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1.0 Introduction  

“Driver analysis” (AKA derived importance analysis) is a staple deliverable for customer 
satisfaction, brand image, concept testing and loyalty research.  With driver analysis, a 
marketer seeks to quantify how much each of several predictor or “independent” variables 
influences or contributes to some outcome or “dependent” variable.  In applied marketing 
research studies, the dependent variable is usually some overall rating (satisfaction with the 
brand, liking or perceived excellence of the brand, intent to purchase the brand, etc.) and 
predictors are usually rating scale measures of the performance of the brand on each of several 
attributes (here “brand” means any entity one might want to study, e.g. a bank branch, an 
individual provider of home building services, a non-profit charity, a city park, a therapy for 
sarcoidosis, a brand name product or service).  Analysis produces a set of scores that quantifies 
the importance of each of the predictors. 

The dependent variable is usually some kind of rating scale, so for the predictive model we 
typically use a member of the regression analysis family (some sticklers in academia note that 
rating scales aren’t continuous measures, but this is how it’s done in practice – and by 
academics in the social sciences, too).  Years ago, we used correlation or multiple regression 
analysis.  As shown below, however, a pervasive data problem called collinearity afflicts and 
ruins these methods as vehicles for importance measurement.  Fortunately, some newer 
methods (a family of relative importance measures and random forests) address the data 
problem and allow us to do driver analysis well. 

Section 2 below describes traditional derived importance methods, using a case study and 
some visualizations of how the methods measure importance.  Section 3 defines, illustrates, 
and quantifies collinearity.  Section 4 introduces the newer methods for driver analysis and 
illustrates their success in the face of collinearity.  Finally, section 5 extends the analysis to 
three new case studies to show that the results of the first case study generalize.  Three 
appendices expand on some tangential topics related to driver analysis. 

2.0 Doing Driver Analysis Badly:  Traditional Methods 

When I first started running derived importance models back in the 80s, the tools we had were 
regression analysis and correlation analysis.  To illustrate these, let’s use a casual dining 
customer satisfaction study:  1,284 respondents rated their overall satisfaction with their most 
recent visit to a casual dining restaurant and they rated the restaurant’s performance on 10 
attributes.  
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Correlation looks at how each attribute relates in turn to the overall satisfaction measure, 
independently of each other attribute.  The correlations, ranging from 0.387 to 0.543, do not 
vary much: 

 

Correlation over-counts the variation that the predictors share with the dependent variable, to 
the extent the predictors themselves overlap.  This becomes clear when we square the 
correlations, so that each one represents the percent of the variance in the dependent variable 
it explains: 

 

The squared correlations sum to 188%, meaning they explain more than 100% of the variance 
in the dependent variable.  
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Regression analysis looks simultaneously at the relation of all 10 attributes to overall 
satisfaction. These regression coefficients result: 

 

The regression importances seem to be more discriminating, but they include a negative 
importance weight for cleanliness, as if respondents prefer a dirty restaurant over a clean 
one.  Moreover, only 3 of the 10 predictors are significant in the regression model, versus all 10 
for the correlations. 

3.0 Collinearity 

The underlying data problem, collinearity (or sometimes “multicollinearity”) happens in a 
multivariate model when the predictor variables (the 10 restaurant attributes in this case) are 
correlated with each other.  Both correlation and regression would produce equivalent (and 
accurate) importances if the 10 predictors were not correlated among 
themselves.  Unfortunately, in survey research, predictor variables measured in attitudinal 
ratings are almost always correlated with one another.  Thorndyke (1920) discovered an 
explanation for this and named it the “Halo Effect.”  In a nutshell, respondents liking a brand 
tend to give it high ratings on all attributes, while respondents disliking a brand tend to give it 
low marks across the board.  In Thorndyke’s memorable phrase, the halo effect causes all the 
correlations to be “too high and too even.”      

The halo effect clearly affects the casual dining study, as all 10 predictors are highly correlated 
with each other: 
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It turns out we can quantify the amount of collinearity present in a data set, using what’s called 
a condition index.  Condition indices over 10 suggest a likely problem with collinearity and 
condition indices over 30 suggest a severe collinearity problem (Belsley, Kuh and Welsch 
1980).  The condition index for the casual dining restaurant data is 17.6; even though it’s not 
above 30, we still have collinearity severe enough to keep us from interpreting the regression 
importances.  

Collinearity means that the importances from correlation may only be interpreted ordinally 
(higher means more important) and the regression results cannot be interpreted as 
importances at all.  In the presence of collinearity, neither correlation nor regression analysis 
works the way we’d like for measuring attribute importance.  

4.0 Doing Driver Analysis Well:  Some Newer Methods 

Three newer methods, developed with collinearity in mind, handle driver analysis well. 

4.1 Averaging over orderings (AOO) 

Think of running a regression analysis where we enter the variables in order.  We attribute to 
the first variable to enter the model all the variance the predictor shares with the dependent 
variable.  To the second variable we attribute only the variance in the dependent variable the 
unique variance NOT shared by the first variable.  This goes on until we get to the last variable, 
and we attribute to it only the unique variance it shares with the dependent variable that’s not 
shared by ANY of the previously entered predictors.  In effect, correlation treats each predictor 
as if it enters model first, while regression treats each variable as if it enters last (see Appendix 
2 for more details). 

Not knowing which ordering of variables to choose, with AOO we run the regression analysis in 
every possible order (e.g. for 10 predictors we run 10! = 3.6 million).  In each of those many 
orderings, we keep track of how much variance a given predictor explains, given its place in that 
ordering and then we average that contribution over all the orderings.  Normalizing those 
averaged contributions (dividing them by the 36% total explained variance) they sum to 100% 
and give us a set of importances: 
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In addition to the theoretical advantage of slicing up and apportioning the shared variance, the 
AOO importances have a couple of other desirable properties for practitioners:  they sum to 
100% and they have a ratio-level interpretation (e.g. we can say that Food Taste, with an 
importance of 27.9%, has about three times the importance of being Reasonably Priced, with its 
importance of 9.1%).  Neither correlation nor regression has this ratio level interpretation when 
collinearity is present. 

In 1980 Lindeman, Merenda and Gold first suggested averaging the incremental contribution to 
R2 over orderings in their general textbook about multivariate methods.  Cox (1985) noted that 
AOO was equivalent to the Shapley value.  Unaware of the earlier work that looked at the 
incremental R2 each variable adds, Kruskal (1987) suggested averaging a different entity, 
squared partial correlations and Theil and Chung (1988) suggested averaging an information-
theoretic entity called entropy over orderings.  Budescu (1993) invented something he called 
dominance analysis, which also turned out to be equivalent to Lindeman, Merenda and Gold’s 
averaging of R2 measure.  While the analyst has several variants of this “relative importance 
analysis” to choose from, and while each variant has its proponents, in practice all of these AOO 
methods seem to return very nearly the same attribute importances.  

The huge number of regressions run as part of an AOO analysis means that some problems can 
take a very long time to run, time that increases geometrically with the number of predictors 
(with 21 predictors, AOO involves more regression models than there are grains of sand on the 
earth).  In a recent study with 23 predictors, AOO took about 20 minutes to run on my 
computer. 

4.2 Johnson’s relative importance weights (e) 

Johnson (2000) came at the idea of identifying the importance of predictors using some 
straightforward maxrix algebra (interesting trivia here: Johnson drew on earlier work that Rich 
Johnson, founder of Sawtooth Software, had done translating correlated attributes into 
uncorrelated variables).  Johnson’s relative importance algorithm differs from those used by the 
AOO methods, and it runs quickly for pretty much any number of predictors.  Johnson’s relative 
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weight scores, which he calls e, turn out to be very similar to those that come from the AOO 
methods: 

 

Like the AOO methods, Johnson’s e scores sum to 100% have they have a ratio-level 
interpretation.  

4.3 Random Forests (RF) 

Proposed by Brieman (2001), random forests extends the idea of running tree-based 
regression:  Instead of building a single regression tree, however, RF builds a forest of trees, 
where each tree involves two randomization steps that serve to “decorrelate” the variables 
(and hence to combat collinearity).  Prediction happens by way of a vote that each tree makes, 
but for our purposes, RF also produces a couple of importance measures.  One of these, called 
“increase in node purity,” works a little better in practice because its scores are always 
positive.  Like AOO and e, the RF importances have a ratio level interpretation and they can be 
normalized to sum to 100%: 

 

Interestingly, despite the fact that the RF algorithm is different from both the AOO and from 
Johnson’s e, it produces a very similar vector of importance scores.  In fact, if we compare the 
results of these five methods, we can see that RF, AOO and e importances are very highly 
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correlated with one another, and less so with either correlations or regression coefficients 
(which also have lower correlation with one another): 

 

So similar are the importances from AOO, e and RF that one could use any of them and have a 
high degree of confidence in the answer.  In practice, I use AOO when I have fewer than about 
20 rating scale variables, Johnson’s e when I have more than 20 or so (or when I have missing 
data, because e handles missing data well), and RF when I have a mix of rating scale and 
categorical predictors. 

5.0 It’s Not a Fluke:  Three Additional Case Studies 

Of course, you should convince yourself of all of the above by running the analyses above on 
any of your driver analysis studies.  Just for fun I ran them on three more data sets.  The 
condition indices for two of these were similar to the casual dining study above, in the territory 
Belsley, Kun and Welsch would call likely problematic:  an airline satisfaction study with 
condition index of 17.0 and an auto service satisfaction study with a condition index of 
19.6.  The third, from a burger joint brand image study, is well into the “serious problem” range 
with a condition index of 33.8.  All studies had at least several hundred respondents and they 
had 9-13 predictor variables.  Each time the correlations exhibited a great amount of 
overcounting of shared variance and each time most of the regression coefficients were non-
significant, some with incorrect sign reversals.  Again, the three new importance metrics 
produce very similar importance scores, less similar to those from regression and correlation 
analysis: 

 

6.0 Where to Find Driver Analysis Programs 

All of the methods discussed are available in R.  The package relaimpo contains several AOO 
programs, while party includes RF.  You can run Johnson’s relative weights as part of the 
iopsych package or in the dedicated rwa package.  An online calculator also runs Johnson’s 
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relative weights:  https://relativeimportance.davidson.edu/multipleregression.html.  I’m not 
aware of any publicly available version of the Theil’s information-theoretic AOO method, but 
Joe Retzer wrote a proprietary program for it, so if you ever need it run, he’s your guy.  

7.0 Conclusion 

Traditional derived importance methods have serious shortcomings due to a serious data 
problem endemic to survey research:  collinearity.  Three new methods designed to avoid the ill 
effects of collinearity do so while producing usefully scaled outputs.  Moreover, though the 
three methods come at the problem from very different directions, their results agree so much 
as to suggest their convergent validity. 

  

  

https://relativeimportance.davidson.edu/multipleregression.html


10 
 

References 

  

Belsley, D.A., E. Kuh and R.E. Welsch (1980) Regression diagnostics:  Identifying influential data 
and sources of collinearity.  Hoboken, NJ:  Wiley. 

Breiman, L. (2001) “Random Forests,” Machine Learning, 45:  5–32. 

Budescu, D. V. (1993) “Dominance analysis: A new approach to the problem of relative 
importance of predictors in multiple regression,” Psychological Bulletin, 114, 542-551. 

Chrzan, K,., J. Retzer and J. Busbice (2003) “The Predictive Validity of Kruskal’s Relative 
Importance Algorithm,” Sawtooth Software Conference Proceedings, 77-85. 

Cox, L.A. Jr., (1985) “A new measure of attributable risk for public health 
applications,” Management Science, 31:800-813. 

Feldman, B. (2005) “Relative importance and value,” Manuscript version 1.1, 2005-03-19. 

Gibson, W.A. (1962) “Orthogonal predictors:  a possible resolution of the Hoffman-Ward 
controversy,” Psychological Reports, 11:  32-34. 

Gromping, U. (2006) “Relative importance for linear regression in R:  The package 
relaimpo,” Journal of Statistical Software, 17: 1-27. 

Gromping, U. (2007) “Estimators of relative importance in linear regression based on variance 
decomposition,” The American Statistican, 61:  139-147. 

Johnson, J. W. (2000) ”A heuristic method for estimating the relative weight of predictor 
variables in multiple regression,” Multivariate Behavioral Research, 35: 1–19. 

Johnson, J.W. and J.M. LeBreton (2004) “History and use of relative importance indices in 
organizational research,” Organizational Research Methods, 7:  238-257. 

Johnson, R.M. (1966) “The minimal transformation to orthonormality,” Psychometrica, 31:  61-
66. 

Kruskal, W. (1987) “Relative importance by averaging over orderings,” The American 
Statistician, 41, 6-10. 

Lindeman, R.H., P.F. Merenda and R.Z. Gold (1980) Introduction to Bivariate and Multivariate 
Analysis.  Glenview, IL:  Scott, Foresman. 



11 
 

Lipovetsky, S. and M. Conklin (2001) “Analysis of regression in game theory approach,” Applied 
Stochastic Models in Business and Industry, 17: 319-330. 

Soofi, E.S., J. Retzer and M. Yasai-Ardekani (2000) “A framework for measuring the importance 
of variables with applications to management research and decision models,” Decision 
Sciences, 31:  1-31. 

Tabachnick, B. and L.S. Fidell (1983) Using Multivariate Statistics.  Cambridge:  Harper & Row. 

Theil, H. and C-F.Chung (1988) “Information-theoretic measures of fit for univariate and 
multivariate linear regression,” The American Statistician, 42:  249-252. 

Theil, H. (1987) “How many bits of information does an independent variable yield in a multiple 
regression?” Statistics & Probability Letters, 6, 107-108. 

Thorndyke, E.L. (1920) “A constant error in psychological ratings,” Journal of Applied 
Psychology, 4, 25-29. 

Tonidandel, S. and J.M LeBreton (2011) “Relative importance analysis:  a useful supplement to 
multiple regression analyses,” Journal of Business and Psychology, 26: 1-9. 

Tonidandel, S., J.M. LeBreton & J.W. Johnson (2009) “Determining the statistical significance of 
relative weights,” Psychological Methods, 14: 387-399. 

  

  



12 
 

Appendix 1:  What About Factor Analysis? 

For some time I thought the best I could to do combat collinearity was to run factor 
analysis.  Factor analysis groups a set of intercorrelated attributes into a smaller set of 
uncorrelated factors.  Originally developed for testing psychometric theories, factor analysis 
can assess the validity of conceptual models (if a construct is real, the items purported to 
measure it should load together onto a factor) and the validity of measurement models (if an 
item is a good measure of a construct it should load highly on the one factor representing that 
construct and not on any other factor).  One can imagine using factor analysis to bypass 
collinearity by using these uncorrelated factors as the inputs to driver analysis. 

Most marketing research surveys, however, use attribute lists not constructed with any 
psychometric theory in mind.  Researchers build haphazard assortments of items into their 
attribute lists, rarely with any thought about any theorized factor structure.  Factor analysis of 
such attribute lists often produce cross-loaders (important items whose impact is diluted 
because they load on multiple factors) or unique items that don’t load onto any factors because 
they have low correlations with the other items.  In a nutshell, factor analyzing attribute rating 
scales prior to regression analysis can obscure important predictors. 

Even when factor analysis works well, researchers’ clients often struggle with their meaning:  a 
marketing manager may care about attributes like “ease of use,” “quality” and “timely delivery” 
but may become frustrated if they load on the same factor without separately quantified 
importances. 

In short, I love factor analysis for the kind of psychometric testing for which it was developed, 
but not as a panacea that turns hodge-podge attribute lists into driver analysis gold. 
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Appendix 2 – Visualizing Correlation, Regression and Collinearity 

  

Assume we have two predictors, x1 and x2, and that they each relate to some extent to a 
dependent variable dv.  The circles below represent the variance in the measures of x1, x2 and 
dv.  Correlation counts all the variance that a predictor shares with the dv as the importance of 
that predictor, i.e. the purple shaded area below measures the correlation of x1 with dv.  

 

 

 

Figure 1:  What Correlation Counts 

 

Similarly, the correlation of x2 and dv would be the overlap, or intersection, of the x2 and dv 
circles (part of which is already shaded purple because to some extent x1, x2 and dv all 
overlap).  So correlation over-counts the variation that the predictors share with the dependent 
variable, to the extent the predictors themselves overlap.  With 10 predictors, correlations can 
end up explaining more than 100% of the variance in the dependent variable!  

Compare this to what regression analysis does.  Regression credits only the unique variance 
that a predictor shares with the dependent variable (i.e. only the overlap that x1 has with dv 
that is not also shared with x2: 
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Figure 2:  What Regression Counts 

 

Just as correlation can double (or triple, etc.) count shared variance, regression analysis under-
counts it, because regression ignores all the variance that multiple predictors share with the 
dependent variable (in the diagram above it would count the purple shaded area plus a similar 
area that x2 shares with dv but not with x2).  The variance shared by all three of x1, x2 and dv 
gets ignored.  

Collinearity happens when we have lots of predictors sharing lots of variance.   For example, 
here x1 and x2 overlap almost completely, so the unique variance x1 shares with dv is just the 
shaded sliver: 

Figure 3:  What Collinearity Does 
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Here the high correlation between x1 and x2 ignores most of the variance either of them shares 
with dv.  Small changes to the position of the circles can cause large fluctuations in the size of 
the shaded sliver, meaning collinearity can cause instability in regression models (it inflates the 
variance in estimates of the regression coefficients, leading to another mathematical measure 
of collinearity called the variance inflation factor or VIF).  
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Appendix 3:  Technical Bits Saved to the End 

Making a slight improvement to regression analysis 

Just as we were able to make correlation a little more useful by squaring the raw correlation 
coefficients, we can improve regression a little bit.  We use regression coefficients for making 
predictions but for apportioning importance to the individual predictors a related entity called 
squared semipartial correlation (sri

2) may make more sense (Tabachnick and Fidell 1983).  The 
squared semipartial correlations measure only the unique variance a predictor shares with the 
dependent variable; we can normalize them so they sum to 100% by dividing by their sum, 
which is 8% in the casual dining study.  Normalizing makes them more comparable in scale to 
correlations: 

 

It also turns out that the squared semipartial correlations are (slightly) more correlated with the 
importances from AOO, from Johnson’s e and from RF. 

Extending AOO methods 

Soofi, Retzer and Yasai-Ardekani (2000) illustrate that the entropy measure that Theil used for 
his AOO method allows the AOO methodology to be extended to other statistical models, like 
ANOVA and logistic regression.  

At least two ways of allowing AOO methods to operate with large numbers of predictors have 
been developed.  To support the analyses done in Chrzan, Retzer and Busbice (2003), John 
Busbice developed a variation of AOO which, instead of running all possible orderings, starts 
with a large number of random orderings and then runs further orderings only until 
importances converge.  Kevin Lattery developed a method that uses AOO among different 
random subsets of a given number of predictors (e.g. 5) to estimate importances.  I don’t think 
Kevin ever presented this method outside of Maritz Research, because at the time we 
considered it a proprietary product offered only to our customer satisfaction clients.  
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More detail on the history of AOO methods 

Useful summaries of the origin and history of AOO methods appear in Gromping (2007), 
Johnson and LeBreton (2004), Tonidandel and LeBreton (2011), and Tonidandel, LeBreton and 
Johnson (2009). 

 


