist in a population. A marketing manager might benefit from knowing about the
different preferences across segments, especially if these segments have targetable differences
beyond just preferences. Latent class provides an effective way to discover segments, and the
statistics it provides for determining an appropriate number of segments are argued to be
superior than those for the usual alternative of cluster analysis. Although it is possible to run
cluster analysis on the results of HB analysis, we expect that analysts can achieve slightly
better results if using the one-step latent class procedure.

If respondents are really segmented into quite compact and differentiated groups in terms of
preference, the discrete assumption of heterogeneity used in latent class can more accurately
model individuals than HB.

HB has the following strengths:
If respondents seem to be distributed in a more continuous rather than discrete fashion in terms
of their multidimensional preferences, then HB can more accurately reflect individuals'
preferences. We would argue that most data sets usually involve a relatively continuous
distribution of heterogeneity, which is more in harmony with HB's assumptions. HB is also quite
robust even when there are violations of the underlying assumptions. It is not surprising,
therefore, that hit rates (individual-level prediction accuracy of holdout tasks) from HB almost
always exceed those for Latent Class for typical CBC data sets.

Market simulations using the individual-level part worths resulting from HB estimation are usually
a bit more effective than Latent Class in reducing IIA problems.

We know of two recent studies in which individual-level estimates from HB did not improve predictive fit
over aggregate logit or latent class solutions. The first study (Pinnell, Fridley 2001) demonstrated better
hit rates of holdout tasks for aggregate logit than HB for some commercial partial-profile CBC data sets
(HB was also superior for some partial-profile CBC data sets). In another recent study (Andrews,
Ainslie, Currim 2002), better household-level prediction was achieved with latent class and logit than HB
for simulated scanner choice data when the number of simulated purchases was only three per
household and seven parameters were fit (with more data available at the household level, HB performed
as well as latent class, with better internal fit). In both cases where HB seemed to perform worse than
aggregate methods, the data were exceptionally sparse at the individual level and HB was subject to
overfitting. We speculate that the narrow margin of victory for aggregate methods over HB in both cases
may have been due to sub-optimal specification of the priors (prior covariance, and degrees of freedom
for the prior covariance matrix). We have re-analyzed two of the data sets reported by Pinnell and
Fridley, and after adjusting HB priors (assuming lower heterogeneity and a greater weight for the prior)
found that HB's hit rates slightly exceeded that of aggregate logit. We haven't examined the simulated
household data of Andrews, Ainslie and Currim, so we can only speculate that modified HB priors may
have affected their conclusions.

We'll conclude with two more observations:

If the principal goal of the research is to develop an accurate group-level market simulator, then

Why Latent Class? 43

latent class has been shown to offer simulation accuracy that approaches (and has been
reported by some authors to occasionally exceed) the accuracy of HB.

Some researchers have learned to leverage the strengths of both techniques within their CBC
analysis. They use latent class to detect segments, and use the segment membership
information as "banner points" (filters) applied to simulations using underlying HB utility runs.

Latent Class v4.544

6 References

6.1 References
Andrews, R. L., Ainslie, A., and Currim, I. S., "An Empirical Comparison of Logit Choice Models
with Discrete Versus Continuous Representations of Heterogeneity," Journal of Marketing Research,
November 2002, p 479-487.

Bozdogan, H. (1987), "Model Selection and Akaike's Information Criterion (AIC): The General Theory
and its Analytical Extensions," Psychometrika, 52, 345-370.

DeSarbo, W. S., V. Ramaswamy, and S. H. Cohen (1995), "Market Segmentation with Choice-
Based Conjoint Analysis," Marketing Letters, 6, 137-148.

Hauser, J. R. (1978), "Testing and Accuracy, Usefulness, and Significance of Probabilistic Choice
Models: An Information-Theoretic Approach," Operations Research, 26, (May-June), 406-421.

Lenk, P. J., W. S. DeSarbo, P. E. Green, and M. R. Young (1996), "Hierarchical Bayes Conjoint
Analysis: Recovery of Partworth Heterogeneity from Reduced Experimental Designs," Marketing
Science, 15 (2) 173-191.

Ogawa, K. (1987), "An Approach to Simultaneous Estimation and Segmentation in Conjoint
Analysis," Management Science, 6, (Winter), 66-81.

Pinnell, Jon and Fridley, Lisa (2001), "The Effects of Disaggregation with Partial Profile Choice
Experiments," Sawtooth Software Conference Proceedings, Sequim WA, 151-165.

Ramaswamy, V. , W. S. DeSarbo, D. J. Reibstein, and W. T. Robinson. (1993), "An Empirical
Pooling Approach for Estimating Marketing Mix Elasticities with PIMS Data." Marketing Science, 12
(Winter), 103-124.

Appendices 45

7 Appendices

7.1 Appendix A: .LCU File Format

Studyname.LCU File Format

The studyname.lcu file contains the final utilities for each respondent group (class) from Latent Class
analysis. Since this file always has the same name, it is important that you rename it before doing
further analyses with the same study name to avoid over-writing it.

The Header:
The file contains a header section that describes which parameters have been estimated, followed by
part worth utilities for each group for each latent class solution.

Following is an example of such a header:

3 1 12 2 3
3 3 5
1 0 0
0 1 0
0 0 1
1 1 Br and 1
1 2 Br and 2
1 3 Br and 3
2 1 Pac k A
2 2 Pac k B
2 3 Pac k C
3 1 Pr i c e 1
3 2 Pr i c e 2
3 3 Pr i c e 3
3 4 Pr i c e 4
3 5 Pr i c e 5
NONE

The first line contains the number of attributes, whether "None" is included (1 if yes, 0 if no), the total
number of parameters estimated for each individual, and the minimum and maximum number of segment
solutions reported below. For example, if this file contains results from 2-group to 3-group solutions,
then values of 2 and 3 are shown.

The second line contains the number of levels for each attribute.

Following is a line for each attribute, each with as many entries as there are attributes. This is an
attribute-by-attribute matrix of ones and zeros (or minus ones) which indicates which effects were
estimated. Main effects are indicated by non-zero values on the diagonal. Interactions are indicated by
non-zero values in other positions. Linear variables are indicated by negative entries on the diagonal.

Following are labels, one for each parameter estimated. These are in the same order as the parameter
estimates that follow in the file, and serve to identify them. If interaction parameters were estimated,
then this list will include a label for each term.

Group Utility Data:
Below the header, the part worths are listed for each solution. For example, data for the the 2-group
solution are listed as follows:

Latent Class v4.546

2
240 0.30835 1.20565 -1.51400 -1.20315 -0.65658 1.85972 2.16634 0.81157 -0.07445 -1.45163
-1.45183 -0.16877
240 -1.36149 -1.39686 2.75835 -1.92847 2.94598 -1.01751 2.55459 2.13587 -0.59984 -1.99489
-2.09574 0.24880

The "2" in the first line of this section indicates that the data that follow are for a 2-group solution. On the
next line, the 240 indicates the weighted number of respondents included in the first group. Following
that are the 11 part worth utilities plus the None utility characterizing the first group. The second group's
weight and part worth parameters follow that.

Sections follow for as many solutions there are for larger numbers of groups. For example, for the 3-
group solution, group weights and part worths are:

3
160 -2.01774 4.77464 -2.75690 -2.99721 -1.68169 4.67891 4.60645 3.94615 -1.32848 -3.61196
-3.61216 0.67780
240 -1.36152 -1.39685 2.75837 -1.92839 2.94592 -1.01753 2.55460 2.13594 -0.59979 -1.99497
-2.09578 0.24887
80 5.25094 -4.32132 -0.92961 -2.45805 -2.00137 4.45942 6.09424 1.33020 1.33000 -4.37712
-4.37732 0.99309

Appendices 47

7.2 Appendix B: .CHO and .CHS Formats

The Latent Class program can use a studyname.CHO or a studyname.CHS data file, which are in ASCII
(text-only) format. The studyname.CHO is for discrete choice data, and is automatically created by the
CBC system. The studyname.CHS file is for allocation-based, constant sum (chip) allocation CBC
questionnaires. It is not necessary to have used our CBC system to create the data file. You can
create any of the ASCII-format data files and supporting control files with a text editor or other data
processing software.

.CHO File Layout

The studyname.CHO file contains data from each interview, including specifications of the concepts in
each task, respondent answers, the number of seconds required for each answer (optional), and total
interview time in minutes (optional).

Individual data records for respondents are appended to one another; one record follows another.
Following is how the single task described above would appear in a sample .CHO data file:

8 9 6 0 2 6 1 2 1

4 2

3 1

2 1 2 3 2 3

3 3 3 1 3 1

4 2 1 2 1 2

2 3 2

.

.

.

We'll label the parts of each line and then discuss each part.

Line 1: 8960

Respondent

Number

2

"Extra"

Variables

6

Number of

Attributes

12

Number of

Choice tasks

1

None option

0=N, 1=Y

First position (8960): The first position on the first line of the data file contains the respondent
number.

Second position (2): The second position contains the number of "extra" variables included in
the file. These variables may include the duration of the interview, and any merged
segmentation information, which can be useful for selecting subgroups of respondents for
special analyses. The variables themselves appear in line two of the data file and are described
below. (Most Latent Class users set the number of "extra" variables to zero and omit line 2.)

Third position (6): The third position contains the number of attributes in the study.

Fourth position (12): The fourth position contains the number of choice tasks included in the
questionnaire.

Final position (1): The final number indicates whether the "None" option was in effect; 0 = no,
1=yes.

Latent Class v4.548

Line 2: 4

Interview

Duration

2

Segmentation

Variable

These "extra" variables are largely a carryover from very early versions of CBC software, and are
only used in the Latent Class system for respondent filters or weights. If you specify that there
are no "extra" variables on line 1, you can omit this line of data.

The remaining five lines all describe the interview's first task:

Line 3: 3

Number of

Concepts f irst task

1

Depth of

Preference f irst task

First position (3): The first position gives the number of concepts in the first task, (excluding the
"none" alternative).

Second position (1): The second position reports the depth of preference for this task. The "1"
indicates the respondent was asked for his or her "first choice" only. A "2" would indicate that a
first and second choice were asked for, and so on. (Latent Class only uses information for
respondents' first choice.)

The next three lines describe the three concepts in the task, in the attributes' natural order. The
data for each concept are unrandomized; the first attribute is always in the first position. The
numbers on each line indicate which attribute level was displayed. Let's look at the first of these
lines:

Line 4: 2 1 2 3 2 3

Level Displayed for Each Attribute in First Concept

This line represents the first concept. These are always recorded in the natural order, whether
attribute positions were randomized or not. So, the numbers in line 4 represent:

First position (2): level 2 of attribute #1 (Computer B)

Second position (1): level 1 of attribute #2 (200 MHz Pentium)

Third position (2): level 2 of attribute #3 (5 lbs)

Fourth position (3): level 3 of attribute #4 (16 Meg Memory)

Fifth position (2): level 2 of attribute #5 (1.5 Gbyte hard disk)

Sixth position (3): level 3 of attribute #6 ($3,000)

Following are a list of the six attributes and their levels, to help in interpreting these lines from the
data file:

1 Computer A

2 Computer B

3 Computer C

4 Computer D

1 200 MHz Pentium

2 166 MHz Pentium

3 133 MHz Pentium

1 3 lbs

2 5 lbs

3 7 lbs

Appendices 49

1 64 Meg Memory

2 32 Meg Memory

3 16 Meg Memory

1 2 Gbyte hard disk

2 1.5 Gbyte hard disk

3 1 Gbyte hard disk

1 $1,500

2 $2,000

3 $3,000

Line 5: 3 3 3 1 3 1

Level Displayed for Each Attribute in Second Concept

Line five represents the second concept, and the numbers are interpreted as:

First position (3): level 3 of attribute #1 (Computer C)

Second position (3): level 3 of attribute #2 (133 MHz Pentium)

Third position (3): level 3 of attribute #3 (7 lbs)

Fourth position (1): level 1 of attribute #4 (64 Meg Memory)

Fifth position (3): level 3 of attribute #5 (1 Gbyte hard disk)

Sixth position (1): level 1 of attribute #6 ($1,500)

Line 6: 4 2 1 2 1 2

Level Displayed for Each Attribute in Third Concept

Line six represents the third concept, and the numbers are interpreted as:

First position (4): level 4 of attribute #1 (Computer D)

Second position (2): level 2 of attribute #2 (166 MHz Pentium)

Third position (1): level 1 of attribute #3 (3 lbs)

Fourth position (2): level 2 of attribute #4 (32 Meg Memory)

Fifth position (1): level 1 of attribute #5 (2 Gbyte hard disk)

Sixth position (2): level 2 of attribute #6 ($2,000)

Line 7: 2

Choice

32

Task Duration

First position (2): The first position contains the respondent's choice, which in this example is
concept two.

Second position (32): The second position on this line contains the time it took, in seconds, for the
respondent to give an answer to this task. This is optional information that doesn't affect
computation, and any integer may be used if desired.

The balance of the respondent's data would consist of lines similar to the last five in our data file
fragment, and those lines would have results for each of the other choice tasks.

.CHS File Layout

Following is a description of the .CHS format, for use with allocation-based (constant-sum) discrete
choice experiments. (Please note that this format may also be used to code discrete choice responses,
with the entire allocation given to the item chosen.) Individual data records for respondents are
appended to one another; one record follows another. Following is how the single task would appear in a
sample .CHS data file:

Latent Class v4.550

8 9 6 0 2 6 1 2 0

4 2

3

2 1 2 3 2 3 7

3 3 3 1 3 1 3

4 2 1 2 1 2 0

.

.

.

We'll label the parts of each line and then discuss each part.

Line 1: 8960

Respondent

Number

2

"Extra"

Variables

6

Number of

Attributes

12

Number of

Choice tasks

0

None option

0=N, 1=Y

First position (8960): The first position on the first line of the data file contains the respondent
number.

Second position (2): The second position contains the number of "extra" variables included in
the file. These variables may include the duration of the interview, and any merged
segmentation information, which can be useful for selecting subgroups of respondents for
special analyses or for weighting. The variables themselves appear in line two of the data file
and are described below. (If formatting their own files, most Latent Class users set the number
of "extra" variables to zero and omit line 2.)

Third position (6): The third position contains the number of attributes in the study.

Fourth position (12): The fourth position contains the number of choice tasks included in the
questionnaire.

Final position (0): The final number indicates whether the "None" option was in effect; 0 = no,
1=yes.

Line 2: 4

Interview

Duration

2

Segmentation

Variable

These "extra" variables are largely a carryover from very early versions of CBC software, and are only
used in the Latent Class system for respondent filters or weights. If you specify that there are no
"extra" variables on line 1, you can omit this line of data.

The remaining four lines all describe the interview's first task:

Line 3: 3

Number of

Concepts f irst task

Line 3 contains one number, which is the number of alternatives (rows of data) in the first task. If
one of the alternatives is a "None" option, that row is specified as the final one within each task and
is counted in this number.

The next three lines describe the three concepts in the task. The numbers on each line indicate

Appendices 51

which attribute level was displayed. Let's look at the first of these lines:

Line 4: 2 1 2 3 2 3 7

Level Displayed for Each Attribute in First Concept, plus point allocation

This line represents the first concept, and at the end of the line is the respondent's point allocation
(7) to this concept. So the numbers in line 4 represent:

First position (2): level 2 of attribute #1 (Computer B)

Second position (1): level 1 of attribute #2 (200 MHz Pentium)

Third position (2): level 2 of attribute #3 (5 lbs)

Fourth position (3): level 3 of attribute #4 (16 Meg Memory)

Fifth position (2): level 2 of attribute #5 (1.5 Gbyte hard disk)

Sixth position (3): level 3 of attribute #6 ($3,000)

Seventh position (7): Point allocation for this concept

Following are a list of the six attributes and their levels, to help in interpreting these lines from the data
file:

1 Computer A

2 Computer B

3 Computer C

4 Computer D

1 200 MHz Pentium

2 166 MHz Pentium

3 133 MHz Pentium

1 3 lbs

2 5 lbs

3 7 lbs

1 64 Meg Memory

2 32 Meg Memory

3 16 Meg Memory

1 2 Gbyte hard disk

2 1.5 Gbyte hard disk

3 1 Gbyte hard disk

1 $1,500

2 $2,000

3 $3,000

Line 5: 3 3 3 1 3 1 3

Level Displayed for Each Attribute in Second Concept, plus point allocation

Line five represents the second concept, and the numbers are interpreted as:

First position (3): level 3 of attribute #1 (Computer C)

Second position (3): level 3 of attribute #2 (133 MHz Pentium)

Third position (3): level 3 of attribute #3 (7 lbs)

Fourth position (1): level 1 of attribute #4 (64 Meg Memory)

Fifth position (3): level 3 of attribute #5 (1 Gbyte hard disk)

Sixth position (1): level 1 of attribute #6 ($1,500)

Seventh position (3): Point allocation for this concept

Latent Class v4.552

Line 6: 4 2 1 2 1 2 0

Level Displayed for Each Attribute in Third Concept, plus point allocation

Line six represents the third concept, and the numbers are interpreted as:

First position (4): level 4 of attribute #1 (Computer D)

Second position (2): level 2 of attribute #2 (166 MHz Pentium)

Third position (1): level 1 of attribute #3 (3 lbs)

Fourth position (2): level 2 of attribute #4 (32 Meg Memory)

Fifth position (1): level 1 of attribute #5 (2 Gbyte hard disk)

Sixth position (2): level 2 of attribute #6 ($2,000)

Seventh position (0): Point allocation for this concept

Note: if a "None" concept is present, it is included as the last alternative in the task, with all attribute
level codes as "0".

The balance of the respondent's data would consist of lines similar to the last four in our data file
fragment, and those lines would have results for each of the other choice tasks.

Appendices 53

7.3

Appendix C: Directly Specifying Design Codes in
the .CHO or .CHS Files
Some advanced users of Latent Class may want to control the coding of some or all of the independent
variables, rather than let Latent Class automatically perform the effects coding based on the integers
found in the .CHO or .CHS files. When doing this, you set attribute coding to "User-specified" within
the Attribute Information tab for any attribute for which you are controling the coding.

(Note: many users will find the .csv file format even easier to work with, and the same principles covered
in this Appendix also apply for coding .csv files.)

When you specify that some attributes use "User-specified" coding, you are telling Latent Class that
certain or all values found in the .CHO or .CHS files should be used as-is within the design matrix. In
the example below, we'll let Latent Class code automatically all but one of the parameters to be
estimated. Even though we'll only show an example for a .CHO file, the same procedure is
followed within the relevant format for the .CHS file.

Consider the following segment from a studyname.CHO file, representing the first of 18 tasks for
respondent number 2001 (if needed, please refer to Appendix B that describes the layout for the
studyname.CHO file):

2001 7 6 18 0
6 1 2 3 4 5 6
5 1
2 1 2 1 2 3
1 1 3 1 1 2
1 3 3 2 2 1
2 3 2 2 1 4
3 2 1 1 2 3
3 99

Attribute six in this example is Price (we've bolded the price codes for the five product concepts available
within this task). Price currently is coded as 4 levels. Let's imagine that the prices associated with
these levels are:

Level 1 $10
Level 2 $20
Level 3 $30
Level 4 $50

In our example above, the prices are $10, $20, $30, $50. To zero-center the codes, we first subtract
from each value the mean of the values. The mean is 27.5. Therefore, the zero-coded values are:

10 - 27. 5 = - 17. 5
20 - 27. 5 = - 7. 5
30 - 27. 5 = 2. 5
50 - 27. 5 = 22. 5

Now that we have zero-coded the values for Price, we are ready to inform Latent Class regarding this
coding procedure and place the values within the studyname.CHO file.

Latent Class v4.554

To specify the presence of user-defined coding for (in this example) the Price attribute, the user should:

1. From the Attribute Information tab, right-click the Price attribute label, and select Change
Coding Method | User-specified. This tells Latent Class to use the values (after zero-
centering) currently found in the .CHO or .CHS file for this attribute within the design matrix.

2. Next, the user-defined coded values for Price need to be placed within the studyname.CHO file.
 Recall that the default coding for the studyname.CHO file for respondent 2001 looked like:

2001 7 6 18 0
6 1 2 3 4 5 6
5 1
2 1 2 1 2 3
1 1 3 1 1 2
1 3 3 2 2 1
2 3 2 2 1 4
3 2 1 1 2 3
3 99

Substitute the coded independent variables for Price in the studyname.CHO file as follows (you'll
typically use a data processing software and an automated script to do this):

2001 7 6 18 0
6 1 2 3 4 5 6
5 1
2 1 2 1 2 2. 5
1 1 3 1 1 - 7. 5
1 3 3 2 2 - 17. 5
2 3 2 2 1 22. 5
3 2 1 1 2 2. 5
3 99

Note that all the values must be space-delimited within the studyname.CHO file. Make sure there is
at least one space between all values. The values may include up to six decimal places of
precision.

In this example, there are only four discrete values used for price. We did this for the sake of simplicity.
 However, this coding procedure can support any number of unique values representing a continuous
variable in the design matrix.

Appendices 55

7.4

Appendix D: Analyzing Alternative-Specific and
Partial-Profile Designs
Introduction

The Latent Class System analyzes data from the studyname.CHO or studyname.CHS files, which are in
ASCII (text-only) format. The studyname.CHO file is automatically generated by the CBC system, but
you can create your own studyname.CHO or studyname.CHS files and analyze results from surveys that
were designed and conducted in other ways. (Note: many users will find the .csv file format even easier
to work with, and the same principles covered in this Appendix also apply for coding .csv files.)

Alternative-Specific Designs

Some researchers employ a specialized type of choice-based conjoint design wherein some alternatives
(i.e. brands) have their own unique set of attributes. For example, consider different ways to get to work
in the city: cars vs. buses. Each option has its own set of product features that are uniquely associated
with that particular mode of transportation. These sorts of dependent attributes have also been called
"brand-specific attributes," though as our example illustrates, they aren't always tied to brands.

Consider the following design:

Car: Bus:

Gas: $1.25/ gallon
Gas: $1.50/ gallon
Gas: $1.75/ gallon

Picks up every 20 min.
Picks up every 15 min.
Picks up every 10 min.
Picks up every 5 min.

Company-paid parking
Parking lot: $5.00/day
Parking lot: $7.00/day

25 cents per one-way trip
50 cents per one-way trip
75 cents per one-way trip
$1.00 per one-way trip

Light traffic report
Moderate traffic report
Heavy traffic report

There are actually six different attributes in this design:

1. Mode of transportation (2 levels: Car/Bus)
2. Price of gas (3 levels)
3. Car parking (3 levels)
4. Traffic report (3 levels)
5. Bus frequency (4 levels)
6. Bus fare (4 levels)

Attributes two through four never appear with bus concepts, and attributes five and six never appear with
car concepts.

Latent Class v4.556

In the studyname.CHO and studyname.CHS files (described in detail in Appendix B), there is a row of
coded values describing each product concept displayed in each task. Consider a two-alternative task
with the following options:

Car, Gas: $1.25/ gallon, Parking lot: $5.00/ day, Light traffic report
Bus, Picks up every 10 min., 50 cents per one-way trip

Again, there are six total attributes used to describe two different modes of transportation. The two
alternatives above would be coded as follows in the studyname.cho or studyname.chs files:

1 1 2 1 0 0
2 0 0 0 3 2

Note that the attributes that do not apply to the current concept are coded as a 0 (zero).

Analyzing Partial-Profile Designs

Partial-profile designs display only a subset of the total number of attributes in each task. For example,
there might be 12 total attributes in the design, but only five are displayed in any given task. As with
coding attribute-specific designs, we specify a level code of 0 (zero) for any attribute that is not
applicable (present) in the current product concept.

Analyzing More Than One Constant Alternative

Some discrete choice designs include more than one constant alternative. These alternatives are
typically defined using a single statement that never varies. With the transportation example above,
other constant alternatives in the choice task might be: "I'd carpool with a co-worker" or "I'd walk to
work." Multiple constant alternatives can be included in the design and analyzed with the Latent Class
System. If there is more than one constant alternative, one appropriate coding strategy is to represent
these as additional levels of another attribute. For example, in the transportation example we've been
using, rather than specifying just two levels for the first attribute (Car, Bus), we could specify four codes:

1 Car
2 Bus
3 I'd carpool with a co-worker
4 I'd walk to work

You should specify four alternatives per task to accommodate the car, bus and the two constant
alternatives. To code the task mentioned in the previous example plus two constant alternatives in either
the studyname.CHO or studyname.CHS files, you would specify:

1 1 2 1 0 0
2 0 0 0 3 2
3 0 0 0 0 0
4 0 0 0 0 0

It is worth noting that the advanced coding strategies outlined in this appendix are also useful within
CBC's standard logit, CBC/HB and ICE systems. Though these systems cannot generate designs
automatically or questionnaires for these advanced designs, they can analyze choice data files coded to
reflect them.

Appendices 57

Latent Class v4.558

7.5

Appendix E: How Constant Sum Data Are Treated
in Latent Class
Introduction

Conjoint analysis has been an important marketing research technique for several decades. In recent
years, attention has focused on the analysis of choices, as opposed to rankings or ratings, giving rise to
methodologies known as "Discrete Choice Analysis" or "Choice-Based Conjoint Analysis."

Choice analysis has the advantage that experimental choices can mimic actual buying situations more
closely than other types of conjoint questions. However, choices also have a disadvantage: inefficiency
in collecting data. A survey respondent must read and understand several product descriptions before
making an informed choice among them. Yet, after all of that cognitive processing the respondent
provides very scanty information, consisting of a single choice among alternatives. There is no
information about intensity of preference, which products would be runners up, or whether any other
products would even be acceptable.

Many researchers favor the comparative nature of choice tasks, but are unwilling to settle for so little
information from each of them. This leads to the notion of asking respondents to answer more fully by
allocating "constant sum scores" among the alternatives in each choice set rather than by just picking a
single one. For example, a survey respondent might be given 10 chips and asked to distribute them
among alternatives in each choice set according to his/her likelihood of purchasing each. Alternatively,
the respondent might be asked to imagine the next 10 purchase occasions, and to estimate how many
units of each alternative would be purchased in total on those occasions. Such information can be
especially informative in categories where the same individuals often choose a mix of products, such as
breakfast cereals or soft drinks. Constant sum scores are particularly appropriate when it is reasonable
for the respondent to treat the units as probabilities or frequencies.

Constant sum scores certainly can provide more information than mere choices, although they are not
without shortcomings of their own. One disadvantage is that it takes respondents longer to answer
constant sum tasks than choice tasks (Pinnell, 1999). Another is that one can't be sure of the mental
process a respondent uses in providing constant sum data. The requirement of summing to 10 or some
other total may get in the way of accurate reporting of relative strengths of preference. Finally, since
respondents' processes of allocating points are unknown, it's not clear what assumptions should be
made in analyzing the resulting data.

Our strategy for analyzing constant sum data begins with the notion that each constant sum point is the
result of a separate choice among alternatives. Suppose 10 points are awarded among three
alternatives, with the scores [7, 3, 0]. We could treat this as equivalent to 10 repeated choice tasks, in
which the first alternative was chosen 7 times, the second chosen 3 times, and the third never chosen.
But, there is a difficulty with this approach: one can't be sure that constant sum points are equivalent to
an aggregation of independent choices. Perhaps this respondent is inclined always to give about 7
points to his/her first choice and about 3 points to his/her second choice. Then we don't have 10
independent choices, but something more like two.

If a respondent conscientiously makes 10 independent choices in allocating 10 points, then those data
contain more information and should receive greater weight than if he/she uses some simpler method.
Likewise, if a respondent were always to allocate points among products without really reflecting on the
actual likelihood of choice, those data contain less information, and should be given less weight in
estimation of his/her values.

Appendices 59

We deal with this problem by asking the analyst to estimate the amount of weight that should be given
to constant sum points allocated by respondents. We provide a default value, and our analysis of
synthetic data sets shows that we do a creditable job of estimating respondent part worths when using
this default value, although the analysis can be sharpened if the user can provide a more precise
estimate of the proper weight.

How Constant Sum Data Are Coded

In earlier versions of Latent Class, we used a less efficient process for estimating part worths from
allocation-based CBC data. It involved expanding the number of choice tasks to be equal to the
number of product alternatives that had received allocation of points. We are indebted to Tom Eagle of
Eagle Analytics for showing us an equivalent procedure that is much more computationally efficient and
therefore considerably faster.

First, although we have spoken of "constant sum data," that is something of a misnomer. There is no
requirement that the number of points allocated in each task have the same sum. During estimation, the
data from each task are automatically normalized to have the same sum, so each task will receive the
same weight regardless of its sum. However, to avoid implying that their sums must be constant, we
avoid the term "constant sum" in favor of "chip allocation" in the balance of this appendix.

Latent Class reads the studyname.CHS file (or data from a .CSV file) which contains chip allocation
data in text format and produces a binary file for faster processing. The simplest of procedures might
treat chip allocation data as though each chip were allocated in a separate choice task. If, for example,
the chips allocated to alternatives A, B, and C were [A = 7, B = 3, C = 0] then we could consider that 10
repeated choice tasks had been answered, with seven answered with choice of A and three answered
with choice of B.

In the latent class procedure we compute the likelihood of each respondent's data, conditional on the
current estimates of the part worths utilities for each of the classes as well as the sizes of the classes.
This likelihood consists of a series of probabilities multiplied together, each being the probability of a
particular choice response. If the chips allocated within a task have the distribution [A = 7, B = 3, C =
0], then the contribution to the likelihood for that task is

Pa* Pa* Pa* Pa* Pa* Pa* Pa* Pb* Pb* Pb

which may be rewritten as:

Pa
7 * Pb

3 (1)

where Pa is the likelihood of choosing alternative a from the set and Pb is the likelihood of choosing

alternative b from the set. According to the logit rule:

Pa = exp(Ua) / SUM(exp(Uj)) (2)

and

Pb = exp(Ub) / SUM(exp(Uj)) (3)

Latent Class v4.560

where Ua is the total utility for concept a, Ub is the total utility for concept b, and j is the index for each of

the concepts present in the task.

Substituting the right-hand side of equations 2 and 3 into equation 1, we obtain an alternate form for
expressing the likelihood of our example choice task where 7 chips are given to A and 3 chips to B:

(exp(Ua) / SUM(exp(Uj))
7 * (exp(Ub) / SUM(exp(Uj))

3

And, an equivalent expression is:

exp(Ua)
7 * exp(Ub)

3 / SUM(exp(Uj))
10 (4)

There is a potential problem when so many probabilities are multiplied together (equivalently, raising the
probability of the alternative to the number of chips given to that alternative). If the respondent really
does answer by allocating each chip independently, then the likelihood should be the product of all those
probabilities. But if the data were really generated by some simpler process, then it would seem more
appropriate to recognize this.

For this reason we give the user a parameter which we describe as "Total task weight." If the user
believes that respondents allocated ten chips independently, he should use a value of ten. If he believes
that the allocation of chips within a task are entirely dependent on one another (such as if every
respondent awards all chips to the same alternative) he should use a value of one. Probably the truth
lies somewhere in between, and for that reason we suggest 5 as a default value.

We use the Task Weight in the following way.

Rather than assume that each chip represents an independent choice event, we first normalize the
number of chips allocated within each task by dividing the exponents in equation 4 by the total number
of chips allocated. This simplifies the formula to:

exp(Ua)
0.7 * exp(Ub)

0.3 / SUM(exp(Uj))

We can then apply the task weight to appropriately weight the task. Assuming the researcher wishes to
apply a task weight of 5, the new formula to represent the probability of this task is:

[exp(Ua)
0.7 * exp(Ub)

0.3 / SUM(exp(Uj))]
5

Which may be rewritten as:

exp(Ua)
(0.7*5) * exp(Ub)

(0.3*5) / SUM(exp(Uj))
5

Mathematically, this is identical to the likelihood expression based on expanded tasks that we used in
earlier versions of our latent class software, but it avoids expanding the tasks and is more efficient
computationally.

Appendices 61

7.6

Appendix F: Utility Constraints for Attributes
Involved in Interactions
Latent Class can constrain utilities to conform to user-specified monotonicity constraints within each
individual. Constraints can also be used for attributes involved in interaction terms.

When Both Attributes Are Categorical:

Consider two attributes both with known preference order (level1 < level2 < level3) involved in an
interaction effect. Main effects and first-order interaction effects may be estimated in Latent Class.
Effects coding results in zero-centered main effects that are independent of the zero-centered first-order
effects.

To impose monotonicity constraints, for each individual, construct a table containing the joint utilities
when two levels from each attribute combine. In the joint effects table below, A is equal to the main
effect of Att1_Level1 plus the main effect of Att2_Level1 plus the interaction effect of Att1_Level1 x
Att2_Level1.

Att2_Level1 Att2_Level2 Att2_Level3
Att1_Level1 A B C
Att1_Level2 D E F
Att1_Level3 G H I

Given that these two attributes have known a priori rank order of preference from "worst to best," we
expect the following utility relationships:

A<B<C
D<E<F
G<H<I
A<D<G
B<E<H
C<F<I

For any pair of joint utilities that violates these preference orders, we tie the values in the joint effects
table by setting both offending elements equal to their average. We recursively tie the values, because
tying two values to satisfy one constraint may lead to a violation of another. The algorithm cycles
through the constraints repeatedly until they are all satisfied.

After constraining the values in the joint table, the new row and column means represent the new
constrained main effects. For example, Let J equal the mean of (A, B, C); J is the new main effect for
Att1_Level1. Let M equal the mean of (A, D, G); M is the new main effect for Att2_Level1.

Finally, we compute the constrained first-order interactions. Subtract the corresponding constrained
main effects from each cell in the joint effects table to arrive at the constrained interaction effect. For
example, assume that J is the constrained main effect for Att1_Level1 and M is the constrained main
effect for Att2_Level1. The constrained interaction effect Att1_Level1 x Att2_Level1 is equal to A-J-M.

Latent Class v4.562

The example above assumed full rank-order constraints within both attributes. The same methodology is
applied for constraining selected relationships within the joint utility table. For example, if the only
constraint was Att1_Level1>Att1_Level2, then the only joint effects to be constrained are A>D, B>E, and
C>F.

For Categorical x Linear Attributes:

Assume two attributes, one categorical (with three levels) and one linear term. Assume the following
constraints are in place:

Att1_Level1>Att1_Level2
Att2 is negative

The main effects for the categorical attribute may be considered (and constrained) independently of the
effects involving the linear term (we can do this because the elements in the X matrix for Att2 are zero-
centered). Constrain the main effects for the categorical levels of Att1, by tying offending items (by
setting offending values equal to their average).

Next, we build an effects table, representing the effect of linear attribute Att2, conditional on levels of
Att1 (and independent of the main effect for Att1):

Att2
Att1_Level1 A
Att1_Level2 B
Att1_Level3 C

For example, A is equal to the linear term main effect of Att2 plus the interaction effect Att1_Level1 x
Att2. In other words, A is the level-specific linear effect of Att2 for Att1_Level1. (Note that we do not add
the main effect of categorical term Att1_Level1 to A).

Next, we constrain any elements A, B, C that are positive to zero.

We re-compute the constrained linear main effect for Att2 as the average of the column. (Example: Let
D equal the mean of (A, B, C); the constrained linear main effect for Att2 is equal to D.)

Finally, estimate the constrained interaction effects by subtracting the constrained linear main effect for
Att2 from each element. (Example: the constrained interaction effect for Att1_Level1 x Att2 is equal to
A-D. Repeat in similar fashion for all rows).

For Linear x Linear Attributes:

Assume two attributes Att1 and Att2, both estimated as linear terms. Assume the following constraints
are in place:

Att2 is negative

In this case, if Att2 is found to be positive, we simply constrain Att2 to be zero. No action is taken with
the interaction effect.

If both main effects are constrained, we similarly only apply constraints to main effects.

Appendices 63

Latent Class v4.564

7.7 Appendix G: Estimation for Dual-Response "None"

Introduction

Some researchers have advocated asking the "None" choice as a second-stage question in discrete
choice questionnaires (see "Beyond the Basics: Choice Modelling Methods and Implementation
Issues" (Brazell, Diener, Severin, and Uldry) in ART Tutorial 2003, American Marketing Association).
The "Dual-Response None" technique is an application of the "buy/no buy" response that previous
researchers (including McFadden, Louviere, and Eagle) have used as an extension of standard discrete
choice tasks since at least the early 1990s, and have modeled with nested logit.

The "Dual-Response None" approach is as follows. Rather than ask respondents to choose among,
say, four alternatives {A, B, C and None}; respondents are first asked to choose among alternatives {A,
B, and C}, and then next asked if they really would buy the alternative they selected in the first stage
(yes/no).

The dual-response None dramatically increases the propensity of respondents to say "None," which
many researchers would argue better reflects actual purchase intentions than when the "None" is asked
in the standard way. But, no information is lost due to the selection of the "None," since respondents
are first asked to discriminate among available products. Thus, the "Dual-Response" none can provide a
"safety net": we can estimate a "None" parameter without worrying about the potential decrease in
precision of the other parameters if the incidence of "None" usage is quite high.

The "Dual-Response None" has its drawbacks. It adds a little bit more time to each choice task, since
respondents must provide two answers rather than one. But, the additional time requirement is minimal,
since respondents have already invested the time to become familiar with the alternatives in the choice
task. It is also possible that asking the "None" as a separate question may bias the parameters of
interest.

Brazell et al. have suggested that the benefits of the dual response seem to outweigh any negatives.
They have conducted split-sample experiments with respondents that demonstrate that the parameters
(other than the "None") are not significantly different when using the standard "None" vs. "Dual-Response
None" formats.

Modeling Dual-Response None in Latent Class

We do not claim to know the absolute best method for modeling choice tasks that use the "Dual-
Response None." However, the method we offer in Latent Class seems to work quite well based on
recent tests with actual respondent data and holdout choice tasks.

Our approach is quite simple: we model the two choices (the forced choice among alternatives, and the
buy/no buy follow-up) as independent choice tasks. In the first task, the choice is among available
products (without a "None" alternative available). In the second task, the choice is among available
products and the "None" alternative. Failure to pick the "None" alternative in the second stage (a "buy"
indication) results in a redundant task. All information may be represented using just the second stage
choice task. With that one task, we can indicate the available options, which option the respondent
chose, and the fact that the respondent rejected the "None" alternative. Therefore, we omit the
redundant first-stage task.

Appendices 65

Data Setup in the Latent Class File

We already introduced the .CHO file layout in Appendix B. If you are using a .CHO file generated by the
CBC/Web v6 system (or later), then the .CHO file will already include the below modifications, and no
additional re-formatting is required. If using another system for implementing "Dual-Response None"
questionnaires, make the following modifications:

1. Each respondent records begins with a header that has five values. Set the fifth value equal to "2."

2. In the standard .CHO layout, the coding of each task is completed by a line with two values: "Choice"
and "Task Duration." With the "Dual-Response None" format, each choice task is completed by a line
with four values, such as:

3

1st stage

Choice

27

Task

Duration

1

Buy=1

No Buy=2

4

Task

Duration

The first two values contain information about the first-stage task (the choice among available
alternatives) and the time (in seconds) to make that choice. This respondent chose the third alternative,
and it took 27 seconds to make that selection. The second two values contain information about the
"Dual-Response None" question. The first of those values is coded as a 1 (I would buy the product
chosen in the first stage) or a 2 (I would not buy the product chosen in the first stage). This is followed
by the time (in seconds) to make that choice.

Task Duration is not used at all in the estimation, so you can use an arbitrary integer if you wish.

Latent Class v4.566

7.8 Appendix H: Estimation for MaxDiff Experiments

Latent Class software may be used for estimating utilities for MaxDiff (best/worst) experiments. MaxDiff
experiments are useful for scaling multiple items and performing segmentation research (Sa Lucas 2004,
Cohen 2003). In MaxDiff experiments, researchers measure often twenty or more total items, and
respondents evaluate choice sets involving typically four to six items at a time, selecting which item is
"best" (or most important) and which item is "worst" (or least important). An example is given below:

Please consider dining experiences in fast food restaurants. Among these
attributes, which is the most and the least important to you?

Which is Most
Important?

Which is Least
Important?

Good tasting food

Offers healthy selections

Friendly service

Fun atmosphere

Each respondent typically completes a dozen or more sets (tasks) like the one above, where the items
within tasks vary according to an experimental design plan. Across the questionnaire, all items being
studied are represented often multiple times for each respondent. If developing individual-level utilities
using HB, we'd generally recommend that each item be displayed three times or more for each
respondent (Orme 2005).

Coding the .CHO File for MaxDiff Experiments

(Note: many users will find the .csv file format even easier to work with, and the same principles covered
in this Appendix also apply for coding .csv files.)

If using Sawtooth Software's products for MaxDiff analysis, an appropriate .CHO file can be generated
automatically. For the interested reader, the format of that file is given below. If you are conducting your
own MaxDiff experiment using another tool, you will need to format the data as described below for use
in Latent Class software.

Consider a MaxDiff study with the following specifications:

8 total items in the study
10 sets (tasks) per respondent
4 items per set

What sets best/worst data apart from traditional conjoint/choice data is that each set is coded twice:
once to represent the item chosen as "best" and once for the item selected "worst." Thus, in our
example, even though there are 10 total sets in the study, we code these as 20 separate sets. Each
respondent's data occupies multiple lines in the file, and the next respondent follows on the line directly
beneath the previous (NO blank lines between respondents).

Appendices 67

Assume respondent number 1001 received items 7, 8, 3, and 2 in the first of ten sets. Further assume
that item 7 was selected as this respondent's "best" and item 3 as the "worst." The first few lines of this
file representing the coding for respondent 1001's first set, should look something like:

1001 0 7 20 0
4 1
 0 0 0 0 0 0 1
 0 0 0 0 0 0 0
 0 0 1 0 0 0 0
 0 1 0 0 0 0 0
1 99
4 1
 0 0 0 0 0 0 - 1
 0 0 0 0 0 0 0
 0 0 - 1 0 0 0 0
 0 - 1 0 0 0 0 0
3 99
(etc. for 9 more sets)

The exact spacing of this file doesn't matter. Just make sure it is in text-only format and that you have
arranged the data on separate lines, and that the values are separated by at least one space. We
describe each line as follows:

Line 1:
1001

Respondent

number 1001

0

No segmentation

variables

7

7 attributes

20

20 total sets

0

No "None"

Lines 2 through 7 reflect the information for the "best" item chosen from set #1.

Line 2:
4

Next follow s

a set w ith 4

items

1

One selection from

this set

Line 3:
0 0 0 0 0 0 1

Dummy codes representing the first item in the first set (item 7 in our example). Each value
represents an item (less the last item, which is omitted in the coding). The dummy codes are
"0" if the item is not present, and "1" if the item is present. Since this row represents item 7,

the 7th value is specified as 1.

Line 4:
0 0 0 0 0 0 0

Dummy codes representing item 8. In our study, if the 8th item is present, all seven values are
at 0.

Lines 5 and 6 follow the same formatting rules for dummy coding, to code items 3 and 2 in our
example. Next follows the line in which the respondent's "best" item is indicated.

Line 7:
1

The item in row

99

A filler value (time) of

Latent Class v4.568

1 of this set is

best

99 to be compatible

w ith .CHO format

Lines 8 through 13 reflect the information for the "worst" item chosen from set #1.

Line 8:
4

Here follow s

a set w ith 4

items

1

One selection from

this set

Lines 9 through 12 reflect the dummy codes (inverted) for the items shown in set one,
considered with respect to the "worst" item selected. All values that were "1" in the previous
task are now "-1".

Line 13:
3

The item in row

3 of this set is

best

99

A filler value (time) of

99 to be compatible

w ith .CHO format

Estimating the Model using Latent Class

Opten the appropriate .CHO file. On the Attribute Information tab, modify all attributes to have "User-
specified coding." (Note that there will be k-1 total attributes in the study, representing your k total
items in the MaxDiff design.)

Click Estimate Parameters Now... from the Home tab. Utility values are written to the .LCU and .CSV
files. Remember, the utility of the omitted value for each group is 0, and the other items are measured
with respect to that omitted item.

A Suggested Rescaling Procedure

The raw utilities from Latent Class estimation are logit-scaled, and typically include both positive and
negative values. Furthermore, the spread (scale) of the utilities for each segment differs, depending on
the consistency of each segments' choices. It may be easier to present the data to management and
also may be more appropriate when using the data in subsequent multivariate analyses if the data are
rescaled to range from 0 to 100, following "probability" scaling.

1. Insert the score for the omitted item for each segment (score of 0).

2. Zero-center the weights for each segment by subtracting the average item weight from each weight.

3. To convert the zero-centered raw weights to the 0-100 point scale, perform the following
transformation for each item score for each segment:

eUi/(eUi + a - 1) * 100

Where:
Ui = zero-centered raw logit weight for item i

eUi is equivalent to taking the antilog of Ui. In Excel, use the formula =EXP(Ui)

Appendices 69

a = Number of items shown per set

Finally, as a convenience, we rescale the transformed item scores by a constant multiplier so that they
sum to 100.

The logic behind the equation above is as follows: We are interested in transforming raw scores
(developed under the logit rule) to probabilities true to the original data generation process (the counts).
If respondents saw 4 items at a time in each MaxDiff set, then the raw logit weights are developed
consistent with the logit rule and the data generation process. Stated another way, the scaling of the
weights will be consistent within the context (and assumed error level) of choices from quads. Therefore,
if an item has a raw weight of 2.0, then we expect that the likelihood of it being picked within the context
of a representative choice set involving 4 items is (according to the logit rule):

e2.0/(e2.0 + e0 + e0 + e0)

Since we are using zero-centered raw utilities, the expected utility for the competing three items within
the set would each be 0.0. Since e0 = 1, the appropriate constant to add to the denominator of the
rescaling equation above is the number of alternatives minus 1.

Latent Class v4.570

Index

- A -

ABIC 32

AIC 32

Alternative-specific attributes 55

ATT file 16, 22, 47

Attribute information tab 22

- B -

Batch mode 16

Best/worst scaling 66

BIC 32

- C -

CAIC 32

Capacity limitations 3

CBC/HB 55

Chi Square 32

Chip allocation 58

CHO file 16, 18, 21, 22, 45, 53

CHO file format 47

Choice Data File tab 21

Choice task filter 24

CHS file 16, 18, 21, 22, 45, 53

CHS file format 47

Clusterwise logit 40

Consistent Akaike Information Criterion 32

Constant-sum data 58

Constraints 25, 28

CSV file 9, 45

CSV File Format 12

- D -

Dual-response "None" 64

- E -

Effects coding 18, 22

Exclude attribute 22

- H -

Hierarchical Bayes 11, 42, 55

Holdout tasks 24

Home tab 18

- I -

ICE 55

ID file 9

Ill-conditioned design warning 38

Interaction effects 6, 7, 22

Iterations 5, 25, 32

- L -

LCU file 9

LCU file format 45

Level values 7

Likelihood of the data 55

Linear coding 7, 22

Local minima 38

LOG file 9, 25

Log-likelihood 32

- M -

Main effects 6, 18

Market simulations 1, 6, 11

MaxDiff scaling 22, 66

Monotonicity constraints 25, 28

- N -

None alternative 18, 25, 45, 47, 64

- O -

Opening a project 16

Output files 9

- P -

Part worth coding 22

Partial-profile designs 55

Percent certainty 32

PXX file 9

- Q -

Quantitative attributes 22

Quickstart instructions 1

- R -

Random number seed 25

Relative Chi Square 32

Replications 25

Index 71

Respondent filter 25

Reversals 7, 28

- S -

Segments (choosing number of) 36

- T -

Tabulate pairs of solutions 25

Task weight 58

- U -

User-specified coding 22, 53

Utility constraints 25, 61

- W -

Weights 25

What's new in v4.5 4

	Getting Started
	Introduction
	Capacity Limitations and Hardware Recommendations
	What's New in Version 4.5?

	About Latent Class
	Latent Class Estimation
	Estimating Interaction Effects
	Linear Variables
	Latent Class Output
	How Sawtooth Software's Simulators Use Latent Class Utilities

	Using The Latent Class System
	Creating Your Own Datasets in .CSV Format
	Project Management
	Home Tab and Estimating Parameters
	Choice Data File Tab
	Attribute Information Tab
	Choice Task Filter Tab
	Settings Tab
	Monotonicity (Utility) Constraints

	Numeric Results
	The Data Set
	A Sample Computation
	Choosing the Number of Segments
	Practical Problems in Latent Class Analysis

	Why Latent Class?
	Clusterwise Logit vs. Latent Class
	HB vs. Latent Class

	References
	References

	Appendices
	Appendix A: .LCU File Format
	Appendix B: .CHO and .CHS Formats
	Appendix C: Directly Specifying Design Codes in the .CHO or .CHS Files
	Appendix D: Analyzing Alternative-Specific and Partial-Profile Designs
	Appendix E: How Constant Sum Data Are Treated in Latent Class
	Appendix F: Utility Constraints for Attributes Involved in Interactions
	Appendix G: Estimation for Dual-Response "None"
	Appendix H: Estimation for MaxDiff Experiments

