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An Overview and Comparison of Design Strategies 
for Choice-Based Conjoint Analysis

Keith Chrzan, Maritz Marketing Research
Bryan Orme, Sawtooth Software

There are several different approaches to designing choice-based conjoint experiments
and several kinds of effects one might want to model and quantify in such experiments.
The approaches differ in terms of which effects they can capture and in how efficiently
they do so.  No single design approach is clearly superior in all circumstances.  

This paper describes different kinds of design formats (full profile, partial profile), and
different methods for making designs (manual, computer optimization, computer
randomization) for choice-based conjoint designs.  Over and above the plain vanilla
generic main effects most commonly modeled in conjoint analysis, there are several types
of “special effects” that can be included in choice-based models.  The various ways of
constructing choice-based designs are compared in terms of their ability to capture these
effects.  Using simulations and artificial data sets we also assess the statistical efficiency
of the various design methods.  

Background

In traditional conjoint analysis (see Figure 1), experimentally controlled combinations of
attribute levels called profiles are presented to respondents for evaluation (ratings or
rankings).  In a multiple regression analysis these evaluations then become the dependent
variables predicted as a function of the experimental design variables manifested in the
profiles.  
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In 1983, however, Louviere and Woodworth extended conjoint analysis thinking to
choice evaluations and multinomial logit analysis.  In the choice-based world,
respondents choose among sets of experimentally controlled sets of profiles and these
choices are modeled via multinomial logit as a function of the experimental design
variables.  

As you might guess, the greater complexity of the experiment allows the researcher to
think about designing and estimating many more interesting effects than the simple main
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Figure 1 - Traditional Ratings-Based Conjoint
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Figure 2 - Choice-Based Conjoint Experiment
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effects and occasional interaction effects of traditional conjoint analysis (Louviere 1988,
Anderson and Wiley 1992, Lazari and Anderson 1994).  

In addition to focusing on the novel effects choice-based analysis allowed, other topics
became important for choice-based analysis.  Design efficiency became a topic of
research because the efficiency of experimental designs for multinomial logit was not as
straightforward as that for traditional linear models and their designs (Kuhfeld et al.
1994, Bunch et al. 1994, Huber and Zwerina 1995).  Finally, still other researchers
sought ways to make choice-based experiments easier for researchers to design
(Sawtooth Software 1999) or for respondents to complete (Chrzan and Elrod 1995).

Characterizing Experimental Designs

Stimulus Format
In choice-based experiments, stimuli can be either full profile (FP) or partial profile (PP).
Full profile experiments are those that display a level from every attribute in the study in
every product profile.  Partial profile experiments use profiles that specify a level for only
a subset (usually 5 or fewer) of the attributes under study.  Full and partial profile stimuli
for a 10 attribute vacuum cleaner study might look like this:

Generating Choice-Based Experiments
Three broad categories of experimental design methods for choice models are a) manual,
b) computer optimized, and c) computer randomized.

Manual
Strategies for creating full profile designs start with traditional fractional factorial design
plans.  Consider a four-attribute conjoint study with three levels each, commonly written
as a 34 experiment.  (Note that this notation reflects how many possible profiles can be
constructed: 34 = 81 profiles, representing the full factorial.)  The figure below shows a 9
run experimental design from the Addelman (1962) catalog for a 34 design, and how it

Figure 3 - Full vs Partial Profile Stimuli
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would be turned into 9 profiles in a traditional full profile ratings or rankings based
conjoint experiment.  In this design plan, each column represents an attribute whose three
levels are uncorrelated (orthogonal) with respect to each other.  In a traditional conjoint
experiment, each row would specify a single profile.  

Traditional fractional factorial designs were designed for creating sets of single profiles,
so they need to be adapted if they are to be used to generate sets of choice sets.  The
original (Louviere and Woodworth 1983) methods are no longer in widespread use but
there are three adaptations of fractional factorial designs that are.

The simplest of these comes from Bunch et al. (1994) and is called “shifting.”  Here’s
how shifting would work for an experiment with four attributes each at three levels:

1. Produce the 9 run experimental design shown above.  These runs define the first
profile in each of 9 choice sets.

2. Next to the four columns of the experimental design add four more columns;
column 5 is just column 1 shifted so that column 1’s 1 becomes a 2 in column 5, 2
becomes 3 and 3 becomes (wraps around to) 1.  The numbers in column 5 are just
the numbers in column 1 “shifted” by 1 place to the right (and wrapped around in

Figure 4

34 Addelman Design for Profiles

Profile       V1       V2       V3       V4
1 1 1 1 1
2 1 2 2 3
3 1 3 3 2
4 2 1 2 2
5 2 2 3 1
6 2 3 1 3
7 3 1 3 3
8 3 2 1 2
9 3 3 2 1

For V1, let 1=Hoover, 2=Eureka, 3=Panasonic, and so on

Figure 5

34 Shifted Design

            Profile 1                                        Profile 2                                        Profile 3                            
Set       V1       V2       V3       V4             V1       V2       V3       V4             V1       V2       V3       V4
1 1 1 1 1 2 2 2 2 3 3 3 3
2 1 2 2 3 2 3 3 1 3 1 1 2
3 1 3 3 2 2 1 1 3 3 2 2 1
4 2 1 2 2 3 2 3 3 1 3 1 1
5 2 2 3 1 3 3 1 2 1 1 2 3
6 2 3 1 3 3 1 2 1 1 2 3 2
7 3 1 3 3 1 2 1 1 2 3 2 2
8 3 2 1 2 1 3 2 3 2 1 3 1
9 3 3 2 1 1 1 3 2 2 2 1 3
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the case of 3).  Likewise columns 6, 7 and 8 are just shifts of columns 2, 3 and 4.
3. The four columns 5-8 become the second profile in each of the 9 choice sets.  Note

that the four rows just created are still uncorrelated with one another and that the
value for each cell in each row differs from that of the counterpart column from
which it was shifted (none of the levels “overlap”)

4. Repeat step 2, shifting from the values in columns 5-8 to create four new columns
9-12 that become the third profile in each of the 9 choice sets.

5. Replace the level numbers with prose and you have a shifted choice-based conjoint
experimental design.

Shifted designs are simple to construct but very limited in terms of what special effects
they can capture (described later).

A second way of using fractional factorial designs is a “mix and match” approach
described in Louviere (1988).  A few more steps are involved.  For the 34 experiment, for
example:  

1. Use 4 columns from the Addelman design to create a set of 9 profiles.  Place those
in Pile A.

2. Use those 4 columns again, only this time switch the 3’s to 1’s in one (or more) of
the columns and the 1’s to 3s, etc., so that the 9 rows are not the same as in step 1.
Create these 9 profiles and place them in Pile B.

3. Repeat step 2 to create a third unique set of profiles and a new Pile C.
4. Shuffle each of the three piles separately.
5. Choose one profile from each pile; these become choice set 1.
6. Repeat, choosing without replacement until all the profiles are used up and 9

choice sets have been created.  
7. A freebie:  you could have set aside the attribute “Brand” and not included it in the

profiles.  In step 4 you could label each profile in Pile A “Brand A,” each profile in
Pile B “Brand B” and so on.  The Brand attribute is uncorrelated with any other
attribute and is a lucky side benefit of having constructed your design in this way.
This freebie also allows designs to support estimation of alternative specific effects
described below.  

A very general and powerful way to use fractional factorial designs is called the LMN

strategy (Louviere 1988).  One can use an LMN design when one wants a design wherein
choice sets each contain N profiles of M attributes of L levels each.  For our small
example, let’s have N=3, M=4 and L=3 (still the small 34 experiment with 4 attributes of
3 levels each).  This approach requires a fractional factorial design with N x M columns
of L level variables.  It turns out that for such an experiment the smallest design has 27
rows (Addelman 1962).  Taking 12 of the columns from the Addelman design and
placing them three in groups of four each is the hardest part of the design:  
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The LMN design now requires just one step, because all three profiles come directly from
each row of the fractional factorial design:  The first 4 columns become the 4 attributes in
profile 1, columns 5-8 describe profile 2 and columns 9-12 describe profile 3.  No
shifting or mix and match are necessary.  

The larger 27 choice set design in this example is typical of LMN designs.  This cost buys
the benefit of being able to support “mother logit” analysis of cross effect designs
described below (caution:  this is true only if each choice set includes a “none” or “other”
response). 

For manual generation of partial profile stimuli a design recipe can be used.  Design
recipes for profiles with 3 or 5 attributes appear in the Appendix of a 1999 Sawtooth
Software Conference paper (Chrzan 1999).  A new design recipe for partial profiles with
just two attributes, and suitable for telephone survey administration is available upon
request.  

Randomized Designs 
Randomized designs are used in Sawtooth Software’s CBC product.  A random design
reflects the fact that respondents are randomly selected to receive different versions of the
choice sets.  Those choice sets are created in carefully specified ways.  CBC allows the
user to select one of four methods of design generation:

1. In Complete Enumeration, profiles are nearly as orthogonal as possible within
respondents, and each two-way frequency of level combinations between attributes
is equally balanced.  Within choice sets, attribute levels are duplicated as little as
possible (a property called “minimal overlap”), and in this sense this strategy
resembles the shifting strategy described earlier.

2. In Shortcut, profiles for each respondent are constructed using the least often
previously used attribute levels for that respondent, subject again to minimal
overlap.  Each one-way level frequency within attributes is balanced.

Figure 6

312 LMN  Design

                  Profile 1                    Profile 2                    Profile 3
Set
1 1 2 1 3 2 2 3 1 1 3 3 2
2 3 2 3 1 3 1 3 1 2 3 1 2
3 1 2 3 3 2 3 2 2 2 1 2 3
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
. . . . . . . . . . . . .
27 3 3 2 1 3 2 1 2 1 1 3 3
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3. The Random option uses profiles sampled (randomly, with replacement) from the
universe of possible profiles and placed into choice sets.  Overlap can and does
occur, though no two profiles are permitted within a choice set that are identical on
all attributes.

4. Finally, the Balanced Overlap approach is a compromise between Complete
Enumeration and Random – it has more overlap than the former and less than the
latter.

Please see the CBC documentation for a description of these different kinds of
randomized designs (Sawtooth Software 1999).  Depending on the extent of overlap,
these types of randomized designs are differently able to measure special effects and
differently efficient at measuring main effects.  It turns out that designs with little or no
level overlap within choice sets are good at measuring main effects, while designs with a
lot of overlap are good at measuring higher-order effects.

Computer Optimization
Kuhfeld et al. (1994) discuss how to use computer search algorithms in SAS/QC to
assess thousands or millions of potential designs and then pick the most efficient.  The
authors find substantial efficiency improvements even in traditional conjoint analysis
when those designs are asymmetric (when they have different numbers of levels).
Computer optimization enables the researcher to model attributes with large numbers of
levels or complex special effects.  Huber and Zwerina (1996) add the criterion of utility
balance to further improve computer optimization of designs.  New SAS macros have
been added specifically for generating efficient choice experiment designs (Kuhfeld,
2000).   Please refer to these papers for further details.

SPSSTM Trial Run can be used to generate computer optimized designs (SPSS 1997) as
can Sawtooth Software’s CVA (Kuhfeld 1997).  Their design strategies are usually
suitable for traditional (one profile at a time) conjoint designs, but their capabilities are
limited when it comes to designing choice experiments. 

Types of Effects

Before comparing these design strategies, the various types of effects on which they are
evaluated require explication.

Generic, plain vanilla, main effects
The basic kind of effect in all types of conjoint studies is the utility of each level of each
attribute.  Designs that produce only main effects are, not coincidentally, called main
effects designs.  Each main effect measures the utility of that level, holding everything
else constant (at the average combination of other levels used in the study).  Traditional
conjoint analysis typically produces only main effects.

Interactions
Interactions occur when the combined effect of two attributes is different from the sum of
their two main effect utilities.  For example, being stranded on a deserted island is pretty
bad, say it has a utility of -40.  Attending a party hosted by cannibals is also a bad thing,
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say with a utility of -50.  But, attending a party hosted by cannibals on a deserted island
could be altogether worse, in grisly sorts of ways (utility -250).  Or again, being naked is
a modestly good thing (+3) and speaking at the Sawtooth Software Conference is a +10,
but speaking naked at the Sawtooth Software Conference is a -37.

Alternative specific effects
When not all of the alternatives (say brands or technologies) in a choice experiment share
exactly the same attributes or levels, the non-shared effects are said to be alternative
specific.  In the simplest case brands may have different levels, so that brands might
range in price between $500 and $1,500, say, while generics range from $300 to $700.
But, the more complex case may include alternatives having different levels and even
different numbers of levels for an attribute.

The other kind of alternative specific effect allows different alternatives to have different
attributes altogether.  For example, I can walk to work, drive, or ride the train.  All three
alternatives have transit time as an alternative.  Driving myself has gas cost and parking
fees as attributes not shared with the other alternatives.  Similarly, taking the train
involves a wait time and a ticket fare as unique attributes.  Driving, walking and taking
the train have some attributes in common and some not.  The attributes not shared by all
three are alternative specific.  The advantage of alternative specific effects is that they
obviously allow modeling of a much wider range of choice situations than traditional
conjoint analysis which requires all profiles to share the same attributes and levels.  

Cross-effects
A vendor sells Coke, Sprite, and Miller Beer in 5:3:2 proportion.  What happens if Pepsi
becomes available and takes 10 share points?  According to the simple logit choice rule,
it will draw proportionally from each other alternative, taking 5 points from Coke, 3 from
Sprite and 2 from Miller.  Common sense, however, says that Pepsi is likely to take more
share from Coke and very little indeed from Miller.  But the multinomial logit model will
not allow this unless you trick it, and the trick is to include what are called cross effects.
A cross effect in this example would be a part worth utility that penalizes Coke, Sprite
and Miller differently when Pepsi is present, so that Pepsi draws proportionally more
share (say 8 points) from Coke, and proportionally less (say 2 and 0 points respectively)
from Sprite and Miller.  These cross effects are also called availability effects.

Cross effects can be used to permit asymmetric share draws from other attributes besides
brand.  In a study of personal computers, for example, one might expect asymmetric
share draws to affect PC brand, price, microprocessor speed, etc.

Comparisons of Design Strategies

Two comparisons of the above design strategies involve identifying which of the above
special effects each design strategy can accommodate and quantifying the statistical
efficiency of the various design strategies under different conditions.



9

The capabilities of the various design strategies are compared in Exhibit 1, where an “X”
incidates that that design strategy may be used under various conditions or to estimate
certain effects.  

We assessed the efficiency of the various design strategies via a series of simulation
studies.  For each, we created data sets whose respondents (n=300) had mean zero vectors
of utilities (random responses).  We tested the efficiency of alternative manual, computer
optimization and computer randomization (CBC software) design methods in estimating
the several types of effects.  We estimated parameters using CBC and LOGIT (Steinberg
and Colla 1998) software.

Design Method
Partial

                                                            Full Profile                                                                                     Profile
FF CBC CBC

FF Mix FF Complete CBC CBC Balanced Computer
Effects                       Shift     &Match      LMN      Enum.          Shortcut      Random      Overlap       Optimiz.     Recipe/CBC

Main Effects only X X X X X X X X X

Interactions X X X X X X X ?

Prohibitions X X X X X ?

Alternative
Specific Effects X X X X X ?

Cross Effects X X X

Many attributes X

Telephone
administration X

Exhibit 1 - Comparison of Capabilities



Exhibit 2 - Comparison of Relative Efficiencies
Design Method

CBC CBC
FF FF Mix FF Complete CBC CBC Balanced Computer

Effects                                           Shift    &Match    LMN     Enum.       Shortcut    Random    Overlap     Optimiz.    Recipe

Main effect FP, symmetric 1 100% ni ni 100% 100% 68% 86% 100% na
Main effect FP, asymmetric 2 99% ni ni 100% 100% 76% 92% 98% na
Generic partial profile 3 na na na na 100% 66% na ni 95%
FP, few interactions 4 ne 90% ni 94% 94% 90% 97% 100% na
FP, many interactions 5 ne 81% ni 80% 80% 86% 88% 100% na
FP, prohibitions 6 ni ni ni 100% 67% 90% 93% 96% na
FP, alternative-specific effects 7 100% ni 100% na 100% 85% na ni na
FP, cross-effects 8  ne  ne 74% ne  ne 100% ne ni na

1 34, 18 choice sets in fixed designs, 18 choice sets per respondent, triples
2 5 x 4 x 3 x 2, 25 choice sets in fixed designs, 25 choice sets per respondent, triples
3 310, 60 choice sets in fixed designs, 10 choice sets per respondent, triples
4 34, 8 interactions, 81 choice sets in fixed designs, 27 choice sets per respondent, triples
5 34, 16 interactions, 81 choice sets in fixed designs, 27 choice sets per respondent, triples
6 34, 4 prohibitions, 18 choice sets in fixed designs, 18 choice sets per respondent, triples
7 34 common effects, A: 33 B: 32 C: 31 alternative specific effects, 27 choice sets in fixed designs, 27 choice sets per
respondent, triples
8 34, 36 cross effects,  27 choice sets in fixed designs, 27 choice sets per respondent, triples
ne = effects not estimable
na = design strategy not available or not applicable
ni = not investigated
10

Efficiency is a measure of the information content a design can capture.  Efficiencies are
typically stated in relative terms, as in “design A is 80% as efficient as design B.”  In
practical terms this means you will need 25% more (the reciprocal of 80%) design A
observations (respondents, choice sets per respondent or a combination of both) to get the 

same standard errors and significances as with the more efficient design B.  We used a
measure of efficiency called D-Efficiency (Kuhfeld et al. 1994).  The procedure for
computing the precision of a design and D-efficiency using CBC and SPSS software is
explained in the appendix.  

The relative efficiencies of the different design strategies appear in Exhibit 2.  We have
scaled the results for each row relative to the best design investigated being 100%
efficient.  Many of the designs were inestimable because they were inappropriate for the
kind of effects included in the design and these are coded ne (not estimable).  Other
designs simply cannot be constructed by the method shown in the column – these are na.
Finally, some results we did not investigate (ni) for reasons noted below.

For main effects estimation, minimal overlap within choice sets is ideal.  For this reason
strategies like fractional factorial shifting, work best.  

When designs are symmetric, the orthogonal catalog-based designs with a shifting
strategy (where each level is available once per choice set) produce optimal designs with



11

respect to main effects, as do CBC Complete Enumeration, CBC Shortcut and SAS and
CVA optimization. Other fractional factorial methods we did not investigate because they
would be inferior in principle to shifting.  With asymmetric designs, however, CBC’s
strategies (Complete Enumeration and Shortcut) can be slightly more efficient.  This
finding was shown even more convincingly than our particular example in a 1999
Sawtooth Software Conference paper (Mulhern 1999). 

For partial profile designs, only four methods are available and one, SAS optimization,
we found difficult to program.  Of the three remaining, CBC Shortcut performed best,
followed closely by the recipe approach and distantly by CBC Random.  This confirms
earlier findings (Chrzan 1998).

For situations requiring interactions, computer optimization via SAS produces the most
efficient designs.  Balanced Overlap is the best of the CBC strategies.  Interactions can be
inestimable when shifting fractional factorial designs and the LMN approach should be
about as efficient as the fractional factorial mix and match approach.  A practical
advantage of using CBC for interactions designs is that the analyst need not accurately
predict which interactions will be needed, as in SAS.  

The most efficient designs for alternative-specific attributes are CBC Shortcut and a
fractional factorial approach that uses shifting for shared attributes and LMN for
alternative-specific attributes.  Computer optimization using SAS is possible, but we
found it difficult to program.  

Especially interesting was how poorly the fractional factorial LMN design fared relative to
CBC random for estimating a cross-effects design – only 74% as efficient.  It is worth
noting that the cross-effect design had only 27 total choice sets.  Assigning respondents
randomly to designs selected in a random manner with replacement results in a very large
pool of different profiles and ways those profiles can be assembled in sets.  In the limit, it
is a full factorial design, both with respect to profiles and the ways they can be combined
(without duplication) into sets.  When sample size is sufficient (our example used 300
respondents), the naïve way of composing designs in this situation wins out, which may
come as a surprise to those who regularly design studies specifically to model cross
effects.  Again, optimization with SAS is possible, but requires a steep learning curve.  

Interesting, too, was how well CBC’s random designs fared almost across the board – for
all but the “many” interactions designs, one or more of the four CBC strategies is either
optimal or near optimal.

If the researcher wants to prohibit combinations of levels from appearing together within
profiles, it is very difficult to do with catalog designs.  One simple but arbitrary approach
has been to discard or alter choice sets that violate prohibitions.  Randomized designs can
do this automatically and in a more intelligent way, and as long as the prohibitions are
modest, the resulting design is often quite good.  In our study CBC Complete
Enumeration and computer optimization gave the most efficient prohibitions designs.
(However, we’ve seen other cases in which the Shortcut strategy performed better than
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Complete Enumeration for CBC, so we caution the reader that these findings may not
generalize to all prohibitions designs.)

Interestingly, some prohibitions can actually improve design efficiency, as we will now
demonstrate.

Level Prohibitions and Design Efficiency

Sometimes the analyst or the client wishes to prohibit some attribute levels from
combining with others when constructing product alternatives.  Prohibiting certain
attribute combinations (“prohibitions”) leads to level imbalance and dependencies in the
design, which popular wisdom holds should decrease design efficiency.

For example, consider a four-attribute choice study on personal computers, each with
three levels (34 design).  Further assume that we prohibit certain combinations between
two attributes: Processor Speed and RAM.  Each attribute has three levels, and we can
characterize a particular pattern of level prohibitions between Processor Speed and RAM
using the following two-way frequency grid:

32 Meg
RAM

64 Meg
RAM

128 Meg
RAM

200
MHZ
300

MHZ
400

MHZ X X

In this example, of the nine possible combinations of Processor Speed and RAM, two
(the cells containing an “X”) are prohibited.  Three-hundred respondents are simulated
assuming part worths of  0.  Error with a standard deviation of unity is added to the utility
of alternatives (3 per task for 18 tasks) prior to simulating choices.  The design
efficiencies reported below are with respect to main effects only and are indexed with
respect to the orthogonal design with no prohibitions:

Complete Enumeration 64.50%
Shortcut 43.10%
Random 57.81%
Balanced Overlap 59.81%
Optimized Search 61.82%

Note that we haven’t included an efficiency figure for orthogonal catalog plans.  For
main effect estimation, orthogonal designs often are not possible in the case of
prohibitions.  In practice, using optimized search routines is usually the more feasible
approach.
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We see from this table that the best design efficiency (Complete Enumeration) is only
64.50% as efficient as the design without prohibitions.  Prohibitions in this example have
lead to a 35.5% decrease in efficiency. 

We caution about drawing detailed conclusions from this example, as the pattern and
severity of the prohibitions chosen will dramatically alter the results.  However, the main
points to be made are:

• Prohibitions can have a negative effect upon design efficiency.  (In some cases,
severe prohibitions can result in inability to measure even main effects.)

• Some design strategies in CBC are better able to handle particular patterns of
prohibitions than others.  (We suggest testing each strategy through design
simulations.)

• Computer search routines can accommodate prohibitions.  Orthogonal plans are much
more difficult to manage for prohibitions.

Now that we have provided what at the surface may seem to be a convincing argument
that prohibitions are damaging, we’ll demonstrate that they are not always detrimental.
In fact, prohibitions in some situations can actually improve design efficiency.  The prior
example assumed no particular pattern of utilities.  Under that assumption, prohibitions
are by definition harmful to design efficiency.  But in real-world examples, respondents
have preferences.

At this point, we should mention another factor that impacts design efficiency: utility
balance.  Utility balance characterizes the degree to which alternatives in a choice set are
similar in preference.  Severe imbalance leads to obvious choices that are less valuable
for refining utility estimates.  Huber and Zwerina (1996) showed that by customizing the
designs for each respondent to eliminate choice tasks that had a high degree of
imbalance, they were able to generate designs that were about 10-50% more efficient
than an unconstrained approach.

Let’s again consider the previous example with Processor Speed and RAM.  Lets assume
that respondents have the following part worth utilities for these levels: 

200 MHZ -1.0 32 Meg RAM -1.0
400 MHZ 0.0 64 Meg RAM 0.0
500 MHZ 1.0 128 Meg RAM 1.0

The combinations of levels most likely to lead to utility imbalance are 200 MHZ with 32
Meg RAM (-1.0 + -1.0 = -2.0) and 500 MHZ with 128 Meg RAM (1.0 + 1.0 = 2.0).  If
we prohibit those combinations, the frequency grid (with utilities in parentheses) would
look like:
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32 Meg
RAM
(-1.0)

64 Meg
RAM
(0.0)

128 Meg
RAM
(+1.0)

200
MHZ
(-1.0)

X
(-2.0) (-1.0) (0.0)

300
MHZ
(0.0) (-1.0) (0.0) (1.0)
400

MHZ
(+1.0) (0.0) (1.0)

X
(2.0)

If we assume no pattern of preferences (part worths of zero for all levels), such a
prohibition would lead to a 13% decrease in design efficiency with respect to main-
effects estimation, relative to the orthogonal design with no prohibitions.  But, if we
assume part worth utilities of 1, 0, -1, the pattern of prohibitions above leads to a 22%
gain in efficiency relative to the orthogonal design with no prohibitions.  Note that this
strategy (prohibiting certain combinations for all respondents) works well if the attributes
have a rational a priori preference order, such as is the case for Processor Speed and
RAM.  Otherwise, a more complex, customized design strategy might be developed for
each respondent, as illustrated by Huber and Zwerina.

Often, prohibitions are dictated by the client.  With respect to Processor Speed and RAM,
it is more likely that the client would state that it is highly unlikely that a 200 MHZ
processor would be offered with 128 Meg RAM, or that a 400 MHZ processor would be
offered with 32 Meg RAM.  Let’s examine those prohibitions:

32 Meg
RAM
(-1.0)

64 Meg
RAM
(0.0)

128 Meg
RAM
(+1.0)

200
MHZ
(-1.0) (-2.0) (-1.0)

X
(0.0)

300
MHZ
(0.0) (-1.0) (0.0) (1.0)
400

MHZ
(+1.0)

X
(0.0) (1.0) (2.0)

Note that these prohibitions have discarded the combinations with the best utility balance
and retained those combinations leading to the least utility balance.  The net loss in
design efficiency for this combination of prohibitions relative to the orthogonal design
with no prohibitions is –34%.

The main points to be made are:
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• For attributes with a priori preference order, prohibitions that lead to utility balance
can enhance the efficiency of main-effect estimation. 

• The prohibitions that clients often suggest (to make product alternatives more
realistic) can be very detrimental to design efficiency.

We should note that the utility-balancing strategies above for prohibitions probably
should not be implemented for price attributes.  A conditional pricing strategy can lead to
improved utility balance without specifying any prohibitions.  The equivalent of having
alternative-specific prices, conditional pricing, in CBC involves the use of a “look-up”
table. Price levels are defined in terms of percentage deviations from an average price.  If
a premium product alternative is displayed in a task, the look-up function references a
correspondingly higher price range relative to average or discount product alternatives.
We won’t take time in this paper to elaborate on this technique, as the details are
available in Sawtooth Software’s CBC manual.

Conclusion

There are several different approaches to designing choice-based conjoint experiments
and several kinds of effects one might want to model and quantify in such experiments.
The approaches differ in terms of which effects they can capture and in how efficiently
they do so.  No one design approach is clearly superior in all circumstances, but the
capabilities comparison and the efficiency comparisons give the practitioner a good idea
of when to use which type of design.  

Researchers with good data processing skills and access to software such as CBC and
SPSS can simulate respondent data and compute design efficiency prior to actual data
collection.  We recommend that reasonable a priori utilities be used when simulating
respondent answers, and that a variety of design strategies be tested.  The simulation
results we report here can serve as a guide for choosing candidate design strategies.
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Appendix

Computing D-Efficiency using CBC and SPSSTM Software

1) Compute a set of logit utilities using CBC software.  Under the advanced settings,
make sure to specify that you want the report to include the covariance matrix. 

2) Use SPSS software to compute the relative precision of the design.  An example of
SPSS matrix command language to do this follows, for a small covariance matrix for
4 estimated parameters.  Paste the covariance matrix from the logit report into the
syntax between the brackets, and add the appropriate commas and semicolons.

MATRIX.
COMPUTE covm={
  0.000246914 , -0.000123457 , -0.000000000 , -0.000000000 ;
 -0.000123457 ,  0.000246914 , -0.000000000 , -0.000000000 ; 
 -0.000000000 , -0.000000000 ,  0.000246914 , -0.000123457 ; 
 -0.000000000 , -0.000000000 , -0.000123457 ,  0.000246914 
}.
COMPUTE fpeff=DET(covm).
COMPUTE deffic=fpeff**(-1/4).
PRINT deffic.
END MATRIX.

Note that this procedure reads the covariance matrix into a matrix variable called “covm”.
The determinant of that matrix is saved to a variable called “fpeff.” The precision of the
design is computed as fpeff raised to the -1/4 power (the negative of the reciprocal of the
number of rows in the covariance matrix).  In another example with 24 estimated
parameters, the inverse of the covariance matrix should be raised to the -1/24 power.  The
precision is printed.

The resulting output is as follows:

Run MATRIX procedure:

DEFFIC
   4676.529230

----- END MATRIX -----

This needs to be done for two designs, a test design and a reference design.  The ratio of
the precision of the test design to that of the reference design is the relative D-efficiency
of the test design (Bunch et al. 1994).
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