# Relevant Items MaxDiff Origin, Motivation, and Options

Chris Chapman + contributions Eric Bahna

Quant UX Association Google

**July 2025** 

Sawtooth Software Webinar Series



# The Product Management Problem

⇒ Prioritize moderate to long lists of features / initiatives / messages / preferences / needs

# **Sparse** customer data → *poor* global prioritization

|           | FR1 | FR2 | FR3 | FR4 | FR5 | FR6 |     |      |   |         |
|-----------|-----|-----|-----|-----|-----|-----|-----|------|---|---------|
| CustomerA | P1  | P1  |     | P1  |     |     |     | Rank |   | Feature |
| CustomerB |     | P0  |     |     |     |     |     | 1    |   | FR2     |
| CustomerC |     |     | P1  |     |     |     |     | 2    |   | FR1     |
| CustomerD |     |     |     |     | P1  |     | PMs | 3    |   | FR4     |
|           |     |     |     |     |     |     |     | 4    |   | FR5     |
|           |     |     |     |     |     |     |     | 5    | F | -R3     |
|           |     |     |     |     |     |     |     | 6    | F | R6      |

# **Dense** customer data → *strong* global prioritization

|           | FR1 | FR2 | FR3 | FR4 | FR5 | FR6 |     |      |         |          |
|-----------|-----|-----|-----|-----|-----|-----|-----|------|---------|----------|
| CustomerA | P1  | P1  |     | P1  |     |     |     | Rank | Feature | Priority |
| CustomerB |     | P0  |     |     |     |     |     | 1    | FR4     | P0       |
| CustomerC |     |     | P1  |     |     |     |     | 2    | FR2     | P0       |
| CustomerD |     |     |     |     | P1  |     | PMs | 3    | FR5     | P1       |
|           | FR1 | FR2 | FR3 | FR4 | FR5 | FR6 |     | 4    | FR6     | P1       |
| CustomerA | 16  | 11  | 17  | 21  | 24  | 11  |     | 5    | FR1     | P2       |
| CustomerB | 26  | 2   | 8   | 25  | 12  | 27  |     | 6    | FR3     | P2       |
| CustomerC | 5   | 15  | 6   | 42  | 23  | 9   |     |      |         |          |
| CustomerD | 3   | 11  | 8   | 28  | 23  | 27  |     |      |         |          |

# Basic Approach: MaxDiff

- Given a list of many items (often 12-40; can be any number)
- ... Ask for **preference** of a **few at a time** [easy to answer]

| Considering only the following 5 classes, which class would be MOST interesting to you, and which one would be LEAST interesting to you? |                                                                                               |            |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------|--|--|--|
| М                                                                                                                                        | OST Interesting LEAST Inter                                                                   | esting     |  |  |  |
|                                                                                                                                          | Segmentation: Running a Successful Segmentation Effort, from the Models through Team Politics | $\bigcirc$ |  |  |  |
|                                                                                                                                          | R-Intensive: In-Person R Programming Bootcamp for Social Scientists in Industry               | $\bigcirc$ |  |  |  |
|                                                                                                                                          | Psychometrics for Survey Scales: Reliability and Validity Assessment for Practitioners        | $\bigcirc$ |  |  |  |
| $\subset$                                                                                                                                | Choice Modeling Hands-On: Introduction to Conjoint Analysis and MaxDiff                       | $\bigcirc$ |  |  |  |
|                                                                                                                                          | Yes, It is Causation, and not Correlation: Models for Causal Inference in R                   | $\bigcirc$ |  |  |  |

## Basic Approach: MaxDiff

- Given a list of many items (often 12-40; can be any number)
- ... Ask for preference of a few at a time

- ... Randomize sets to avoid order effects
- ... Repeat a few times
- ... Model the preference **statistically**

[unbiased]

[more data]

[powerful]

#### **MaxDiff Results**

Ranked order preference with meaningful magnitudes



#### Result

Ranked order preference with meaningful magnitudes



#### **But ... Problems with Standard MaxDiff**

- Data Quality & Item relevance
- Respondent experience
- Non-actionable results

# **Data Quality**

- "I don't know -- someone else does that task."
- Respondents must state a preference whether they know about the item or not.
- B2B Tasks & Large companies → Specialized Roles
  - Engineers
  - Salespeople
  - Finance
  - Operations
  - Security
  - Management

#### Respondent Experiences in Their Own Words

- "A bit tedious"
- "It was LONG!"
- "Quite long."
- "Would be nice to have "no opinion" on a particular set to not introduce noise."

#### Non-actionable Results

- We are "wasting" participant's time if all items in a MaxDiff task are unimportant to them.
- Differentiating amongst the "worst" items is less valuable than differentiating amongst the "best."

## Some other MaxDiff Options

- Adaptive MaxDiff (Orme, 2006):
   Tournament-style progressive selection of items. More complex to program, less focused at beginning of survey. By itself, doesn't solve "I don't do that."
- Express MaxDiff (Wirth & Wolfrath, 2012):
   Selects subset of items to show each respondent. No insight at individual level on non-selected items. Addresses a different problem (long item list).
- Sparse MaxDiff (Wirth & Wolfrath, 2012):
   Uses all items from a long list per respondent, with few if any repetitions across choices. Low individual-level precision. Addresses different problem.

#### Relevant Items MaxDiff

AKA the artistic endeavor formerly known as

"Constructed / Augmented MaxDiff"

# **Initial B2B Study**

The problem:

We wanted ...

IT administrators to assess the **importance of features** 

... but only that are **relevant** to their roles

... and to save time, are at least somewhat important

#### Relevant Items Screens the List Before MaxDiff

#### "Relevant to you?"



**Yes** → Add item to MaxDiff list

#### Relevant Items Screens the List Before MaxDiff

#### "Relevant to you?"



AND/OR

#### "Important at all?"

|             | At least<br>somewhat<br>important | Not<br>important |  |
|-------------|-----------------------------------|------------------|--|
| i9          |                                   | 0                |  |
| description | 0                                 |                  |  |
| i13         |                                   | 0                |  |
| description | 0                                 | 0                |  |
| i4          |                                   | 0                |  |
| description | 0                                 |                  |  |
| i24         | 0                                 | 0                |  |
| description |                                   |                  |  |
| i29         | 0                                 | 0                |  |
| description | 0                                 | 0                |  |
|             | At least                          |                  |  |

**Yes** → Add item to MaxDiff list

No → Remove item to save choice time

#### Relevant Items Screens the List Before MaxDiff

#### "Relevant to you?"





"Important at all?"

Then, MaxDiff



**Yes**  $\rightarrow$  Add item to MaxDiff list

 $No \rightarrow Remove$  item to save choice time

MaxDiff is tailored to the list of relevant items

#### Results: 55% of Items Irrelevant to Median Respondent





# RI showed 50% More "Important" Items in MaxDiff

- Respondents see fewer unimportant items on average
- Better focus on top priorities



# Result: Change in Business Priorities

- Better focus led to higher estimate for item "i6"
- #2 priority overall

... and ...

 #35 in cost - cheapest on the list





## Results: Respondent and Executive Feedback

#### Respondent feedback

- "Format of this survey feels much easier"
- o "Shorter and easier to get through."
- "this time around it was a lot quicker."
- "Thanks so much for implementing the 'is this important to you' section!
   Awesome stuff!"

#### Executive support

- Funding for internal tool development (that was then; no longer needed!)
- Advocacy across product areas
- Support to teach 25+ Google classes on MaxDiff ⇒ 250+ participants

# Implementation in Sawtooth Discover

## Two Approaches

Pre-screen for Relevance (understanding, experience)
 "Which of these movies have you seen?"
 "Which of these tasks do you perform?"

- OR -

Pre-screen for Importance (liking, expectation, preference)
 "Which features are at least somewhat important?"
 "Which destinations would you consider visiting?"

# Two Approaches

- Pre-screen for Relevance
   "Which of these movies have you seen?"
- Pre-screen for Importance
   "Which features are at least somewhat important?"

#### Why not both simultaneously?

You can do both although it is more challenging (more later)

## **Example: Movie Ratings**

Consider movie preferences. We might want to know:

- Of movies you've seen, which do you like most? [screen for "Relevance"]
- Among all movies, which do you believe are best?
   [screen for "Importance" (i.e., preference)]

Items source: Anonymous (2025). Oscar Winners & Nominees. Online spreadsheet.

#### Screen for Relevance

- Ask about only items that a respondent is familiar with, that are relevant to them, etc.
- Goal: Collect good data and not confuse respondents

| Which of the following movies have you seen? |                   |                   |
|----------------------------------------------|-------------------|-------------------|
|                                              | No, have not seen | Yes, have seen it |
| The King's Speech                            | $\bigcirc$        | 0                 |
| The Artist                                   | $\bigcirc$        | 0                 |
| Argo                                         | $\bigcirc$        | 0                 |
| 12 Vagre a Clava                             | $\cap$            | $\cap$            |

# Screen for Importance

- Focus on items that are at least somewhat important
- Goal: shorten the task and focus on items at the "top"

| For each movie, do you believe it is a good movie or not?                                                 |                     |             |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------|---------------------|-------------|--|--|--|--|
| If you have not seen a particular movie, use your best judgment according to what you know or have heard. |                     |             |  |  |  |  |
|                                                                                                           | Good or pretty good | NOT so good |  |  |  |  |
| The King's Speech                                                                                         | $\circ$             | 0           |  |  |  |  |
| The Artist                                                                                                | $\circ$             | 0           |  |  |  |  |
| Argo                                                                                                      | $\circ$             | 0           |  |  |  |  |
| 12 Years a Slave                                                                                          | $\cap$              | $\cap$      |  |  |  |  |

## Try it live! We'll see the results later

Consider movie preferences. We might want to know:

- Of movies you've seen, which did you like most?
   [screen for "Relevance"]
- Among all the movies, which do you think are best?
   [screen for "Importance" (i.e., preference)]

Example with both options: <a href="http://bit.ly/31oJOqW">http://bit.ly/31oJOqW</a>



Items source: Anonymous (2025). Oscar Winners & Nominees. Online spreadsheet.

## Step 1: Create the Relevant Items List

- Create the master list we will select from
  - MovieList ... with all the movies in it

Add a survey item to select from that master list

Create a dynamic list to capture the selected items

# Step by Step in Sawtooth Discover

#### Step 1a: Create the Relevant Items List

Create the master list we will select from





#### Step 1b: Create the Relevant Items List

- Create the master list we will select from
- Add a survey item to select from that master list



#### Step 1c: Create the Relevant Items List

- Create the master list we will select from
- Add a survey item to select from that master list
- Create a dynamic list to capture the selected items



#### Step 2: Add a Relevant Items MaxDiff exercise

Add the MaxDiff exercise

Set it to use the dynamic list

Set it to be a Relevant Items exercise

#### Step 2a: Add a Relevant Items MaxDiff exercise

Add the MaxDiff exercise



### Step 2b: Add a Relevant Items MaxDiff exercise

- Add the MaxDiff exercise
- Set it to use the dynamic list



### Step 2c: Add a Relevant Items MaxDiff exercise

- Add the MaxDiff exercise
- Set it to use the dynamic list
- Set it to be a Relevant Items exercise



### Estimation Settings Depend on the Path

### Relevance

Set HB estimation to use "Missing at random"

Unfamiliar (unselected) items are **not** penalized



### Importance

Set HB estimation to use "Missing | Inferior"

Items below the cut in screening **are** penalized



## Results?

Live inspection in Discover

# Discussion

### The Tradeoff

#### **Benefits**

- Focused & more enjoyable MaxDiff
- Shorter surveys with fewer tasks
- Higher quality data

#### **But ...**

- Screening task itself may become long (next slide)
- Survey platform support (requires Sawtooth, or custom programming & R code)



## What if the screening list is very long?

Problem: too many items to pre-screen them all

#### **Possibilities:**

- Break screening into chunks so they only rate a few at a time
- Pre-test the item list with Bandit MaxDiff or similar and trim it
- Randomly screen subsets of items
- Group items and programmatically include according to a grouping factors

```
For example:
```

Check: Role = Security

⇒ Add 8 security items [scripted]

### **Questions & Options**

#### Q: What if a respondent selects zero or a few items?

A: Discover skips MaxDiff if there are not enough items

#### Q: Can I force certain items to appear every time?

A: Yes, add instructions for that in the dynamic list tool.

#### Q: Can I add random items to ensure coverage?

A: Good idea! Use the dynamic list tool to do that.

#### Q: Can I screen both Relevance AND Importance?

A: Reconsider and simplify to use one or the other!

A: or, Use Lighthouse Studio and see the R appendix

A: or, [experimental] Anchored MaxDiff + Relevant Items



# **MOST IMPORTANT POINT**

Pre-test, pre-test, pre-test! Live.

It is difficult to get the wording right. It is easy to make mistakes with lists.

## Oh, BTW

#### Follow us at the Quant UX Association!

- Virtual & affordable conference in November
- Classes year round in various locations & online



Visit **quantuxa.org** and join the mailing list

# Review & Comparison

| When Respondents                                    | Try                                                                                                                                         |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| understand every concept                            | Standard MaxDiff                                                                                                                            |
| don't understand one or two concepts                | any MaxDiff approach + "Information Acceleration"                                                                                           |
| shouldn't rate concepts that don't apply to them    | Relevant Items MaxDiff ["relevance" approach]                                                                                               |
| need a shorter survey; item list is too long        | Sparse MaxDiff [limited individual estimates] Express MaxDiff [limited individual estimates] Relevant Items MaxDiff ["importance" approach] |
| are identifying the top items from a very long list | Bandit MaxDiff                                                                                                                              |
| get tired of reporting about items at "the bottom"  | Relevant Items MaxDiff ["importance" approach]                                                                                              |

### Conclusions for Relevant Items MaxDiff

- Higher quality data: Respondents see items that are relevant to them
- More data: 2.0 3.5x as many implicit choice tasks in our tests
- Happier respondents
  - MaxDiff items are more relevant
  - Shorter surveys because respondents consider fewer items
- References: Relevant Items reference for Sawtooth Discover
   Original Technical Whitepaper (Chapman & Bahna; pp. 1-12)

Thank you! <a href="mailto:chris@quantuxa.org">chris@quantuxa.org</a> | <a href="mailto:quantuxa.org">quantuxa.org</a>



# Tabled & miscellaneous

## Constructed + Augmented MaxDiff



# Results: With & Without Augmentation

**Before Augmentation** 

After Augmentation



20

### Estimates with/without data augmentation

- Modest adjustments to utilities
- Pearson's r = 0.90
   between augmented
   and non-augmented
   utilities in one study
- Interesting that utilities became more compressed



## Design Risks

Initial rating for entire list of items, used to construct MaxDiff list

**Risk**: Difficult to answer long list of "what's relevant"

Solution: Break into chunks; ask a subset at a time; aggregate

Could chunk within a page (as shown), or several pages.

Construction of the MaxDiff list

**Risk**: Items might be never selected ⇒ degenerate model

Solution: Add 1-3 random items to the constructed list

We used: 12 "relevant and important to me" +

1 "not relevant to me" + 2 "not important"

⇒ MaxDiff design with 15 items on constructed list



### Open Topics

If respondents select the items to rate, what does "population" mean?
 Carefully consider what "best" and "worst" mean to you.

 Want: share of preference among overall population? ⇒ don't construct
 ... or: share of preference among relevant subset? ⇒ construct

- Appropriate number of items -- if any -- to include randomly to ensure coverage
  We decided on 1 "not relevant" and 2 "not important", but that is a guess.
  Idea: Select tasks that omit those items, re-estimate, look at model stability.
- The best way to express the "Relevant to you?" and "Important to you?" ratings This needs careful pre-testing for appropriate wording of the task.

### **Appendix: R Code**

Not required for *relevant* **OR** *important* ... but may be used for simultaneous implementation of *relevant* **AND** *important* 

Alternatively might try Relevant Items + Anchored MaxDiff

Referenced functions available at <a href="mailto:goo.gl/oK78kw">goo.gl/oK78kw</a>

### Features of the R Code

**Data sources**: Sawtooth Software (CHO file)

⇒ Common format

Qualtrics (CSV file)

⇒ Common format

Given the common data format:

**Estimation**: Aggregate logit (using mlogit)

Hierarchical Bayes (using ChoiceModelR)

Augmentation: Optionally augment data for "not important" implicit choices

**Plotting**: Plot routines for aggregate logit + upper- & lower-level HB

### Example R Code: Complete Example

```
> md.define.saw <- list(</pre>
                                                       # define the study, e.g.:
                                                  # K items on list
   md.item.k
                     = 33.
   md.item.tasks = 10,
                                                  # num tasks (*more omitted)
...* )
> test.read <- read.md.cho(md.define.saw)</pre>
                                                      # convert CHO file
> md.define.saw$md.block <- test.read$md.block # save the data
> test.aug <- md.augment(md.define.saw)</pre>
                                                       # augment the choices
> md.define.saw$md.block <- test.aug$md.block</pre>
                                                       # update data
> test.hb <- md.hb(md.define.saw, mcmc.iters=50000) # HB estimation
> md.define.saw$md.hb.betas.zc <- test.hb$md.hb.betas.zc # get ZC diffs
> plot.md.range(md.define.saw, item.disguise=TRUE)  # plot upper-level ests
> plot.md.indiv(md.define.saw, item.disguise=TRUE) + # plot lower-level ests
    theme minimal()
                                                       # plots = gaplot2 objects
```

## Example R Code, Part 0: Define the Study

```
> md.define.saw <- list(
    md.item.k = 33,
    md.item.tasks = 10,
...)</pre>
```

```
# define the study, e.g.:
# K items on list
# num of tasks
```

### Example R Code, Part 1: Data

## Example R Code, Part 2: Augmentation

```
> md.define.saw$md.block <- test.read$md.block # save the data
> test.aug <- md.augment(md.define.saw)</pre>
                                                     # augment the choices
Reading full data set to get augmentation variables.
Importants: 493 494 495 496 497 498 499 ...
Unimportants: 592 593 594 595 596 597 ...
Augmenting choices per 'adaptive' method.
Rows before adding: 40700
Augmenting adaptive data for respondent:
   augmenting: 29 16 25 20 23 9 22 12 5 27 6 11 10 4 26 1 15 2 14 24 31 7 30
13 18 19 3 8 28 21 32 %*% 33 17 ...
Rows after augmenting data: 148660
                                                     # <== 3X data, 1x cost!
> md.define.saw$md.block <- test.aug$md.block</pre>
                                                     # update data with new choices
```

### Example R Code, Part 3: HB

> md.define.saw\$md.hb.betas.zc <- test.hb\$md.hb.betas.zc # zero-centered diffs

## Example R Code: Plots

# lower-level



