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FOREWORD 

These proceedings are a written report of the twentieth Sawtooth Software Conference, held 

in Orlando, Florida, March 7-9, 2018. One-hundred seventy attendees participated.  This 

conference has quite a long history, with the first Sawtooth Software Conference held over 30 

years ago in 1987. 

The focus of the Sawtooth Software Conference continues to be quantitative methods in 

marketing research. The authors were charged with delivering presentations of value to both the 

most sophisticated and least sophisticated attendees. Topics included choice/conjoint analysis, 

MaxDiff, optimization searches for optimal product lines, key drivers analysis, and market 

segmentation and classification. 

The papers and discussant comments are in the words of the authors and very little 

copyediting was performed. At the end of each of the papers are photographs of the authors and 

co-authors.  

We are grateful to these authors for continuing to make this conference such a valuable event. 

We feel that the Sawtooth Software conference fulfills a multi-part mission: 

a) It advances our collective knowledge and skills, 

b) Independent authors regularly challenge the existing assumptions, research methods, and 

our software, 

c) It provides an opportunity for the group to renew friendships and network. 

We are also especially grateful to the efforts of our steering committee who for many years 

now have helped this conference be such a success: Christopher Chapman, Keith Chrzan, Elea 

Feit, Joel Huber, and David Lyon. 
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SUMMARY OF FINDINGS 

The twentieth Sawtooth Software Conference was held in Orlando, Florida, March 7-9, 2018. 

The summaries below capture some of the main points of the presentations and provide a quick 

overview of the articles available within the 2018 Sawtooth Software Conference Proceedings. 

* Constructed, Augmented MaxDiff (Eric Bahna and Chris Chapman, Google Cloud): The 

authors described how they have used multiple MaxDiff surveys to assess customer prioritization 

of potential features and usage scenarios at Google Cloud.  However, the surveys have been long 

and involved, asking respondents to evaluate many items that were not relevant to them or that 

were unimportant to them.  The authors created an adaptive MaxDiff survey that first asked 

respondents to mark any items that were irrelevant or unimportant.  The remaining items were 

moved forward to a subsequent MaxDiff exercise (plus a few irrelevant and unimportant items 

were also carried forward, to assist with issues of scaling).  This was made possible in survey 

programming by using the constructed list function in Lighthouse Studio.  Analysis was 

conducted in R.  The data were augmented by adding tasks indicating that the unimportant (and 

dropped) items were less preferred than the relevant and included items for each respondent.  

Eric and Chris found that the data appeared to be of improved quality (because respondents were 

giving more input on the items that they saw as relevant to them) and respondents reported a 

better experience.  They indicated that there are some open questions regarding how much 

augmentation affects the utility results depending on the pattern of screening answers, as well as 

questions regarding the details involved in the composition of the constructed lists. 

* Best Presentation based on audience voting. 

Shapley Values: Easy, Useful and Intuitive (David W. Lyon, Aurora Market Modeling, 

LLC):  Shapley Values are a widely useful way to summarize how much individual items 

contribute to the overall value of combinations of items (e.g., product assortments, feature 

bundles, sets of advertising claims).  Although it often is applied within TURF (Total 

Unduplicated Reach & Frequency) simulations, David explained that Shapley Value is not 

limited to TURF.  It can be applied to regression analysis and many other types of analyses.  

David argued that Shapley Values are easier to think about, easier to present and more 

memorable than the endless lists of combinations reported by TURF.  While clients often ask for 

the one best combination, he believes that their true underlying objective is likely to be an 

understanding or insight into item values or patterns.  One appealing aspect of Shapley Values is 

that they are far more stable than analyses relying on individual combinations or orders.  They 

are far more stable in the face of minor data changes, meaning that changes in results are far 

more likely to be real.  David provided R code and described the challenges and potential 

solutions for dealing with the computational complexity of computing Shapley Values. 

FDA Seeks Patient Preference Information to Enhance Their Benefit-Risk Assessments: 

Case Studies (Leslie Wilson, University of California, San Francisco and Jordan Louviere, 

University of South Australia):  In 2013, the FDA launched the Patient Preference Initiative to 

incorporate patients’ views as scientific, empirical evidence when appropriate. Due to the 

strengths of conjoint analysis (e.g. CBC) to measure respondent preferences, the FDA now 

accepts conjoint analysis (and best-worst analysis) to help in the regulatory approval of medical 

devices. The authors presented a few examples of case studies to help the audience gain insights 

into the growth of patient preference research within the FDA and to gain some appreciation of 
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the nuances of using CBC in this field.  Medical devices often involve potential life-threatening 

risks, and the use of CBC allows researchers to have respondents trade off and thereby quantify 

the amount of risk they are willing to accept to gain often life-saving benefits.  This allows the 

FDA to make appropriate decisions involving risk tradeoffs when approving medical devices that 

can benefit society as a whole. 

A Direct Comparison of Discrete Choice and Allocation Conjoint Methodologies in the 

Healthcare Domain (James Pitcher, Tatiana Koudinova, and Daniel Rosen, GfK): GfK 

commonly uses two distinct methodologies to estimate new product preference shares in the 

healthcare and pharma space: 1) patient-based discrete choice asks physicians to report 

prescribing preferences for specific real world patients, and 2) allocation-based conjoint asks 

physicians to report their prescribing decisions at a practice level (allocation of patients) rather 

than on a per-patient basis. This distinction reflects a trade-off market researchers often make 

when designing a research study: whether to have the research environment closely resemble the 

real world decision environment, or whether a carefully designed, albeit “artificial,” research 

environment elicits more accurate information from respondents.  The authors also tested an 

approach for encouraging physician respondents to provide more realistic answers, by assigning 

the respondents a letter grade after the conjoint exercise depending on the respondents’ internal 

consistency. The authors believed that physicians (who completed many years of schooling) 

would be positively motivated by the consistency grading system.  The authors noted significant 

differences in the predictions from the allocation-based vs. per-patient based questionnaires.  

With the allocation-based format, some respondents treated the allocation as if the values needed 

to sum to 100%, even though it was stressed to them that multi-therapy prescriptions would 

mean values summing to larger than 100%.  With the patient-based approach, the authors felt that 

respondents likely were able to recall more extreme patients which could bias the survey 

responses. 

A Meta-Analysis on Three Distinct Methods Used in Measuring Variability of Utilities 

and Preference Shares within the Hierarchical Bayesian Model (Jacob Nelson, Edward Paul 

Johnson, and Brent Fuller, Research Now–Survey Sampling International): Researchers using 

HB estimates (especially those who use Sawtooth Software tools) often collapse the individual-

level draws and run simulations on the point estimates.  They often use the standard frequentist 

approach to estimate the confidence levels by applying the common formulas for estimating 

standard errors.  Those following the Bayesian tradition have estimated confidence intervals by 

using lower-level draws, upper-level draws, or simulated draws from the upper-level parameters 

(leveraging the means and covariances for the population).  These methods produce different 

results in terms of characterizing uncertainty.  The authors examined three approaches using 50 

conjoint or MaxDiff research projects conducted by Survey Sampling.  For CBC studies, the 

authors found that the point-estimate method understates the uncertainty in most every case 

compared to the other two methods.  The authors computed a ratio between the widths of 95% 

credible and confidence intervals for raw part-worths between methods for CBC data, finding 

that the lower-level posterior distribution’s credible interval is, on average, 2.2 times larger than 

the point estimate’s confidence interval, and the upper level posterior distribution method’s 

credible interval is, on average, 2.9 times larger.  They also demonstrated that the mean share 

predictions from CBC data can be different between the methods.  However, when confidence 

intervals for shares of preference were estimated, the point-estimate method gave closer results 

to the two methods of simulating on the draws.  With the MaxDiff datasets and raw utility 

parameters, the authors found much greater similarity in the estimated confidence intervals 
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among the three tested methods.  However, when the raw parameters were converted to MaxDiff 

shares of preference, the point estimate method of computing uncertainty reported larger 

uncertainty bands than the two Bayesian methods (opposite of what was found for CBC studies). 

Preference-Based Conjoint—Can It Be Used to Model Markets with Many Dozens of 

Products? (Jeroen Hardon, Marco Hooggerbrugge, SKIM Group):  The authors presented two 

conjoint approaches that aim to predict better in situations when one has dozens of products in 

the simulator, but only a few concepts shown per task during the interview.  They called the two 

approaches PBC (Preference-Based Conjoint) and PBC-squared.  Both techniques oversample 

levels that respondents are believed to prefer, so they are adaptive techniques.  Jeroen and Marco 

designed multiple experiments to test their new approaches versus the existing CBC and ACBC 

approaches.  Their findings suggest that both PBC approaches might be an improvement over 

current practices, but indicated that more work is still needed to refine and confirm their 

findings. 

Development of an Adaptive Typing Tool from MaxDiff Response Data (Jay Magidson, 

Statistical Innovations, and John P. Madura, University of Connecticut and Statistical 

Innovations):  The authors demonstrated a new adaptive approach for developing MaxDiff 

typing tools that achieves high accuracy with only 8 binary comparisons (tasks, pairs) in an 8-

segment example.  Reduction to 7 tasks can be achieved if triples are included in the mix. Jay 

and John provided a theoretical framework for further task reduction by applying a hierarchical 

latent class tree (LCT) structure to reduce segment similarity. Preliminary results with and 

without adjustment for scale confounds suggest that the LCT approach not only yields further 

task reduction but also provides more meaningful segments.  The authors also emphasized that a 

direct 1-step approach to developing segments via latent class MNL is preferred over a 2-step 

HB followed by clustering.  

Extending the Ensemble (Curtis Frazier, Ana Yanes, and Michael Patterson, Radius Global 

Market Research): The use of ensembles (multiple solutions) in cluster analysis has been a 

positive development for marketing scientists.  The authors investigated the value of not only 

varying the clustering algorithms used in building the ensemble, but in varying the basis 

variables included as inputs to the clustering routines.  Using synthetic data, they compared the 

relative performance of this approach compared to existing approaches. They found that varying 

the inputs in general did not appear to be significantly better than ensemble methods that vary the 

clustering algorithms and the number of groups in the candidate solutions (except in cases with 

extreme skews in segment sizes).  The authors wondered, however, if there was reason to believe 

that the structure of their synthetic data may have been inhibiting the ability for this approach 

(randomly omitting a subset of basis variables) to shine. 

Synergistic Bandit Choice (SBC) for Choice-Based Conjoint (Bryan Orme, Sawtooth 

Software):  When studying concepts involving strong higher-order interaction effects, Synergistic 

Bandit Choice (SBC) for Choice-Based Conjoint can perform better than standard CBC studies. 

Bryan suggested that SBC is most useful for situations such as developing FMCG concepts 

involving aesthetic packaging (style, color, claims, packaging graphics, brand name, nutritional 

content, etc.) where it is expected that there may be strong and complex higher-order interaction 

effects (among 3+ attributes at a time) that are difficult to measure using traditional CBC design 

strategies. SBC leverages the collective knowledge of previously interviewed respondents, filters 

their choices to focus on the most significant interaction effects, and then oversamples the most 

synergistic feature combinations for evaluation by subsequent respondents.  Bryan showed 
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results for a pilot study that demonstrated the value of the new technique for a conjoint design 

involving very strong high-order interaction effects. 

Optimal Product Design by Sequential Experiments (Mingyu Joo, UC Riverside, Michael 

L. Thompson, Procter & Gamble, Greg M. Allenby, Ohio State University):  Optimal product 

and package design relies on identifying interactions among attributes and their levels. Product 

and package colors, tag lines, styles and visuals are examples of attributes with a “flat” space that 

is difficult to parameterize. Compounding this problem is the interest to identify interactive 

effects among attribute-levels, such as certain color combinations and messaging strategies that 

are thought to increase sales. The authors presented a general framework for identifying these 

high-dimensional interactions in the context of a sequential experiment.  Their proposed design 

criterion differs from traditional experiment design criteria, such as D-optimality, which seeks to 

minimize the variance of all model parameters.  Their design criterion favors product 

configurations with a high likelihood of improving upon the best configuration already tested.  

They demonstrated their model within the context of a package design problem faced by a 

leading consumer packaged goods manufacturer. Through simulation, they found that five rounds 

of a sequential experiment were sufficient for interaction detection. They designed a study and 

applied their model to data in which respondents identify the best package design from a set of 

alternatives. The best package design from their sequential experiment was then compared to 

alternative designs that were deemed best from alternative methodologies in a second study. The 

results from this best-of-class comparison favored their proposed method in comparison to other 

methods used.  

Segmentation Analysis via Non-Negative Matrix Factorization (Michael Patterson, Jackie 

Guthart, and Curtis Frazier, Radius Global Market Research): Non-Negative Matrix 

Factorization (NMF) is a relatively new technique that allows for the simultaneous segmentation 

of individuals and “factoring” of variables. The authors demonstrated that NMF performs very 

well, especially in the case of highly correlated datasets.  An NMF analysis simultaneously takes 

into account the relationship between the segmentation basis variables while also forming the 

segments. That is, items are grouped together in “factors” or latent variables, at the same time 

that individual respondents are grouped together in segments.  In the case of some highly 

correlated datasets that the authors submitted to different segmentation procedures, NMF 

significantly outperformed the other methods. Like any other method, NMF comes with its 

limitations. For one, one is limited to using it only on non-negative datasets. 

Variable Selection for MBC Cross-Price Effects (Katrin Dippold-Tausendpfund and 

Christian Neuerburg, GfK):  In Menu-Based Choice experiments, cross-price effects need to be 

selected carefully to avoid overfitting the models or having simulation results distorted by 

“noisy” parameters. The authors investigated different approaches that support the selection of 

cross-price effects and compared their performance based on synthetic datasets under varying 

data conditions. They found that selection approaches that result in sparse models, e.g., variable 

selection with lasso, do very well under different data settings, especially with respect to the KPI 

measure that quantifies the quality of the resulting pricing decision. But also the Relationship 

Chi-squared test that is statistically less advanced and already implemented in the MBC software 

performs very well if the p-value cut is selected carefully. The authors emphasized that complex 

choice menus require a strict variable selection. 
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Accommodating Multiple Data Pathologies in Conjoint Studies via Clever 

Randomization and Ensembling (Jeffrey P. Dotson, Brigham Young University, Roger A. 

Bailey, The Ohio State University, and Marc R. Dotson, Brigham Young University):  The 

authors described how ensemble-based approaches currently dominate the world of competitive 

out-of-sample prediction. From Kaggle to the Netflix Prize, the predictive power inherent in 

using many models overshadows prediction reliant on the performance of a single model. The 

primary reason ensembles predict so well is that they serve as a hedge against model 

misspecification. Since we have uncertainty about the correct model for any given context, 

running many models and producing a consensus is a simple yet powerful way to improve 

predictions.  The authors demonstrated a simple approach to generating ensembles from a single 

HB-MNL model that improved holdout predictions both for simulated and real conjoint data sets.  

The approach involved looping over each respondent’s HB-MNL utilities and for each iteration 

randomly selecting a subset of attributes for the respondent to ignore (by setting their utilities to 

zero) and a subset of attribute levels for the respondent to screen out (by setting their utilities to 

negative infinity).  Consensus (modal) predictions of holdouts across iterations were calculated 

for each respondent and the predictions were better than predictions from a single traditional 

conjoint analysis model. 

Tools for Dealing with Correlated Alternatives (Kevin Lattery and Jeroen Hardon, SKIM 

Group): Kevin and Jeroen described how IIA (Independence from Irrelevant Alternatives) can be 

problematic for modeling FMCG problems involving many SKUs.  Individual-level estimation 

via HB helps reduce the IIA problems considerably in terms of aggregate simulations, though IIA 

still occurs within the individual-level model.  Kevin and Jeroen compared approaches for 

resolving the IIA issues and improving the patterns of sourcing within logical nests of similar 

SKUs.  The key comparisons they made were among standard HB, nested logit, and a post hoc 

nested simulation approach that is accessible to practitioners since it can be done in Excel when 

constructing a market simulator.  They found the best results for the nested logit approach, 

though it is the least accessible for the typical practitioner.  The other two approaches had many 

good properties.  If using the post hoc nesting approach, they emphasized the need for creating 

nests that are consistent with the correlation structure of preferences evident in the data. 

Predictive Analytics with Revealed Preference/Stated Preference Models (Peter Kurz, 

Kantar TNS, and Stefan Binner, BMS Marketing Research + Strategy): Peter and Stefan 

described two types of data we can employ to make market predictions in FMCG markets: Stated 

Preference (SP) and Revealed Preference (RP) data.  SP models (like CBC surveys) have their 

strength in simulating dynamic markets, whereas RP models (sales, advertising, social research 

data) are usually preferred in static markets. The strength of combining RP-SP in models is that 

ability to add accurate information from the past with the power of dynamic simulations.  The 

authors stated that the application of Time Series Corrections (RP) on Share of Choice 

Simulations (SP) can have a big impact, especially if one derives revenue or profit predictions.  

Compared to the simulation based on the DCM only (share of choice), the authors showed that 

corrections for trend and seasonality (RP) can lead to an improved prediction of revenue and 

profit.  If there are no data or resources for RP-SP models, the authors recommended that one 

should nevertheless consider the possible impact of the point in time the study was conducted.  

Point in time can have a significant impact on the predictions if one ignores time series 

information. 
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The Perils of Ignoring Uncertainty in Market Simulations and Product Line 

Optimization (Scott Ferguson, North Carolina State University): Scott reviewed how conjoint 

analysis data together with market simulators have been useful in the field of industrial 

engineering design.  The data may be applied within optimization choice simulators to formulate 

effective product line strategies.  In this paper, Scott explained how tuning the optimization goal 

to avoid worst-case outcomes (e.g. revenue or profit) can reduce the uncertainty in the real-world 

outcomes.  Specifically, Scott demonstrated how to use the uncertainty captured in lower-level 

HB draws to better explore the range of possible outcomes on the choice simulator’s objective 

function—and to avoid solutions that can lead to especially poor outcomes.  An approach to 

avoid solutions with potentially poor outcomes is to set the maximum worst-case outcome as an 

objective in the multi-objective search algorithm.  Scott also discussed the value of considering 

whether respondents are switching between products within a manufacturer’s product line.  

Although such switching could leave overall revenue unchanged, switching behavior could lead 

to increased expenses for the firm (because of resource allocation decisions) or out of stock 

situations which can damage the firm’s profitability.  Therefore, switching behavior uncertainty 

within the firm’s line could be penalized in a multi-objective search function. 

Properties of Direct Utility Models for Volumetric Conjoint (Jake Lee, Quantum Strategy, 

Inc.):  Jake commented that volumetric conjoint models are an exciting, new area for choice 

modeling practitioners. The new models are based on established economic theory and don’t 

require duct tape. The models are very new and still need investigation to understand the 

circumstances when they work well and when adjustments need to be made.  Direct utility 

models are more appropriate when you’d expect consumers to pick multiple options to maximize 

their utility. Jake described how he used a new R package to do the modeling called VDMDU, by 

Hardt.  The model is based on Direct Utility Theory and brings in some new concepts (compared 

to the standard model) to help understand the consumer choice process. The two new features are 

the budget constraint and satiation.  Volumetric models of demand for conjoint analysis are still 

very young, Jake asserted, though the model shows a lot of promise for managerial inference 

when the standard model assumptions don’t fit.  Jake stated that the model is a natural fit for the 

food and beverage categories. It could be appropriate for entertainment categories like movies 

and theme parks. Any time consumers would regularly pick multiple options that are competing 

for the consumer’s budget, the direct utility model may be more appropriate than the standard 

model. 

A Comparison of Volumetric Models (Thomas C. Eagle, Eagle Analytics of California, 

Jordan Louviere, University of South Australia, Towhidul Islam, University of Guelph, Canada): 

Volumetric models attempt to predict the number of units of a product or alternative a consumer 

would buy.  The authors stated that volumetric models have a varied history in marketing. Some 

practitioners and academics avoid them, because of the complexities involved.  They encouraged 

the audience regarding the use of volumetric models which they argued are now easier to 

estimate than ever before.  To illustrate, they examined the patterns of substitution inherent in 

three different approaches to modeling volumetric data: the joint discrete/continuous model, a 

latent class Poisson model, and the Hardt-Allenby volumetric model.  They tested the models 

using a volumetric choice data set involving canned tuna.  The latent class Poisson model 

performed poorly both in terms of prediction and in terms of expected patterns of 

substitution/complementarity.  The Hardt-Allenby model performed best in terms of prediction, 

but some of the substitution and complementary effects suggested by sensitivity simulations 

were suspect.  The joint discrete/continuous model offered reasonable predictions and better face 
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validity in terms of the sensitivity simulations relative to what managers would typically expect 

about substitution and complementarity patterns.  The authors concluded that the data set 

potentially had weaknesses and that the conclusions here are tentative, pending more evidence. 

Direct Estimation of Key Drivers from a Fitted Bayesian Network (Benjamin Cortese, 

KS&R):  Benjamin described that there are many techniques for estimating attribute-level driver 

scores, but the most commonly used are unable to provide information about the interactions 

between drivers. The introduction of Bayesian networks (BNs)—graphical representations of 

attribute relationships—help make sense of these complex interactions. Attempts to combine 

KDA and BNs through separate analysis often lead to conflicting results from the estimated top 

drivers and the attribute relationships depicted by the network.  Benjamin proposed a new 

algorithm, BNKDA, to calculate driver scores directly from a fitted Bayesian network. This 

method relies on the Max-Min Hill-Climbing (MMHC) network fitting algorithm, Bayesian 

Information Criterion (BIC), and arc strengths calculated from the network. A weight factor is 

suggested to reduce the impact of longer paths to the target attribute. This technique provides 

both the directed acyclic graph (DAG) for visualizing attribute relationships and corresponding 

driver scores to tell a cohesive story. The algorithm was compared to two widely adopted driver 

analysis methods—Kruskal’s relative importance (a variant of a Shapley value) and partial least 

squares path modeling (PLSPM)—through simulation studies. Benjamin found that all three 

techniques identified similar top drivers in terms of ordering, but the magnitude of scores 

differed. The regression-based methods (Kruskal and PLSPM) favored directly impacting 

attributes in the hierarchy, while BNKDA provided more balanced estimates. He argued that 

consistency of driver estimates obtained from BNKDA imply that this is a viable option to 

calculate driver scores directly from a BN. 

Product Relevance and Non-Compensatory Choice (Marc R. Dotson, Brigham Young 

University, Roger A. Bailey, and Greg M. Allenby, The Ohio State University): Products are 

composed of a variety of features or attributes. A consumer uses these attributes to infer the 

effectiveness of a given product to serve as a solution. The authors stated that a product that a 

consumer believes will be able to help address his/her specific needs and goals is relevant to that 

consumer; however, not all attributes are used in the same way to determine product relevance. 

Furthermore, the way consumers identify product relevance reveals information about the needs 

they want to address or the goals they seek to accomplish. Either a product’s brand is enough for 

a consumer to infer product relevance or the presence of certain attribute levels leads a consumer 

to infer product relevance. The authors developed various models that allowed them to capture 

these two ways to product relevance as part of an extended model of choice.  Those models 

included conjunctive and disjunctive screening rule models.  They concluded that separating and 

uncovering the drivers of product relevance allow firms to understand something of the 

underlying motivations driving consumers into the marketplace to begin with. This knowledge 

will help firms to design promotions and products that address those motivations, build brand 

loyalty, and inform consumers’ brand beliefs. 
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CONSTRUCTED, AUGMENTED MAXDIFF 

ERIC BAHNA 

CHRIS CHAPMAN 
GOOGLE CLOUD 

ABSTRACT 

Google Cloud needed to prioritize customer needs across many product scenarios, but faced a 

limitation of common choice model surveys: different respondents needed to prioritize different 

sets of scenarios. We discuss how we solved this with Constructed, Augmented MaxDiff, and 

share survey design tips and R code for the method. 

MOTIVATION 

For Google Cloud Platform, we use MaxDiff surveys to assess customer prioritization of 

potential features, usage scenarios, and the like. In the course of such projects, we have 

encountered consistent complaints: respondents object (1) that they are unable to prioritize 

features that are not part of their jobs, and (2) that including all features makes a survey too 

lengthy and tedious. For example, one respondent commented, “[It] would be nice to have ‘no 

opinion’ on a particular set to not introduce noise.” 

Is this just an annoyance, or is it a data quality problem? Let’s examine a hypothetical 

situation. Suppose we want Cloud customers to assess the importance of features related to 

Developer tools, No-SQL databases, and Infrastructure monitoring. Consider a respondent who 

is a backend developer, where infrastructure monitoring is not part of her job. If she rates 

Infrastructure as “Worst” on a MaxDiff task, that lowers its overall importance for the 

population, even if it might be very high among all the respondents for whom it is a job 

responsibility. Better would be to exclude it from choice tasks for her. In general, we conclude 

that respondents should be given an option to exclude items that are not relevant to their jobs. 

This is possible using the constructed list feature in Sawtooth Software for MaxDiff. 

Additionally, respondents complain that unimportant items should be noted once, and 

subsequently, “Don’t bother me with that.” This aligns somewhat with recent findings on the 

MaxDiff method that prioritization is not unidimensional for Best and Worst items (Dyachenko et 

al., 2013) and that discrimination may be better in the Best direction. We conclude that it is 

advantageous to focus the tradeoffs on the subset of items that are closer to the Best end for any 

given respondent. 

We considered using other variants of MaxDiff and concluded that they could solve some of 

the problems we encountered and not others. The negative respondent experience imposed by a 

lengthy survey could benefit from Express MaxDiff and Sparse MaxDiff (Wirth and Wolfrath, 

2012). The unactionable results caused by too little differentiation of the top items could be 

addressed through Adaptive MaxDiff (Orme, 2006) or Bandit Adaptive MaxDiff (Fairchild et al., 

2015). Independent of these methods, we’d still be left with the data quality problem. 
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CONSTRUCTION METHOD 

To focus the survey items, we developed a method that builds on constructed list MaxDiff as 

follows: 

1. Respondents are asked first to identify items that are irrelevant to their jobs (IRR). 

2. Among the remaining, relevant items, they indicate items that are unimportant (UNI). 

3. After removing irrelevant and unimportant items, respondents trade off importance 

among the important (or not-unimportant) and relevant items (REL). 

4. To assist with scaling, data quality, and model identification, the MaxDiff item list REL 

includes a small number of items randomly selected from the IRR and UNI lists (RND). 

This is an adaptive method within the survey, but not within the MaxDiff exercise (unlike the 

within-exercise approach described by Orme (2006)). 

AUGMENTATION METHOD 

Now, if we only use choices from the constructed list MaxDiff exercise, we would throw 

away knowledge; we also know implicitly what they disprefer. In steps 2 and 3 of the 

construction method above, we know that every item in REL is “better” than every item in UNI. 

Given that, we augment the data with choice tasks pairing each of the items from REL as 

“winning” over each of the items from UNI. Overall, we refer to this as “Constructed, 

Augmented MaxDiff” (CAMD). 

Tasks that are irrelevant to their jobs (IRR in the construction method step #1) are not used to 

augment the data. However, because each of those has a chance of appearing among the RND 

items (step #4), we ensure that there will be some chance to control for inadvertent non-

selection, and to ensure model identification in case none is selected as relevant. 

We open-sourced our R code to create augmented tasks and analyze the data as part of the 

Rcbc package (Chapman et al., 2018). 

RESULTS 

At a high level, what we find is that the data appear to be of improved quality: we get 2 to 3.5 

times as much choice data from the augmentation and respondents report a better experience. 

We believe that the CAMD data are higher quality than the data we gathered with standard 

MaxDiff because respondents are giving more input on the items that they see as relevant to 

them. This is particularly advantageous when respondents have heterogeneous job 

responsibilities, as we see in our research on enterprise IT administrators and developers. We 

were surprised to see how severe the data quality problem can be. In one of our n=77 studies 

shown in Figure 1, 52% (n=40) respondents stated that at least half of the items were irrelevant 

to them! 
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Figure 1. Distribution of Percentage of Items that Respondent Marked as Relevant 

 

Figure 2 shows that constructing the MaxDiff item list reduced the amount of noise in our 

MaxDiff data by increasing the proportion of relevant items in the MaxDiff list from 46.7% to 

93.3% for the median respondent. Without construction, the 15 MaxDiff items would be chosen 

randomly from the 30 candidate items. 

Figure 2. Impact of Construction on the Proportion of Relevant Items 

in the MaxDiff Set for Each Respondent 
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Similarly, we found that construction increased the proportion of “important” items that were 

included in the MaxDiff exercise. In the same study as above, 66% (51/77) of respondents 

indicated that less than half of the items in the set were at least somewhat important to them. The 

distribution is shown in Figure 3. Construction doubled the proportion of important items in the 

MaxDiff exercise for the median respondent, from 33.3% to 66.7%, as shown in Figure 4. 

Figure 3. Distribution of Percentage of Items that Respondents Marked as Important 

 



5 

Figure 4. Impact of Construction on the Proportion of Relevant Items in the MaxDiff Set 

for Each Respondent 

 

Respondent comments were almost universally positive for the CAMD surveys, including: 

 “Great new setup.” 

 “Seems faster this time.” 

 “Thanks so much for implementing the ‘is this important to you’ section! Awesome 

stuff!” 

 “I liked that this time around it was a lot quicker.” 

 “Felt like the structure of the survey really locked in on my priorities much faster than 

previous surveys!” 

 “Really pleased with the importance selections leading into the general survey. Big 

improvement IMO.” 

The augmentation process led to modest adjustments in overall item utility scores (overall 

Pearson’s r=0.82 and 0.90 in two studies). Figures 5, 6, and 7 show the overall utility scores 

without and with augmentation for the study with r=0.82. 
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Figure 5. Overall Utility Scores without Augmentation 

 

Figure 6. Overall Utility Scores with Augmentation 
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Figure 7. Impact of Augmentation on Overall Utility Scores (Pearson’s r = 0.82) 

Overall (Upper-Level) Utility Scores without and with Augmentation for 30 Items 

 

Augmentation had more noticeable effects on individual-level utility scores, as expected. We 

examined the impact of augmentation on the individual scores of items for which the smallest 

and largest percentages of respondents reported them as unimportant. One item (“i3”) was 

marked as unimportant by 2.6% of respondents and two items (“i23” and “i28”) were marked as 

unimportant by 15.6% of respondents. For “i3,” Figure 8 shows that augmentation decreased the 

utility scores for individuals who marked the item as important and had high scores without 

augmentation. Augmentation had the opposite effect on “i3” scores at the lower end, namely 

increasing them. For “i23,” Figure 9 shows that augmentation mostly increased scores for 

respondents who marked it as important and mostly decreased scores for respondents who 

marked it as unimportant. There were exceptions for each category, though. For “i28,” 

augmentation had a more significant effect, decreasing scores of all respondents who marked the 

item as unimportant and raising most of the scores of respondents who marked it as important. 
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Figure 8. Impact of Augmentation on Individual Utility Scores for an Item (“i3”) Where 

2.6% of Respondents Marked It as Unimportant. 

Individual Utility Scores for One Item (i3) without and with Augmentation (r=0.68) 

 

Figure 9. Impact of Augmentation on Individual Utility Scores for an Item (“i23”) 

Where 15.6% of Respondents Marked It as Unimportant. 

Individual Utility Scores for One Item (i23) without and with Augmentation (r=0.67) 
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Figure 10: Impact of Augmentation on Individual Utility Scores for Another Item (“i28”) 

Where 15.6% of Respondents Marked It as Unimportant. 

Individual Utility Scores for One Item (i28) without and with Augmentation (r=0.47) 

 

DISCUSSION 

Relationship between “Importance” and MaxDiff Responses 

We augment the explicit best/worst choices of respondents by creating implicit choices based 

on their responses to the “Importance” question. This uses all of the information that we receive 

from respondents, but also can put a lot of weight on their responses to the “Importance” 

question. If their responses to the “Importance” question are not consistent with their responses 

to the MaxDiff questions, then augmentation would amplify the inconsistency. 

To what extent are responses to the “Importance” question consistent with the responses to 

the MaxDiff questions? We examined this in one study by comparing responses to the 

“Importance” question to the individual-level estimates from a hierarchical Bayesian model 

without augmentation. In this study, we presented a list of 30 items, of which 15 were included in 

the MaxDiff exercise per the “Construction Method” section above. Figure 11 shows the 

individual-level estimates for the 15 items that each of n=77 respondents saw in a MaxDiff 

exercise. 

Individual-level estimates for UNI items
1
 tended to be lower than individual-level estimates 

for REL and IRR items. To explore the patterns, we grouped respondents in the plot by the 

number of items that they marked as unimportant (1, 2, 3, 4, 5+). Within each such group we 

sorted by number of irrelevant items. Within the groups with 1-4 unimportant items, it appears 

that the individual-estimates of unimportant items are higher as the number of irrelevant items 

increases. More formally describing these patterns is an area for further research. It could be 

                                                           
1 Our goal was to include two UNI items for each respondent, but some respondents had a different number. Those who had fewer than two were 

respondents who marked fewer than two items as UNI. Those who had more than two were respondents who marked fewer than 15 - 2 - 1 = 12 
items as REL (relevant and at least somewhat important). 
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insightful to examine what proportion of augmented tasks align with the unaugmented 

individual-level estimates. 

Figure 11: Individual-Level Estimates without Augmentation by Partition 

(Important, Irrelevant, Unimportant) 

 

Design Recommendations 

We recommend that the constructed list include some IRR and UNI items in order to reduce 

the chance of an intractable model. If we didn’t include any IRR items and one item was 

irrelevant to our entire sample, then the model would be intractable because we’d have no 

observations about that item. If we didn’t include any UNI items and one item was unimportant 

to our sample, then it would have an unbounded negative utility. We typically add one IRR item 

and two UNI items to MaxDiff sets of 15-30 items. In 5+ CAMD studies, we have yet to 

encounter an intractable model, but we don’t know whether one and two are the optimal 

numbers, or if the numbers should be a function of other study parameters (e.g., number of items, 

sample size). One approach to investigate this would be to estimate the model using only 

MaxDiff tasks that excluded IRR and UNI items and compare the model’s stability to that of the 

model using all MaxDiff tasks. 

The relevance and importance questions can be lengthy for respondents to answer, so we 

recommend breaking it into chunks, either on the same screen (by repeating column headers 

every few rows) or by splitting it into multiple screens. We hypothesize that the latter would 

increase response rates compared to the former because it seems less intimidating to respondents. 
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Open Topics 

The impact of augmentation on individual-level estimates could benefit from more research 

because we saw different patterns on different items, as shown in Figures 8, 9, and 10 in the 

Results section. One pattern suggested by the estimates in those figures is that the impact of 

augmentation is more pronounced when more respondents mark an item as irrelevant. Both “i23” 

(Figure 9) and “i28” (Figure 10) were marked “unimportant” by 15.6% of the sample. However, 

we saw a greater impact of augmentation on “i28,” which was irrelevant to 68.8% of the sample 

compared to 50.6% for “i23.” It’s not clear to us why augmentation decreased the individual-

level scores for some respondents who marked the item as important, as seen most prominently 

in Figure 8. Looking at Figure 7, we hypothesize that augmentation compressed the (zero-

centered) scores for the middle n-2 items because it drove down the score for the lowest item 

(“i28”). 

Could we save respondents time by asking only about “importance,” use that for both 

construction and augmentation, and omit the “relevance” question? Perhaps the two questions 

share a common set of underlying factors. We believe that this decision depends on the 

respondents and the items in the exercise. When respondents are more specialized relative to the 

items (e.g., surveying enterprise IT professionals about management tasks), then we propose 

keeping both questions. In other domains (e.g., consumer products), the distinction may be less 

relevant. 

One signal we examined is the proportion of respondents who marked an item as UNI (i.e., 

relevant and not important). We expect that this proportion would be near zero in cases where 

relevance and importance are not different to respondents. We’ve seen 5-10% of respondents 

mark a given item as UNI in most of our studies. One study had UNI rates of 10-40%, which 

suggests that those respondents viewed the “relevance” and “importance” questions as especially 

distinct. 

The optimal wording of the “relevance” question is still an open topic. We have primarily 

used two variants, depending on the audience: 

 When surveying users or decision-makers directly, we’ve asked them to indicate whether 

the item is “relevant to your responsibilities or expertise.” 

 When surveying their representatives (e.g., asking sales or support teams about their 

customers), we’ve asked them to indicate whether “you have visibility into the 

importance of the item to your customer.” 

Is it possible that the augmented tasks will overwhelm the MaxDiff responses that 

respondents provide directly? If so, how could an analyst detect that and to what extent should 

augmentation be performed in such cases? The individual-level estimates of UNI items that were 

included in the MaxDiff set discussed above show that UNI items tend to have lower-estimates 

than REL and IRR items, but we don’t see that the lowest-rated item for each respondent is a 

UNI item. The impact of augmentation is related to the number of augmented tasks, which is a 

function of the ratio of REL:UNI items (the closer to 1.0, the more augmented tasks) and the 

proportion of items marked as IRR (the closer to 0.0, the more augmented tasks). These are, in 

turn, affected by a respondent’s likelihood to endorse an item. 
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CONCLUSION 

The construction in Constructed, Augmented MaxDiff method increased the quality of our 

data by selecting more relevant items for each respondent’s MaxDiff exercise. Additionally, 

respondents reported a more positive experience because they didn’t spend so much time on 

items that were irrelevant or unimportant to them. Augmentation provided 2-3 times more choice 

data for our models without requiring respondents to make proportionally more trade-offs. We 

hope that our open-sourced R code makes it easier for others to apply the method to their 

domains. 
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SHAPLEY VALUES: EASY, USEFUL AND INTUITIVE 

DAVID W. LYON 
AURORA MARKET MODELING, LLC 

INTRODUCTION 

Shapley Values
1
 (SVs) are a general and widely useful way to summarize how much 

individual items contribute to the overall value of combinations of items (e.g., product 

assortments, feature bundles, sets of advertising claims). Although they have been 

discussed and promoted for marketing research use since at least 2000 (Conklin and 

Lipovetsky, 2000, 2005, 2013; Conklin and Shmulyian, 2012), SVs appear to be used far 

less often than they could and should be. This paper seeks to build an intuitive 

understanding of them (as opposed to relying on mathematical formalisms) to encourage 

their wider use and to address some computational issues, including a too-little-known 

trick for fast and exact computation in many cases. 

In marketing research applications, Shapley Values are not a standalone analytic 

technique. They assume some other agreed-upon way of evaluating the value of a 

combination of items and build on that analysis by summarizing the effects of individual 

items. One common example is TURF analysis, where the value of a set of items is its 

combined unduplicated reach. Another is key driver analysis, where the total regression r-

squared produced by a set of predictors is the value of that set of items. While both of 

these are common applications, Shapley Values are in no way restricted to those two. 

They are useful in almost any analysis based on the value of combinations, no matter how 

that value is defined or determined. 

The fundamental usefulness of Shapley Values is that they shift the focus from 

combinations of items, of which there are often billions or more, to the items themselves, 

which are few enough for a human being to deal with and think about. Sometimes, as in 

the literal TURF problem of finding the one best combination of a given size, this is 

irrelevant. More often, however, it is crucial to both analysts and business managers as a 

way of summarizing and understanding what is going on with items. The Shapley Values 

can be thought of as providing an overview or “road map” to TURF or other 

combination-based analysis. 

We will deliver on the title promises of “easy, useful and intuitive” in reverse order. 

The first section addresses the intuition, the second discusses usefulness (a relatively 

obvious point once we have an intuitive understanding), and the third looks at 

computational issues and how to make them easier. A final section looks at the special 

topic of TURF on MaxDiff data, whether and when Shapley Values help there, and what 

their behavior there implies about the usefulness of TURF on such data. 

                                                           
1 In the academic game theory literature, the “Shapley Value” (singular) is actually a set of values, one for each player in a game. With 

that acknowledged, we will use the typical marketing research jargon where a “Shapley Value” is for just one item of interest, and 
the whole collection of them are “Shapley Values” with a plural s. 



14 

INTUITION: WHAT ARE SHAPLEY VALUES? 

Let’s begin by considering key driver regressions (KDRs), which are widely used in 

customer satisfaction work, among other areas. They seek to predict some overall 

measure, often overall customer satisfaction, based on ratings of a number of individual 

items, often satisfaction with particular aspects of a product. Beyond the simple 

prediction, the goal is to determine which items are most important and to quantify the 

importance of each. 

One obvious idea is to enter the individual items into a regression sequentially and 

observe how much the overall r-squared, or variance explained, increases as each is 

added. That increase can be viewed as the contribution, or importance, of that item. But, 

the item ratings are not statistically independent—they often are strongly collinear—so 

the order in which they are entered into a regression has a huge effect on the apparent 

importances. In effect, the first item entered gets credit for all the shared variance that 

might equally well have been explained by others, while the last entered gets credit only 

for its own unique contribution independently of the others. If the order makes such a big 

difference, what is the right order? 

There simply is no “right” order. An elegant answer to this issue is to consider all 

possible orders, and average the item importances over all the possibilities. This idea was 

introduced by William Kruskal (1987) and is known today as “Kruskal relative 

importance” or “Shapley Value regression,” among other terms. It is appealing in that it 

treats all items identically and fairly, with each being first equally often, as well as 

second, third, . . . , and last equally often. There is no right order, so we average the order 

out of the question. 

The Shapley Value for an item in this situation is simply the average amount by 

which it increases the regression r-squared, averaged over all possible orderings. This is 

illustrated in Exhibit 1 for a very small example. 

Exhibit 1. Example of Key Driver Regression with 3 Items— 

Averages Are Shapley Values 

 

Incremental    by order of entry Averages 
(SVs)2 1: A-B-C 2: A-C-B 3: B-A-C 4: B-C-A 5: C-A-B 6: C-B-A 

A 0.26 A 0.26 B 0.22 B 0.22 C 0.17 C 0.17 A 0.16 

B 0.09 C 0.06 A 0.13 C 0.06 A 0.15 B 0.11 B 0.12 

C 0.01 B 0.04 C 0.01 A 0.08 B 0.04 A 0.08 C 0.08 

Our interest here is in using key driver regressions to motivate the averaging-over-

orderings interpretation of Shapley Values, not in the KDRs themselves. While Shapley 

regression is one reasonable way to perform KDRs, it is by no means the only or the most 

efficient. Readers interested in KDRs per se should see Cortese 2018 (in this volume) or 

consider random forests or any of many other approaches to KDRs. “Relative weight 

analysis” (Johnson and Lebreton, 2004) produces results remarkably similar to Shapley 

                                                           
2 Many practitioners would re-express the Shapley Values—the average r-squared contributions—as a percentage of the overall r-

squared. While popular, that mostly serves to obscure their natural interpretation. There is no inherent reason that any importance 
measure should total 100%. 
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regression, but with very different math and far less computational burden, making larger 

problems feasible. 

ORDERINGS VS. COMBINATIONS 

Our introductory claims about Shapley Values were about combinations of items, 

while the KDR example revolves around orderings of items. Why the discrepancy? 

Despite the naturalness (and frequent usefulness) of an averaging-over-orderings view of 

Shapley Values, they are fundamentally about combinations rather than orderings. 

Consider a concrete example of 13 items in the order A-M-K-D-F-B-L-E-C-J-H-I-G. 

Focus for the moment on item “F.” F’s contribution to r-squared in this ordering is 

entirely independent of the ordering of the 8 items behind it (B-L-E-C-J-H-I-G). Those 

could be in any of 8! (“8 factorial” or 40,320) different orderings, in all of which F adds 

the identical amount to r-squared. For that matter, the amount F adds to A-M-K-D 

depends heavily on those being the particular four items entered in the regression ahead 

of it, but not at all on the order in which those four were entered. They could be in any of 

4! = 24 different orders, with no effect on the contribution of F. In effect, we are just 

looking at how much better the combination {A,D,K,M,F} is than the combination 

{A,D,K,M}, and remembering that the improvement F offers there will apply in 24 × 

40,320 = 967,680 different orderings. 

From this point of view, Shapley Values are averages over combinations, with 

appropriate weights to reflect how often each combination turns up in all orderings. 

Specifically, the Shapley Value for item F is the weighted average, over all combinations 

that don’t include F, of the r-squared gain when F is added to those combinations. If there 

are   items, and   of them are ahead of F (i.e., we are adding F to a combination of size 

 ), the weight is              since there are    orders for the   items ahead of F and 
         orders for the         items behind it. 

The full formula for Shapley Values from this point of view is the one most often seen 

in the marketing research literature. It looks like  

         
                   

    
                  

        

 

Here,       denotes the Shapley Value for item   relative to a “value function”   (for 

KDRs, the r-squared of a regression).   is the set of all items being considered and    | is 

its size (  in the earlier notation, the number of items).   is some subset of   that does 

not include  , and     its size (  in the earlier notation). 

The key term is               , the value of (i.e., r-squared for) set   with   
added to it, minus the value of   alone. The term before it is the weight, divided by the 

sum of all weights (which turns out to be    !, the total number of orderings of  ). 

WEIGHTS AND COMBINATION SIZES 

It is easy to overlook or misinterpret the importance of the weighting by number of 

combinations. One oversimplification is to say that the Shapley Value is the average 

contribution of an item to a combination it is not already part of, averaged over all 
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combinations. This ignores the weights and puts a strong emphasis on mid-sized 

combinations because there are so many of them, but virtually none on very small or very 

large combinations, which are few in number. 

The opposite mistake has also appeared in the literature, where the huge weights of 

       that apply to the largest and smallest combinations are taken to swamp the small 

weights for mid-size combinations and imply that Shapley Values can be closely 

approximated by averaging the contributions to the two extreme-size combinations.  

In fact, the number of combinations of each size, times the weight applying to each 

combination of that size, is constant across sizes! In effect, the Shapley Value is the 

average contribution of an item to combinations it is not already part of, with all sizes of 

combinations weighted equally. Exhibit 2 gives a small concrete illustration. 

Exhibit 2. Number of Combinations and Their Weights for     items 

Size of a 
combination not 

including a 
particular item 

 
    

Number of such 
combinations 

 of size   
 

 
   

 
  

 
 
 

Weight on each 
 

            

 
 

Total weight 
for size   

 
(number × weight) 

0 1 40,320 40,320 

1 8 5,040 40,320 

2 28 1,440 40,320 

3 56 720 40,320 

4 70 576 40,320 

5 56 720 40,320 

6 28 1,440 40,320 

7 8 5,040 40,320 

8 1 40,320 40,320 

We can emphasize the equal weighting of combination sizes by rewriting the formula 

for a Shapley Value as: 

        
 

   
  

 

 
     

 
 
                   

              

  

     

   

 

The inner sum here is over all subsets   of size   that don’t include  . There are no 

weights involved; the term in front is simply dividing the sum by the total number of such 

combinations. The inner sum and its divisor represent the average contribution of item   
to combinations of size   (not counting  ). The outer sum is over all combination sizes; 

there are     sizes, ranging from 0 (i.e., item   is added to the null set) to      .  

In this formulation, the Shapley Value is an unweighted average of unweighted 

averages, an appealingly simple way to look at things. 
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THE INTUITIONS 

We have seen three ways of expressing or thinking about Shapley Values. All are 

mathematically equivalent, but differ in their usefulness. 

First, they are the average contribution of an item, as items are added sequentially, 

over all possible sequential orders.  

Second, they are the contribution of an item when added to a combination of items 

that doesn’t already include it, averaged over all such combinations with appropriate 

weights. 

Third, they are the contribution of an item when added to a combination of items that 

doesn’t already include it, with all combination sizes counted equally.  

The first (orderings) interpretation is natural in the context of key driver regressions 

and some other situations, and often helpful in reasoning about Shapley Values. But it is 

computationally unfriendly in that there are far more orderings than combinations (e.g., 

for 20 items, 2.4 quintillion orderings, but only about a million combinations). 

The second version is the most commonly seen formulation, but perhaps the least 

helpful intuitively. It is crucial to understand the role of the weights it employs. 

The third interpretation is the most natural in many applications, including TURF. We 

will see that in some cases, it is a helpful computational framework as well. Like the first, 

it can be stated precisely in simple words.  

SHAPLEY VALUES AND TURF 

TURF may be the most common use context for Shapley Values in marketing 

research, and involves some interesting issues. While TURF stands for Total 

Unduplicated Reach and Frequency, practice almost always focuses on the unduplicated 

reach and ignores the frequency.
3
 The unduplicated reach of some combination of items 

in a pure TURF formulation is simply the percentage of respondents for whom at least 

one of the items “reaches” the respondent or “is a hit.” 

If the items are flavors or varieties of a product, an item “reaching” a respondent 

might mean that the respondent is willing to buy that flavor or variety. If items are 

messages or ad claims, an item might be considered “a hit” if the respondent would 

believe that claim or considers it important. If items are possible product features, being a 

hit might mean that the feature is wanted by the respondent. There are endless variations, 

but in all cases the respondent data is 0 or 1 for each item for each respondent: either a 

respondent would buy, believe, want, etc. the item or she would not. 

A combination of items is considered to reach a respondent if there is at least one item 

the respondent would buy, or at least one claim she would believe, or at least one feature 

he wants. This is a grossly simplistic formulation of many real marketing problems, but 

TURF is nonetheless in wide use.  

A slight modification of TURF is to vary the “depth,” or the number of items in a 

combination that must reach a respondent for the combination to be considered a reach or 
                                                           
3 In many situations, frequency questions are not even asked. 
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success. With a depth of 3, say, at least three items must be hits for the combination to 

count as a reach. Increasing the depth tends to reward items that co-occur with others to 

achieve the required depth, rather than those that may have little overlap but reach 

entirely new respondents. This is especially true for smaller combinations. 

The canonical goal of a TURF analysis is to find “the” best combination of a given 

size—the one with the highest reach. Typically, the top 10 or top 100 or so combinations 

are found and presented for each size of interest.  

TURF is a challenging problem because the best combination of   items is not 

necessarily just the   with the highest individual reaches (except for    ). Similarly, 

the best combination of   is not necessarily the best combination of     plus one more 

item. (Assuming otherwise leads to a “stepwise TURF” analysis with no guarantee of 

obtaining the true TURF answer.) If two items overlap considerably in which respondents 

they appeal to, high-reach combinations are likely to include only one of the two. The 

overlap patterns are fundamental to the results.  

Consequently, the only straightforward way to find the best combination of   is to 

enumerate and evaluate all the possibilities. This is easy if   and   are small, but 

becomes computationally difficult or impossible as they increase. In practice,   is usually 

restricted to about 25, or perhaps 30 at the most, for a full analysis. 

Typical TURF results might look something like Exhibit 3, which shows an analysis 

for 13 items and the best combinations of size 2 to 5 only. With 20 or more items and 

combination sizes up to 15 or 20 or more, potentially repeated for several different 

depths, the size and number of tables like this rapidly balloon. 
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Exhibit 3. Example of Typical TURF Results 

Sample of 300 physicians surveyed re pharma company communication channels 

Ten best combinations and ties for each size of combination 

Pairs  =2 Triples  =3 Quads  =4 Quints  =5 

Rank Reach Items Rank Reach Items Rank Reach Items Rank Reach Items 

1 77.1 GD 1 81.7 GDM 1 83.4 GBMH 1 84.2 GBCMH 

2 75.3 GB 2 81.6 GBM 1 83.4 GDCM 1 84.2 GDCMH 

3 74.4 BM 3 81.4 GBD 3 83.3 GBDM 1 84.2 GBDCK 

4 74.3 DC 3 81.4 GDC 3 83.3 GBMK 1 84.2 GBDCH 

5 73.6 BD 5 80.4 GBK 5 83.1 GBDK 5 84.0 GBDCM 

6 72.5 GM 6 79.9 GCM 5 83.1 GBDC 5 84.0 GBDMH 

7 70.8 BK 7 79.9 GBL 7 82.8 GDCH 5 84.0 GBCMK 

8 70.7 GC 8 79.8 GDK 7 82.8 GDCE 5 84.0 GBMKH 

9 69.4 BL 9 79.7 GDL 7 82.8 GDMJ 5 84.0 GBMLH 

10 69.1 BC 10 79.5 GDE 10 82.7 GBDL 10 83.8 GBDCL 

      
10 82.7 GBCM 10 83.8 GBDKH 

      
10 82.7 GBDH 

   

      
10 82.7 GDMK 

   
 

The top line of this table answers the literal, nominal, TURF question of which one 

combination is best. This is seldom the real, or only, objective, however, which is why 

tables of multiple top combinations are typically produced. The problem with these tables 

is that it is difficult to see or extract general patterns, conclusions or insights beyond the 

literal reading of “GDM is best, GBM is second best, GBD and GDC are tied for third.” 

Such readings are seldom managerially useful and certainly not interesting. 

Let’s see what Shapley Values could contribute here. We can compute them using the 

same formulas presented for key driver regressions. The key difference is that the “value 

function”   in those formulas will now be the TURF value of a combination—the 

percentage of respondents for which a combination is a reach—rather than the r-squared 

from a KDR.  

Another difference is that we can define that value function at the individual 

respondent level, as 1 or 0, depending on whether a particular respondent is or is not 

reached (at the specified depth, if applicable). The aggregate value function is then just 

the average over the individuals.
4
 This is a convenient way to formulate things: it makes 

it trivial to apply respondent weights, if desired, and to compute (weighted) standard 

errors for the reach percentages. It is also critical to a computational approach we discuss 

in a later section.  

                                                           
4 For KDRs, of course, there is no respondent-level analog to the r-squared and this is not possible. 
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Exhibit 4 shows the Shapley Values for the same TURF data used for Exhibit 3. In a 

single table we see results for three different depths of TURF at once, and it is a full 

analysis based on all combinations and all items. There is even room left for meaningful 

item labels. 

Exhibit 4. Shapley Values for the TURF Results of Exhibit 3 

Standard 

TURF 

(depth 1) 

TURF 

depth 2 

TURF 

depth 3 

Information Source 

13.8 11.8 11.4 G In-person sales rep visit 

13.8 13.2 12.8 B Informative snail mail 

11.7 11.7 10.7 D Emails, E-newsletters 

11.6 10.8 10.8 C Leaflet/brochure in snail mail 

8.0 8.0 8.0 A Website 

7.1 6.9 6.4 M Smartphone apps 

4.8 4.4 4.4 K Self-guided online programs 

4.4 4.4 4.2 L Reminder/alert/pop-up on <xxx> 

4.3 3.9 3.4 H Live talk with tech experts 

1.9 1.9 1.9 E Texts from company 

1.4 1.4 1.2 J Live-assisted online programs 

1.4 1.4 1.4 F Phone call from sales rep 

0.9 0.9 0.9 I Robo calls 

From the table of Shapley results, it is easy to see that G and B are the two items that 

contribute the most, that they are close to each other in contribution and that B is a bit 

better at the higher depths. Similarly, we can see that D and C occupy a second tier, also 

very similar to each other in effect, and the other items taper off from there, with items E, 

J, F and I at the bottom contributing little.  

USEFUL: WHAT’S THE BENEFIT? 

Dealing with results for 13 items, rather than the best combinations out of 8,192 

possible ones, with different depths laid out in parallel and items labeled, makes tables 

like Exhibit 4 far more informative and makes it possible to spot general patterns. 

Shapley Values are easier to think about, easier to present and more memorable than 

endless lists of combinations. That, in a nutshell, is the power and usefulness of Shapley 

Values. 

Note that the Shapley Value analysis does not answer the actual TURF question of 

which combination is best. The   items with the highest Shapley Values do not 

necessarily make up the best combination of  .
5
 If the classic TURF question of “what’s 

best?” is in fact the key objective, Shapley Values don’t address it. But if the goal is to 

understand item values in the context of combinations, rather than to find the one best 

                                                           
5 Their chances of doing so are better than the chances of the   items with the highest individual reach, or the   items from a stepwise 

TURF analysis, but there is no guarantee; a comprehensive search is still needed to find the definite best combination. 
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answer, the Shapley Values are far easier to work with. While clients often ask for the one 

best combination, their true underlying objective is likely to be an understanding or 

insight into item values or patterns. 

STABILITY OF RESULTS 

One appealing aspect of Shapley Values is that they are far more stable than analyses 

relying on individual combinations or orders. In TURF analysis, changing a single 

respondent’s answers can cause upheaval in the rankings of combinations, and certainly 

in which one is best. This is particularly true for larger combinations whose reach 

approaches the maximum possible for the sample—they tend to “chase” individual 

respondents by including items with unique if limited appeal. In KDRs, approaches based 

on stepwise regression (i.e., on a particular ordering) show similar instability. 

Those instabilities mean that TURF or stepwise regression, as well as many other 

analytic approaches to combinations, can’t be expected to produce similar results across 

waves of a tracking study, or across subgroups of respondents, even if there is in fact no 

underlying change or difference. This is a problem common to many forms of ranking-

based analyses. Shapley Values, however, are averages of interval-scaled quantities, not 

ranks. They are far more stable in the face of minor data changes, meaning that changes 

in results are far more likely to be real. Further, their standard errors can be computed in 

some situations (discussed below), facilitating formal significance testing and confidence 

intervals. 

OTHER BENEFITS? NO. 

Other claims of benefits are sometimes made for Shapley Values. There are two in 

particular that this author investigated and intended to present, but found that they did not 

hold up. 

One is the idea that using combinations of product flavors, say, based on the top 

Shapley Values will result in better performance in the face of real-world out-of-stock 

situations. Suppose in an ice cream market that the huge majority of people like vanilla 

and many of those also like chocolate and/or strawberry. But say a few people like only 

mango, and a few others only red bean ice cream. A straight TURF solution might turn up 

a vanilla-mango-red bean combination as best. But if vanilla goes out of stock, the 

majority of the market has no acceptable choice left. The top Shapley Values would likely 

go to vanilla, chocolate and strawberry and if that combination is stocked, the sales loss 

from an out-of-stock on vanilla would be far less.  

This argument has intuitive appeal, but does not hold up consistently in empirical 

data. It is generally true that a combination of the top Shapley Values loses less of its 

reach when one item goes out of stock (on average, across all items in the combination) 

than does the exact TURF optimum (assuming they are different in the first place). But 

that is not good enough for the SV-based combination—it must lose so much less with 

one item gone that the smaller loss makes up for any initial underperformance. That is a 

high bar that often cannot be met. 
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One simple way to move in the direction of better out-of-stock performance is to use 

a depth of 2 in the TURF search for the best combination rather than the standard depth 1. 

While this is too conservative, and means that the fully-stocked performance may well be 

less than optimal, it does help with out-of-stock performance. 

An even better, straightforward, and precisely targeted approach is to redefine the 

value function used to evaluate combinations. Instead of unduplicated reach or depth=2 

duplicated reach, we can define something we might call “resilience”: average reach with 

one item out-of-stock (averaging over all items in the combination). We might also 

consider a value function that is a weighted average of the pure unduplicated reach and 

the resilience. Then an exhaustive search of all combinations, in the same manner as a 

standard TURF search, will find the combination with the best out-of-stock performance. 

Indeed, tailoring the value function to the desired outcome is a flexible and important 

idea: the simplicity and possible convenience of a pure TURF value function should not 

dictate its blind use. 

In any event, Shapley Values do not inherently help achieve the byproduct of out-of-

stock resilience. Of course, Shapley Values can be computed on some sort of resilience as 

a value function, providing all their usual benefits of simple summarization. 

In large TURF problems, it is not possible to evaluate all possible combinations. This 

leads to heuristic search procedures of various kinds: greedy searches, Federov swaps, 

genetic algorithms, etc. Another idea about Shapley Values is that the combination of the 

items with the top Shapley Values would be a good starting point for such searches. In 

this author’s experience that is true: it is an excellent starting point. Further, the Shapley 

Values can be used to guide the search further. While such an approach definitely out-

performs starting from random combinations (it converges to a solution more rapidly, and 

more consistently to the true best), it does not seem to offer any consistent advantage 

over starting from a stepwise TURF solution. Stepwise solutions are trivial and fast to 

compute, even more so than Shapley Values, and sometimes far more so.  

In sum, Shapley Values are useful because they condense and summarize the behavior 

of items in combinations. That is a major benefit; further beneficial side effects are not 

required to justify their use, although their stability is nice. If side benefits like resilience 

are desirable, they can be obtained directly by defining the appropriate criterion as the 

value function in a search over combinations, but they do not “magically” drop out of the 

Shapley Value computation. 

EASY? COMPUTATIONAL ISSUES 

There is a computational elephant in the room: computing Shapley Values requires 

evaluating all possible combinations of items. At least, that’s what the straightforward 

formulae assume. This is fine for 20 or so items, perhaps OK for 25 or so. But by about 

30 items, a typical PC will have problems even generating and enumerating all the 

combinations, let alone evaluating them.  

There are two ways around this issue. The more obvious is to work with a random 

sample of combinations rather than all of them. The second subsection of this section of 

the paper deals with a few details of doing that. The more interesting and novel way is a 
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trick that only works for some value functions, but offers super-fast, exact results even 

with huge numbers of items. TURF, including at varying depths, and many related value 

functions are among those where this approach works. We consider it first. 

A FAST SHORT-CUT TO COMPUTING SHAPLEY VALUES 

Let’s return to the idea of TURF at the respondent level. (Surprisingly enough, the 

answer to our intractable aggregate computation problem does in fact lie in doing the 

computation for each individual!) Consider the formulation of SVs as the average over 

combination sizes of the average contribution to a combination of a given size. 

If there are   items and a particular respondent has hits on   of them, how do the 

items contribute to combinations of size  ? To be concrete, let’s say there are     

items,     of them are hits and we are interested in combinations of size    . What 

is the average contribution—the Shapley Value at the respondent level—of each item?  

For the     (4, here) non-hit items, the answer is simple. Adding them to a 

combination can’t increase the reach, so their SVs are always zero.  

But what about the   (2) hit items? Focus on what happens when a particular one of 

them is added to a combination of   (2) it is not already included in. That means the 

potential combinations of   (2) it could be added to will be all those composed of the 

remaining     (5) items, of which     (1) are the other hits. The item of focus will 

create reach where there was none before, generating a Shapley Value contribution of 1, 

when and only when neither of the items in the combination of   (2) is a hit. If any one of 

the   (2) is already a hit, the TURF value doesn’t change, so there is no contribution to 

the SV. Thus, the Shapley Value contribution at this size of combination will be simply 

the probability that a random combination of   items, out of     total items, contains 

none of the     hits that are among the    .  

That probability is the hypergeometric probability of zero hits in a sample of   out of 

    that includes     hits, denoted and defined as (    denoting zero hits among 

the  ): 

                                  
 
   
 

  
          

    
 

 
   
 

 
 

The three combinatorials in this formula (each an “n pick k” evaluation) look a bit 

ugly on the page, but are trivial to compute. 

The classic description of the hypergeometric is in terms of sampling without 

replacement from an urn containing, in this case,     balls,     of which are black 

(“hits”), leaving                 that are white. The calculated probability is 

that of obtaining   black balls in the sample of  . In our concrete illustration, it tells us 

the probability of zero hits in a sample of 2 items from a total of 5, 1 of which is a hit and 

4 of which are not. Equivalently, it is the proportion of all combinations of size 2 that 

contain no hits.  
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Exhibit 5. Logic of the Respondent-Level Hypergeometric Calculation 

Conceptually Concretely Visually 

We have   items,  
of which   are hits, 
    are not 

Let’s say 
     

    hits 
①②③❹⑤❻ 

Consider a single hit, leaving     
others, of which     are hits. 

Pull one hit aside. 
  items are left, 
   of them a hit. 

①②③     ⑤❻         ❹ 

Consider combinations of size   Let’s say            
What happens when we add the 
selected hit to a combo of size  ? 

What happens if ❹ is 
the third one in? ?   ?       ❹ 

If none of the   are hits, reach goes 
from 0 to 1, SV contribution is 1 

In this case, our item 
“scores the win” 

⃝  ⃝      ❹ 

If another hit is already among the 
 , reach stays 1, no SV contribution 

In this case, we’ve been 
beat out already, no win ⃝  ❻        ❹ 

So, what’s the chance that a combo 
of size  , drawn from the     

other items, is not one of the     
other hits? 

There are ten possible 
combinations of 2, from 
the 5 remaining items. 

①②      ①③      ①⑤ 
①❻      ②③      ②⑤ 
②❻      ③⑤      ③❻ 
                  ⑤❻ 

 
   
 

  
         

   
 

 
   
 

 
 for x=0 

Looks like 6 out of the 
10 would produce reach 

when #4 is added.   

①②      ①③      ①⑤ 
                  ②③      ②⑤ 
                  ③⑤                   

Hypergeometric: chance of   hits in 
a sample of   from a total of  , 

   of which are hits 
That’s 0.6  

We can use the hypergeometric formula to fill a table with a row for each possible 

combination size (from   to    ) that a hit could be added to, and a column for each 

possible number of total hits per respondent (  to  ), as shown in Exhibit 6 for our 

concrete example. Knowing that the Shapley Value is just the average contribution over 

all combination sizes, we can average down the columns and the column average is the 

Shapley Value, for each “hit” item, for a respondent with the number of hits that column 

is for. 

Note that the column average is     in every case
6
 (except for     where the SV is 

calculated as zero, but is irrelevant since there are no hits to which it would apply). If 

there are 3 hits, each has a Shapley Value of 1/3; if there are 5, each has an SV of 1/5. 

How can this be so simple? 

                                                           
6 Note also that zero entries definitely are included in the column averages. 
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Exhibit 6. Shapley Value contributions by combination size, 

for standard TURF at the respondent level, for n=6 items. 

Each cell is                                     

 
   
 

  
          

    
 

 
   
 

 
 for x = 0 

 Probability a “hit” item “gets the win” 
( = probability of zero hits so far in combo of size k) 

 

Combination Size 

k 

Total Hits for a Respondent 

   0    1    2    3    4    5    6 

   0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 

   1 0.0 1.0 0.8 0.6 0.4 0.2 0.0 

   2 0.0 1.0 0.6 0.3 0.1 0.0 0.0 

   3 0.0 1.0 0.4 0.1 0.0 0.0 0.0 

   4 0.0 1.0 0.2 0.0 0.0 0.0 0.0 

   5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 

Column Average 0.0 1.0 0.5 0.333 0.25 0.2 0.167 

Think back to the averaging over orderings view of Shapley Values. With TURF, the 

value of the combination starts at zero for the null combination. As we step through an 

ordering, it stays zero until we get to the first hit item, whereupon the value jumps up to 

1, creating an SV contribution of 1 for that first hit item. It then stays at 1, or reached, no 

matter what is added later. The SV contribution stays at zero except at the moment the 

first hit is added. See Exhibit 7. The question then is, which of our   hits will “score the 

win”? The first one entered will. What is the chance of a particular one being first? In all 

possible orderings, each has an equal shot of being the first, so it is     for each of them. 

Exhibit 7. TURF value function as we step (left-to-right) through 

an ordering of items. 

 

This means that we can compute Shapley Values for a sample by assigning     to 

each hit at the respondent level, 0 to the non-hits, and averaging them up over the sample. 

Weights can easily be applied if appropriate. It is also easy to compute standard errors of 

the SVs, if desired. This process is exceptionally fast, scales to huge numbers of items 
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with no problems and is exact, not an approximation. It bypasses any version of 

exhaustive enumeration or evaluation of combinations. 

At first glance, this may seem like a shortcut entirely tied to standard TURF. But the 

reasoning process behind it is far more general. Suppose we are interested in TURF at 

depth 3, rather than depth 1. Now an item will “score the win” if and only if there are 

exactly 2 hits already in the combination it is added to. So, we need only set     

instead of 0 and create the table of hypergeometrics as before. Exhibit 8 does this. Note 

that the Shapley Values are, again, 1/h, except when there are fewer than 3 hits total, 

making it impossible to achieve depth 3. Why? Because the item “scoring the win” is 

now the third hit entered in any ordering, and each hit has an equal chance of being third. 

Exhibit 8. Shapley Value contributions by combination size, 

for depth = 3 TURF at the respondent level, for n=6 items. 

Each cell is                                    

 
   
 

  
          

    
 

 
   
 

 
 for x = 2 

 Probability a “hit” item “gets the win” 

( = probability of 3 hits so far in combo of size k) Combination Size 

k 

Total Hits for a Respondent 

   0    1    2    3    4    5    6 

   0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

   1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

   2 0.0 0.0 0.0 0.1 0.1 0.1 0.1 

   3 0.0 0.0 0.0 0.3 0.3 0.3 0.3 

   4 0.0 0.0 0.0 0.6 0.6 0.6 0.6 

   5 0.0 0.0 0.0 1.0 1.0 1.0 1.0 

Column Average 0.0 0.0 0.0 0.333 0.25 0.2 0.167 

We can compute such a table and the Shapley contributions for any depth, using 

                                    where   is the depth of the TURF. Even 

without taking the shortcut directly to    , the full hypergeometric table can be easily 

computed in trivial time (~0.1 second for n=200 on a slowish laptop using R, for 

example). 

Better still, we can extend this idea to other vaguely TURF-like value functions. 

Suppose we want to consider a combination successful only if it includes all a 

respondent’s hits, rather than just one or just   as in TURF. (This might be appropriate if 

the items are features and we believe a respondent will not buy a product that doesn’t 

include all the features she wants.) Then we can use 

                                    to populate the table, reflecting that all     

other hits must be in a combination for the one of interest to “score the win.” 
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Or, suppose we will consider a combination a success if and only if it has more hit 

items than non-hits, a “majority” rule. Then we can use 

                                           to populate the table, reflecting that to 

score the win, an item must be added to a combination that already has as many hits as 

half the new combination size, rounded down. The twist in this case is that adding a non-

hit can take away success, so we also need to use a parallel table for non-hits, producing 

negative Shapley Value contributions, using 

                                           as the size-specific entries. 

Suppose we want a “non-excess” valuation that requires a combination to contain 

only hits, or have at most   non-hits (a depth-like notion). Here we can just reverse the 

original 0/1 TURF data (to 1/0), conduct a standard TURF and change the sign of the 

Shapley Values to negatives. 

Or suppose we want a standard depth=3 TURF but with partial credit (1/3 reach for 

one hit, 2/3 for 2, full reach for 3 or more). We can use 

                                            

                                         

                                         

giving 1/3 credit if there are no other hits in a combination being added to, 1/3 if there is 

one and 1/3 if there are two. All sorts of variations are possible! 

In general, there is a good chance the hypergeometric shortcut will work with any 

value function that is “steppy” (i.e., either 0 or 1 and changing all at once as in standard 

TURF, or changing to only a few different values as in the depth=3 partial credit example 

just above, or perhaps values of -1, 0 or +1) and which treats all items equally or 

interchangeably.
7
 One need simply work out the combinatorial algebra and what the 

correct arguments for the hypergeometric probability formula are.
8
 

THE BUSINESS ISSUE 

The multiplicity of options for the value function highlights a major business issue as 

well. Standard TURF is a well-known, widely implemented value function for 

combinations, but it is definitely not the only option and often not the most appropriate 

one. Business needs, not computational convenience, should drive the selection of a value 

function. “Combinations” do not automatically imply “TURF”! And neither do non-

TURF choices automatically imply computational problems. 

                                                           
7 Treating the items equally excludes MaxDiff data, for example, where each item has its own unique contribution rather than simply 

being a hit or non-hit. 
8 In R, the dhyper function will handle the computations. In Excel, one must compute using the COMBIN function for each of the 

three elements of the hypergeometric probability formula. In Excel, various kinds of errors are likely in the corners and edges of the 

hypergeometric table, for impossible situations like the probability of two hits in a combination of size one, or the probability of 

two hits in a combination when the respondent only has one hit in total. IFs and similar conditional logic are needed to handle 
these; in R, dhyper automatically deals with those cases appropriately. 
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RESTRICTED-SIZE SHAPLEY VALUES 

Thinking about the table of hypergeometrics suggests an interesting variant on 

Shapley Values, based on only some sizes of combinations. If we have 20 items, say, but 

are interested only in good combinations of 5 to 8 of them, why should we care how 

much an item contributes when added to a combination of size 18? We can easily modify 

the short-cut computation to average only the rows of the table we care about. 

Omitting larger combinations seems an intuitively obvious idea. Whether to omit 

combination sizes smaller than we care about is not so clear-cut, at least to this author, 

but we might wish to do that as well. We might even want to compute “Shapley Values” 

based on a single row of the hypergeometric table, so they apply to item contributions to 

a single size of combination. 

This sort of restriction undoes many (all?) of the mathematical axioms from which 

Shapley Values were derived in game theory. Out of respect for Lloyd Shapley, we 

shouldn’t call such things Shapley Values. But whatever the name, the idea seems like it 

might be useful. 

In limited experimentation, the author has found that doing this changes the order and 

relative size of the resulting “Shapley Value-like numbers” remarkably little.
9
 That is 

particularly true for large   and low-depth TURF analyses, since large combinations are 

likely to include hits already and contributions to them are quite small. Less obviously, 

excluding smaller combinations also seems to have little effect, albeit more than 

excluding the larger ones. 

Interested readers may wish to pursue this further. If so, the hypergeometric table 

approach makes it easy to do so. 

SAMPLING COMBINATIONS 

Some value functions won’t lend themselves to the hypergeometric short-cut and we 

are stuck working with the standard formulae. Sometimes the number of items is too 

large for full enumeration and evaluation. What then? We can work with random 

subsamples of all possible combinations. This subsection considers a few relevant details. 

First, we need not feel shy about the sampling idea. There are 608 billion 

combinations of 18 items out of 43; it would be silly to worry about them all. We can 

subsample 10,000 or 100,000, be working with a far larger sample than we ever have of 

respondents, and still handle the computations easily. 

Second, we should not simply “subsample all possible combinations.” Recall that the 

Shapley Value is an equally-weighted average of results for all combination sizes. 

Clearly, we should consider each size separately (stratify by size, if you will) to avoid the 

possibility of things like omitting the single null combination. There are few 

combinations in the small sizes, and few of the largest as well. For these, we can easily 

enumerate and evaluate all the possibilities without sampling. 

                                                           
9 Doing this does change the absolute size of the Shapley Values. Contributions for large combination sizes are often quite small; 

eliminating them increases the average contributions of the remaining ones. The sum of the true SVs over all items is always the 
maximum reach for all items together, but this sometimes-important property is destroyed by restricting the range of sizes used. 
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Third, we have two options as to what part of the formula we sample for. The key 

term in the formula is               . An obvious idea would be to draw a sample of 

combinations of size    , then add item   to each one, and evaluate both the sampled ones 

and the “plus  ” ones. This is statistically efficient in that we are directly sampling the 

differences that go into the Shapley Value contribution. But it is computationally messy. 

For each item, we need a separate sample   of combinations that don’t include  . And that 

is true for each combination size we are sampling for. We can spend a great deal of time 

generating subsamples and evaluating combinations.
10

 

A different approach is to sample a large number of combinations of size    , 
including ones that contain item  , and a large number of size      , again including 

ones that include item   (as well as ones that do not). Then we can compute an average 

value for      using only the half (or so) of the combinations that don’t include  , and an 

average value for           using only the half (or so) of the combinations in the larger-

sized sample that do include  . Instead of estimating the average difference directly, we 

estimate the averages and compute the difference. 

The advantage of this approach is that we can generate and evaluate the samples of 

each size just once, not separately for every item. The computations for a given item need 

only subset the combinations in which it did or did not appear, take averages and subtract 

them. This is extremely fast. The disadvantage is that we introduce extra variance into the 

computation—the two samples of adjacent sizes are not matched as in the first option—

so results are less accurate. The process is unbiased, however, so we can fix the variance 

problem by simply using larger subsamples. Even with far larger samples, say 10 times as 

large, overall computation speed can be far faster with the second option. 

If we want to get fancy, we can combine the approaches. Consider using the first 

option, sampling the differences directly, with a sample size of 1,000 differences, say, for 

a few (equally-spaced) combination sizes and several items (chosen randomly, separately 

for each size), as a sort of calibration run. Compute the variances of the mean differences 

during the process. Then, for the same sizes and items, use samples of 10,000 per size to 

compute using the second option. Again, compute variances (the variance of the 

differences now being the sum of the variances of the two averages). Compare the 

variances to determine what ratio of sample sizes between options would make them 

about equal. Results will vary by size and item; take the largest such ratio (or at least 

some largish one). Apply that ratio to determine how large the samples for the second 

option should be to match whatever size would feel comfortable for the first option. This 

author would skip all this and just use ten times the sample for option 2, and probably 

think in terms of final sample sizes of 100,000 not being that computationally onerous. 

For any sizes for which there are fewer than 100,000 combinations, full enumeration 

would be used, of course. 

A final detail concerns the mechanics of how to sample combinations. R provides 

functions that will generate all possible combinations, and then sample from them 

without replacement, all in one line of code. That seems nice, but is unworkable because 

                                                           
10 Clever programming can alleviate the subsample generation issue—we can sample combinations of n-1 items and then simply 

relabel items for each successive i. This does not change the number of combinations for which we must evaluate the value 
function, however, so is not a huge improvement. 
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generating all possibilities exceeds memory and CPU capabilities in the first place (in 

large problems). The R code accompanying this paper uses a well-known single-pass 

sampler to sample   of   items without replacement, thereby creating one random 

combination of size  , but draws 100,000 (say, or whatever number is desired) 

combinations that way vectorized in parallel. This is very fast, but does not prevent 

generation of duplicate combinations. The code then has various options to identify and 

drop duplicates. Usually, the best option is to ignore them. They are computationally 

tedious to find and drop or replace. While their presence may increase variance a tiny bit, 

it does not affect bias. If we sample 100,000 combinations of the 608 billion mentioned 

earlier, for example, there is less than a 1% chance of even a single duplicate in the first 

place. 

MAXDIFF, TURF AND SHAPLEY VALUES 

“TURF” is often applied to MaxDiff data; the quotes around TURF signal that what 

goes by that name is not actually TURF in the usual sense. This section discusses how 

that is done, how Shapley Values relate and do or do not help with that form of TURF, 

and what their usefulness or lack thereof in that case indicate about the underlying 

analysis. 

As in any TURF, TURF on MaxDiff seeks to find the “best” combination of items of 

a given size. However, MaxDiff data is not 0/1 like TURF data is, so we must modify the 

standard TURF definition of combination value (i.e., the unduplicated reach) in some 

fashion. We will consider three general options. See Howell (2016) for a related 

discussion, including TURF options available in Sawtooth Software’s MaxDiff Analyzer. 

DISCRETIZING THE MAXDIFF DATA 

First, we can turn the respondent-level MaxDiff results into the usual 0/1 TURF data 

by applying some form of threshold cutoff. We might say that any item with a posterior-

mean utility above some arbitrary cutoff   is a hit and the rest are not. Or we could apply 

the threshold cutoff to the items’ scores instead of to the utilities. Or we might base a 

cutoff on ranks, saying the top-scoring   items for each respondent are hits, while the 

rest are not.  

Once this is done, we have a completely standard TURF problem, and everything 

discussed up to this point would apply to the TURF analysis and its Shapley Values, 

including the hypergeometric-based fast computation trick. This is an easy option, but it 

raises the question of why we bothered with MaxDiff and its scaled measurement if all 

we will use is a discretized 0/1 version of it. It also requires an arbitrary choice of cutoff, 

  or  . 

WEIGHTED PROBABILITY SCORING 

A second option is to say that the value function will be a “weighted probability” 

based on the item scores in a combination. There are various ways of transforming item 

utilities (interval-scaled, negative and positive) into scores (ratio-scaled, positive). All 

begin by exponentiating the utilities. Three important options are described below, 
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followed by an explanation of how to turn any of them into a weighted probability for a 

combination. 

The simplest scoring method is to sum the exponentiated utilities across items and 

repercentage, so that they add to 100% or 1.00. If   is the set of all items,    is the utility 

for item   and            is its exponentiated utility, then the score for item  ,   , is 

              . This “MNL approach” corresponds to calculating the probability that 

each item would be chosen as the best, from a choice set of all the items. No particular 

utility centering is required. 

Another scoring option, the current default in Sawtooth Software’s MaxDiff software, 

is to divide each exponentiated utility by itself plus    , so                 . 
Here,   is the number of items in the original MaxDiff tasks. This represents the 

probability of the item being chosen as the best from a task with   items, one being this 

item and the others being     hypothetical items of “average” strength. This approach 

requires that the utilities be zero-centered before exponentiating (they usually already are 

by default). 

With anchored MaxDiff, a natural scoring is an exponentiated utility divided by itself 

plus 1,               . This represents the probability of the item being chosen over 

the anchor (which is typically some version of none, not important, or would not buy or 

want), assuming that the utilities are scaled to make the anchor’s utility zero before 

exponentiation (which is the usual default in anchored MaxDiff).  

Any of these scoring approaches for a single item can be extended into a “weighted 

probability” value of a combination. One simply replaces the exponentiated item utility 

   in any of them by the sum of the exponentiated utilities for all items in the 

combination. The weighted probability score represents the probability that one of the 

items in the combination would be chosen as best, in that scoring method’s context (i.e., 

vs. all other items, vs.     average items or vs. the anchor). The weighted probability 

score then becomes the value function for the combination and the “TURF” search is then 

for the combination of a given size with the highest weighted probability. 

Do Shapley Values add anything to a TURF based on weighted probability MaxDiff 

scores? Consider first the MNL approach version. Here, the combination scores are the 

straight sum of the individual item scores
11

. When Shapley Values are computed, the SV 

computation process, of subtracting the before-item combination score/value from the 

after-item one, exactly reverses the summation process that creates the combination 

scores. So, the Shapley Values are algebraically identical to the original item mean 

scores!  

Shapley Values add nothing to our knowledge or insight in the MNL scoring case. 

Further, there is nothing interesting about the best combinations—if combination scores 

are just the sums of the item scores, then the best combination will always be that of the 

best individual items.
12

  

                                                           
11 The MNL scoring case is not one of the “weighted probability” options offered in Sawtooth Software’s MaxDiff Analyzer 

implementation of TURF, for reasons that will become apparent.  We consider it here for its expository value. 
12 Much the same is true for frequency in a standard (i.e., non-MaxDiff) TURF analysis. Neither TURF nor Shapley Values add any 

information beyond the original item mean frequencies. That is one reason that frequency tends to be ignored when TURF is used. 
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What about the average and anchor scoring approaches? In each of these, the 

combination scores are non-linear (but strictly monotonic and very smooth) 

transformations of the sums of the item scores. So, the identity between original item 

means and Shapley Values does not hold, and the best combinations are not guaranteed to 

be those of the best individual items. The continuity and non-linearity mean that the 

hypergeometric short-cut trick won’t help us, but we can always compute SVs by brute 

enumeration or sampling, depending on problem size. 

But, consider the shape of these non-linear transformations of total item scores, as 

illustrated in Exhibit 9.
13

 What we see is that while the average and anchor weighted 

probability scores are not linear, they are not that far from it. 

This implies that Shapley Values computed from them will be approximately 

proportional to the original item mean scores. And that implies that, as in the MNL 

scoring case, the Shapley Values will add little new information. Perhaps more 

importantly, it implies that the best-scoring combinations will rarely be anything other 

than the best individually-scoring items. That, of course, calls into question the entire 

value of any weighted probability approach to TURF on MaxDiff. 

RESTORING THE THRESHOLD IN TURF 

A third way to implement TURF for MaxDiff data is to calculate the weighted 

probability scores as above, but not use them as the final value function. Instead, we 

return to the reach/non-reach “threshold” idea of TURF by establishing some cutoff  , 

and saying that a combination achieves reach (i.e., has a value function of 1, as opposed 

to 0) if the weighted probability exceeds the cutoff. 

Exhibit 10 illustrates the resulting value function, based in this case on the anchored 

scoring curve (it will work similarly with any of the three scoring approaches discussed, 

and others as well). Note that it restores the curve shape illustrated back in Exhibit 7. As 

with the weighted probability approach without a threshold, computing Shapley Values in 

this situation requires enumeration or sampling, with no help from the fast 

hypergeometric short-cut. 

                                                           
13 The vertical scales in Exhibit 9 are different for each curve, to allow us to approximately superimpose the curves and compare their 

shapes, independently of their general slopes. 
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Like the straight weighted probability approach, this has the advantage of preserving 

and respecting the original continuous MaxDiff data. But it is also more like classic 

TURF in that “reach” is either achieved or not. It does require an arbitrary choice of 

cutoff  , but that choice is closely analogous to choosing the depth in a standard TURF, 

and not unnatural in a TURF context. 

In this author’s opinion, this is the only approach for which the term “TURF on 

MaxDiff” is particularly appropriate. We might call the discretization approach “TURF 

on ‘MaxDiff’”—real TURF, but on severely degraded MaxDiff data. We might call the 

straight weighted-probability-as-value approach “‘TURF’ on MaxDiff”—it respects the 

MaxDiff data but uses a value function with little resemblance to standard TURF. 

CONCLUSIONS: TURF AND SVS ON MAXDIFF DATA 

As just stated, only some form of thresholding on some version of a weighted 

probability score seems worthy of the term TURF on MaxDiff. But, does that mean that 

is the right approach to use? Not necessarily. 

The key issue in choosing a value function is not whether it is worthy of some label, 

but whether it makes sense in the actual business case. Does the thresholding feature of 

TURF make sense? Sometimes yes, but quite often no. 

There is natural appeal to the idea that we should devote resources to raising some 

consumers above some minimum standard or barrier before we further impress, satisfy or 

delight those who are already there. From that standpoint, thresholding makes sense. On 

the other hand, saying that improvements are worthless unless they drag us across some 

arbitrary line makes little sense. (Note that that is one of the prime criticisms of Net 

Promoter Scores.) From the latter viewpoint, weighted probability scoring without a 

threshold is a perfectly reasonable idea. In the original TURF application of media 

exposures, exposed-or-not is a clear-cut distinction. In many modern marketing 

applications of TURF there is no bright line, so a “reach” threshold may be entirely 

artificial. This is often true for TURF on standard 0/1 data as well and is only partly cured 

by looking at multiple depths of analysis. 
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If we do think a weighted probability value (i.e., without threshold) is appropriate, 

thinking about the behavior of Shapley Values in that case does suggest that TURF 

analysis will add little insight, as the value of any combination generally tracks the total 

value of its component items. And the Shapley Values themselves will add little beyond 

the original mean item scores. Simply working with original item scores may be the best 

course. 

SUMMARY 

Shapley Values can be easily understood as average item contributions over 

orderings, a useful paradigm in the context of things like key driver regressions that have 

a natural ordering interpretation. They are also average item contributions to 

combinations, with all combination sizes weighted equally, a useful viewpoint in the 

context of TURF and many common marketing research applications. 

Their usefulness is in reducing a sea of combination tallies to a manageable summary 

per item, providing a more compact, insightful and memorable overview of what is going 

on with the combinations. Even when a list of best combinations is what is ultimately 

needed, the Shapley Values can provide a helpful road map to the data. Shapley Values 

are also more stable than TURF results, facilitating tracking and subgroup comparisons. 

Computation of Shapley Values need not be daunting. Small problems can be brute-

forced easily. Large ones can always be attacked with sampling of combinations. In many 

TURF-like cases, an exact, ultra-fast computation can be done. 

A central idea in applying Shapley Values is that of the value function—how do we 

quantify the “goodness” of a combination? Unduplicated reach as in TURF is a very 

common answer, but by no means the only one and very often not the best one. The 

Shapley Value idea applies to any value function (so does the TURF notion of searching 

for the best possible combination). It is crucial to consider the underlying business issue 

when deciding what value function makes sense. 

Thinking about how Shapley Values behave in the context of TURF on MaxDiff data 

using weighted probability approaches suggests that they add little, and in fact that such 

TURF on MaxDiff approaches are unlikely to reveal very much. Using a thresholded 

form of value function would help that problem, but to reiterate, it is the business issue, 

not the analytical details, that should decide how we value a combination. 

About half the conference attendees indicated they had used Shapley Value analysis at 

least once. That is more than this author had expected, but he believes they could be even 

more widely useful and hopes this paper will facilitate and encourage that use. 
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 David Lyon 

APPENDIX: SOFTWARE FOR SHAPLEY VALUES, AND TURF 

The R package relaimpo will do Shapley regression, as for key driver regressions. 

Use type=“lmg” for average r-squared contributions. Although efficiently and 

strategically implemented, it does evaluate all possible combinations (not orderings), so 

run times become unreasonable on a PC after 25 or fewer items, and roughly double with 

each additional item. 

R package turfR by Jack Horne will perform TURF analyses, for not-too-large 

problems, but does not do Shapley Values. The turfR code is faster than that provided 

with this paper, but at the cost of very high memory use that limits the problem size. A 

different, earlier, R package named simply turf is not particularly useful. 

The author’s R code was distributed at the conference with the slide handouts and is 

available from the Sawtooth Software website at 

http://sawtoothsoftware.com/download/lyon2018.zip, or by email request to the author at 

dlyon@aurora2000.com. (The version with the first handout distribution was incomplete; 

later versions were OK, but downloading it from the URL will guarantee having the most 

up-to-date version.) It includes Shapley Value computation routines using full 

enumeration and evaluation, and others using sampling of combinations, that work with 

any user-supplied value function (referred to as “a scorer” in the code comments). It also 

includes code to implement the hypergeometric fast computation approach for TURF of 

any depth, readily modifiable for many other value functions. It also includes a scorer for 

TURF of arbitrary depth, one for coverage, and some MaxDiff-relevant routines. All 

these routines generally handle weighted data. 

REFERENCES 

Conklin, Michael and Stan Lipovetsky (2000), “A New Approach to Choosing Flavors,” 

Advanced Research Techniques Forum presentation, Monterey. 

Conklin, Michael and Stan Lipovetsky (2005), “Marketing Decision Analysis by TURF 

and Shapley Value,” International Journal of Information Technology & Decision 

Making, volume 04, pp. 5–19. 

http://sawtoothsoftware.com/
mailto:dlyon@aurora2000.com


36 

Conklin, Michael and Stan Lipovetsky (2013), “The Shapley Value in Marketing 

Research: 15 Years and Counting,” Proceedings of the 2013 Sawtooth Software 

Conference. 

Conklin, Michael and Faina Shmulyian (2012), “Portfolio Management: Combining 

DCM and Shapley Value Line Optimization,” Advanced Research Techniques Forum 

presentation, Seattle. 

Cortese, Ben (2018), “Bayesian Network Key Driver Analysis,” Proceedings of the 2018 

Sawtooth Software Conference (this volume). 

Howell, John (2016), “A Simple Introduction to TURF Analysis,” Sawtooth Software 

technical paper. 

Johnson, Jeff and James Lebreton (2004), “History and use of relative importance indices 

in organizational research,” Organizational Research Methods, vol. 7, pp. 238–257. 

Kruskal, William (1987), “Relative Importance by Averaging over Orderings,” American 

Statistician, February 1987, pp. 6–10. 

  



37 

FDA SEEKS PATIENT PREFERENCE INFORMATION TO ENHANCE 

THEIR BENEFIT-RISK ASSESSMENTS: CASE STUDIES 

LESLIE WILSON 
UNIVERSITY OF CALIFORNIA, SAN FRANCISCO 

JORDAN LOUVIERE 
 UNIVERSITY OF SOUTH AUSTRALIA 

 

The inclusion of the patient voice in shared health care decision-making has 

progressed from the physician’s office to the regulatory approval of medical devices. The 

FDA Patient Preference Initiative is expanding the need for patient preference research 

and the frameworks that can support the conduct of discrete choice experiments in the 

health care market. It is important to understand the growth of patient preference research 

within the FDA and to understand how their design needs are developing through 

exploring a few examples of the use of patient preference in FDA approval decisions. 

The goal of this paper is to describe the landscape for patient preference studies in 

FDA regulatory decision making and to present case studies of different discrete choice 

methods of patient preference that are used and planned for use in FDA regulatory 

decisions for medications and devices. 

FDA LANDSCAPE: THE PATIENT PREFERENCE INITIATIVE 

Recent amendments to the Prescription Drug User Fee Act (PDUFA) required the 

FDA to include patient preference in its structured benefit risk framework. In 2013, the 

FDA launched the Patient Preference Initiative to incorporate patients’ views as scientific, 

empirical evidence when appropriate, to their decisions (US Food and Drug 

Administration). To implement this development, the FDA Center for Devices and 

Radiological Health (CDRH) and Center for Biologics Evaluation and Research (CBER) 

first collaborated with the Medical Device Innovation Consortium (MDIC) to develop a 

framework report “A Framework for Incorporating Information on Patient Preferences 

Regarding Benefit and Risk into Regulatory Assessments of New Medical Technology” 

published in May 2015 (Medical Device Innovation Consortium, 2015). This framework 

included a catalogue of methods for assessing patient preference, an analysis of gaps in 

current assessment methods and an agenda for further research and was the basis for the 

CDRH/CBER publication of a draft guidance effective from October 2016 (Center for 

Devices and Radiological Health, 2016). This FDA guidance defined patient preference 

information as the “qualitative or quantitative assessments of the relative desirability or 

acceptability to patients of specified alternatives or choices among outcomes or other 

attributes that differ among alternative health interventions” and described different 

approaches currently available to quantify and collect patient preference information 

(U.S. Department of Health and Human Services #1, 2016). These approaches included 

quantitative discrete choice measures such as choice-based conjoint analysis and best-

worst approaches. CDRH also began collaborations with preference researchers to initiate 

case examples of patient preference for devices considered “preference-sensitive.” 
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Preference sensitive conditions are those where clinical evidence does not support a 

single option and the appropriate options depend on the values or preferences of the 

beneficiary (U.S. Department of Health and Human Services #1, 2016). 

The FDA regulatory division for drugs, Center for Drug Evaluation and Research 

(CDER), initiated a more qualitative approach to including preference into their 

regulatory decisions. They initiated their Patient-focused Drug Development (PFDD) 

approach with a goal to better incorporate the patient’s voice in drug development and 

evaluation. Their efforts included FDA-led disease-specific PFDD meetings to obtain the 

patient perspective. To date they have conducted and posted reports on 22 of these public 

meetings (US Department of Health and Human Services #2). 

Finally, the CDRH, CBER, and CDER supported a workshop with the five Centers of 

Excellence in Regulatory Science and Innovation (CERSI) centers titled “Advancing Use 

of Patient Preference Information as Scientific Evidence in Medical Product Evaluation” 

(US Department of Health and Human Services #3). The CERSI centers are 

collaborations between Academic Institutions and the FDA to advance regulatory science 

through innovative research, education and scientific exchanges and are acting to support 

the FDA’s patient preference initiative (University of California, San Francisco). 

The pharmaceutical industry also is exploring how they can incorporate patient 

preference into their drug development process with the initiation of a public private 

partnership called PREFER. This is a five-year research project to assess when and how 

patient preference on benefits and risks should be incorporated into decisions on 

medicinal products. This initiative has 3 parts: Part A: Literature reviews and interviews 

to gain insights from all stakeholders on needs and methods, Part B: Testing preference-

elicitation methods in clinical case studies, and Part C: Developing recommendations and 

guidelines for design, conduct, analysis, and reporting of patient preference studies for 

industry, regulatory authorities and HTA bodies around patient preference (PREFER, 

2017). 

The FDA is encouraging the use of patient preference information throughout the 

health care and product life cycle beginning with device developers and patient groups 

and extending to manufacturers and FDA regulators. All of these developments can result 

in an explosion of discrete choice patient preference experiments in the health care 

marketplace. The following case studies can provide examples of how patient preference 

experiments for healthcare decision making around risk and benefit rather than price are 

unique in sampling, design, and attribute selection. 

CASE STUDIES 

We present case studies of three health interventions where patient preference was 

used in FDA decision making, the methods used, their results and the impact on FDA 

decision making: 1) Treatments for Multiple Sclerosis, 2) Duchenne’s Muscular 

Dystrophy (DMD), and 3) EnteroMedic’s Maestro obesity device. We will also describe 

the development of a choice-based conjoint measure for use in future CDRH decision 

making for Upper-Limb Loss Prosthetic Devices in collaboration with the FDA and 

describe its focus on validity testing of discrete choice measures. 
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Multiple Sclerosis and Strength of Patients to Recall a Drug 

One of the first examples of the ability of patients’ views to affect regulatory 

decisions was for disease modifying therapies (DMTs) for patients with relapsing-

remitting multiple sclerosis (RRMS). MS is an autoimmune disease affecting about 

400,000 people in U.S. After a long period with little advance in MS treatments from the 

use of alpha and beta interferons (Durelli L. et al., 1995), a new drug, Natalizumab 

(Tysabri 
TM

), was approved in November 2004. This drug had a dramatically better 

clinical outcome for RRMS, including a 42% reduced risk of disability progression, 

improved cognitive performance and 66% fewer relapses (Klawiter E.C. et al., 2009). 

Some patients’ response to this treatment allowed them to stop using a wheelchair for the 

first time. After just 4 months on the market, however, there were rare documented cases 

of progressive multifocal leukoencephalopathy (PML) a CNS disorder which results in 

severe disability or death (Wenning W. et al., 2009) and in consultation with the FDA, the 

manufacturer voluntarily withdrew the drug from the market in February 2005. However, 

this resulted in a change of treatment for many patients who were currently appreciating 

the full and sometimes dramatic benefits of the new treatment. Through their patient 

advocacy organization (the National MS Society, NMS), these patients voiced their 

concerns about the sudden drug withdrawal, suggesting that for some the benefits were 

worth the risks and that each patient should be able to weigh these risks and benefits for 

themselves. NMSS commissioned a national survey to probe the level of risk 810 people 

with MS were willing to take in their use of Tysabri if it went back on the market. 

Opinions were evenly distributed from very positive to very negative, with half offering 

no definite opinion about the drug’s return to the market and ranged from immediately to 

more than 1 year in how long they would wait to use it (MS Society, March 8, 2006). 

This public pressure, however, led to the return of Tysabri to the market in March under a 

“Black-box” warning of the risks of PML and a requirement for patient registration into a 

program to inform patients of the risks and to ensure safe use of the drug.  

Only one other prescription drug has ever returned to market after being pulled 

because of dangerous side effects, making RRMS treatments one of the earliest 

preference sensitive conditions with large benefits, and very small but devastating risks 

where regulators listened to the patients’ voice. In the meantime, there were many patient 

preference studies conducted to begin to document patients’ risk-benefit trade-offs 

(Shingler S.L. et al., 2013; Johnson F.R. et al., 2009; Paulos C. et al., 2016; Utz K.S. et 

al., 2014; Rosato R. et al., 2015; Wicks P. et al., 2015). Wilson et al. published two papers 

describing RRMS patient preferences across the full range of DMTs. They found that 

patients were willing to accept 0.08% severe risk of death or severe disability for a year 

delayed relapse, and 0.22% for a 4 versus a 2 year prevention in progression (Wilson L. 

et al., 2014 and Wilson L. et al., 2015). Interestingly, patients indicated that they were 

willing to accept more risk than actually was demonstrated by the current DMT PML risk 

(1/1,000), depending on the benefit gained. They also found that how patients feel (i.e., 

symptom improvement) was the most preferred among all other DMT benefit attributes 

studied, despite this not being a proven benefit of clinical trials at the time.  

All of these patient preference studies were helpful in demonstrating that patients’ 

views were variable and often were less risk averse than the FDA and physicians 

expected. Currently more is known about PML and patients can be tested to better 
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identify a more personalized risk profile. In addition, more DMTs with different risk 

profiles are now available to choose from. This MS case study, though, is the first and an 

important example of how the FDA, disease societies and patients can learn from each 

other once the patient voice is examined, especially when using quantitative methods of 

discrete choice surveys. 

Duchenne’s Muscular Dystrophy: The Strength of Patient Advocacy 

Duchenne’s Muscular Dystrophy (DMD) is a genetic disorder characterized by 

progressive muscle weakness and degeneration. It is caused by a mutation in the gene 

encoding the dystrophin protein which is critical to muscle integrity. The onset is 

primarily in males beginning around 3-5 years of age and most die in their 20s. Current 

treatment is corticosteroids, with no specific FDA approved treatment for DMD. The 

FDA (CDER), through the Patient Preference Initiative, is conducting public Patient 

Focused Drug Development meetings for 20 conditions to obtain patients’ views on 

living with their illness, the symptoms, the treatments, their values for living with the 

disease and their willingness to join a clinical trial. DMD was not one of the diseases 

chosen nor were other relatively rare diseases. Therefore, the Parent Project Muscular 

Dystrophy (PPMD) advocacy organization partnered with patient preference researchers 

to conduct a patient preference study to complement these meetings. Peay et al. (2014) 

conducted a Best-Worst Scaling caregiver preference study to explore their preferences 

for emerging treatments for DMD and to highlight principles of patient-centered 

outcomes research with an advocacy organization’s leadership (Peay et al., 2014). Among 

the 119 DMD caregivers, treatment effect on muscle function, risk of heart arrhythmia, 

and risk of bleeding were the most important attributes and having additional post 

approval data was the least important variable. This demonstrated their views of the 

importance of promoting patient-centered drug development with shorter development 

times, and willingness to accept unknown risks for the ability to try an unproven 

treatment. 

Hollin I.L. et al. (2015) conducted a follow-up study comparing two stated-preference 

methods, best-worst scaling (BWS) and conjoint analysis (CBC) applied across DMD’s 

potential treatments (Hollin I.L. et al. 2015). The BWS attributes were 1) speed of 

progression of weakness, 2) gain in lifespan, 3) amount of post-approval drug 

information available, 4) loss of appetite, 5) increased risk of bleeding, and 6) increased 

risk of heart arrhythmia. They found that those affected by life threatening and 

debilitating illness are willing to accept risks and uncertainty about those risks (Hollin 

I.L. et al., 2015). They also demonstrated that the BWS and CBC approaches gave 

similar preference results (p<0.01). The CBC results demonstrated that patients were 

willing to exchange high probabilities of side effects and additional blood draws to 

maintain cough strength for 10 years (Hollin I.L. et al., 2015). In addition to these 

quantitative studies demonstrating patient preferences, the patient advocacy group also 

developed the first proposed draft guidance document for industry for submission to the 

US Food and Drug Administration. The FDA embraced this work and collaboratively the 

FDA and CBER published this DMD Final Guidance for Developing Drugs for 

Treatment on February 2018 (US Department of Health and Human Services #4). The 

goal of this Guidance was to assist drug companies in the clinical development of drugs 
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for the treatment of DMD and related diseases. This is the first time, however, that a 

proposed draft guidance was independently prepared by an advocacy group and shows 

the strength of patient advocacy to use discrete choice measurement to affect drug 

development in a new way. 

Implanted Devices to Promote Weight Loss: Use of Patient Preference in 

Device Approval Decisions 

A third case example, for a vagus nerve gastric stimulator device surgically implanted 

for weight loss in “obese” subjects, demonstrates the value of patient preference 

information as a primary factor in the approval process for devices. Drs. Ho et al. (2015) 

conducted a CBC in 500 obese patients from an online panel representative of the 

demographics of the U.S. obese population, stratified by body mass index (BMI) (Ho 

M.P. et al., 2015). They selected and carefully defined eight attributes descriptive of the 

risks and benefits of all types of surgically implanted bands and pilot tested the attributes 

with face-to-face interviews. Risk attributes included mortality, adverse events, and need 

for hospitalization, while benefits included relative weight loss amount and duration, and 

improvement in comorbidities associated with obesity. Other key attributes were type of 

surgical procedure and diet restrictions required with the device use. They found that 

patients were willing to trade off a 0.01% mortality risk for a 10% total body weight loss 

lasting for 5 years (Ho M.P. et al., 2015). This CBC information was used by regulators 

as primary evidence to make the approval decision for the EnteroMedics’s Maestro 

Rechargeable System implantable device. This device is unique in electrically stimulating 

the vagus nerve to indicate to the brain that the stomach is full, compared with the other 

two weight loss devices the FDA has approved, Lap-Band Gastric Banding System, and 

Realize Gastric Band which both physically restrict the ability of the stomach to contain 

food. The Maestro device trial demonstrated safety, but did not meet its primary endpoint 

to reach a 10% difference in weight loss at 12 months compared to the sham control 

group, but was approved anyway. Approval of this device was therefore based in large 

part on the patient preference results which demonstrated that a large portion of obese 

patients would accept the risks associated with a surgically implanted device if they lost a 

sufficient amount of weight. This was the first quantitative patient-preference study 

designed and used to support a regulatory approval decision by FDA Center for Devices 

and Radiological Health. 

Based on this work, researchers also developed an online study tool to define 

minimum clinical effectiveness that can be used to inform future benefit-risk assessments 

for other pre-market approvals of weight-loss devices. Determination of the “minimum 

clinical effectiveness” value is especially important to regulatory reviewers as it is used 

when designing clinical studies to both size the studies and to decide whether the benefits 

of the treatment outweigh the risks for market approval. They used their CBC results to 

build a MaxR-MinB calculator that could be used across weight-loss devices to help 

CDRH reviewers determine MaxR and MinB of an average patient as well as an early 

adopter of a device that provides a given weight loss and poses a mortality risk. Given 

this type of information, the FDA stated that they might consider approving a device only 

for risk-tolerant patients, and indicate these limits in the device label. This study provided 

a “proof of principle” to support FDA Guidance documents about the use of patient 
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preference evidence for device decisions. This example is likely to lead to more demand 

for patient preference information to support device development and approval. 

Prosthetic Devices for Limb Loss: Preparing for Approval of the First 

Implantable Components for Prosthetic Devices 

The FDA Guidance on patient preferences for use in approval decisions and the 

success of their first CBC study for the gastric weight-loss device encouraged the CDRH 

to continue case studies to support continued use of qualitative preference measurement 

approaches. But CDRH recognized that they also needed information on the validity of 

these methods. They provided grant support to Wilson L. through the UCSF/Stanford 

CERSI center to examine the validity of different preference measurement approaches in 

a preference sensitive condition that was experiencing fast innovation, limb prosthetics. 

Two main innovations were being developed for the first implantable prosthetic 

components. These devices were preference sensitive because up to 70% of patients with 

upper limb loss reported not using their prosthetics despite their initial adoption (Ziegler-

Graham K. et al., 2008; Raichle K.A. et al., 2008). It is essential to know how patients 

weigh risks and benefits of new prosthetic innovations for regulatory decisions.  

The two innovations that received funding for quantitative preference studies were 

osseointegration and myoelectic control. Osseointegration is a new prosthetic attachment 

technology which surgically implants a titanium post into the bone which then anchors by 

growth of bone and tissue around it. The device eliminates the need for a heavy shoulder 

harness and socket and its problems with fit and skin abrasion, and allows a better range 

of motion and enhanced feeling of device integration. However, osseointegration 

implantation also requires two surgical procedures and a continual risk of infection 

around the post. Myoelectric control devices are implanted electrodes which detect 

minute muscle, nerve and EMG activity to control prosthetic limb movements. They offer 

more natural and accurate motions, but also add weight, may require surgical 

implantation of sensors, and require substantial training for successful use. Because there 

is no established regulatory paradigm for either of these devices, they are an ideal case 

study for preference assessment and validation. 

We worked with the FDA, prosthetists, prosthetics device developers and upper limb 

loss patients to select the 10 most important attributes for these devices. We used a 

modified meta-ethnography approach to select the attributes and define them 

conceptually. This technique involves a process of sorting relevant literature and patient 

findings/statements into patterns of evidence and evaluating their importance at deeper 

and deeper conceptual levels. We pilot tested our attribute selections in pairs of 

specialists of different stakeholders which allowed us to slim the list of attributes to 9 and 

to clearly define them and the 3-4 risk and benefit levels of each. Our risk attributes were 

need for surgery, risk of infection, probability of experiencing daily pain, and risk of 

complete loss of prosthetic use. Beneficial attributes included improved grip, improved 

range of motion, ability to feel sensations, and feelings of integration with the prosthetic. 

We also developed both a CBC measure without video demonstrations and one with 

video to demonstrate the motion ability of some of the attributes. We are comparing these 

two CBC approaches in a 25-patient convenience sample at UCSF as a pilot test.  
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Preliminary analysis of our first 10 subjects with upper limb loss demonstrates that 

anecdotally patients prefer the video descriptions to the plain text labels. The utilities in 

the CBC with video show a stronger utility and disutility than the same CBC attributes 

without video. In addition preliminary analysis of each attribute’s preference score 

(calculated as % chosen/% shown) demonstrates that pain and infection risk are the least 

preferred attributes, while hand grip patterns, strength and the ability to independently 

cook dinner were the most preferred attributes. Subjects showed that they were willing to 

trade risks for benefits. Subjects were not able, however, to identify any attributes that 

could be eliminated to reduce the cognitive burden. More accurate analysis will be 

performed after we recruit more subjects. In addition, through additional funding from 

the Burroughs Wellcome Fund, we will be extending this research to include testing of 

two types of validity for use of CBC for regulatory purposes: concurrent validity and 

convergent validity. Concurrent validity will be examined by comparing three different 

measurement approaches; CBC with video use, CBC without video use and Standard 

Gamble utility measurement. We will test convergent validity by making utility 

comparisons between those with single upper limb loss and bilateral upper limb loss as 

well as those with loss on the dominant side vs. the non-dominant limb; expecting that 

those with bilateral limb loss and loss on the dominant side will be more risk averse than 

those with unilateral loss. Finally, an important question for all discrete choice 

researchers and users, and especially for those using CBC to make regulatory decisions in 

health care, is whether or not subjects’ stated preferences actually reflect their revealed 

preferences. We will address this question in our research plan, by comparing subjects’ 

CBC scores before and after they undergo an osseointegration procedure for lower limb 

loss. These results will provide further support to the FDA for use of CBC in regulatory 

decisions. 

CONCLUSION 

The FDA is seeking patient preference studies that can serve as case examples to 

further advance their goal of including the patient voice in regulatory decisions for both 

drugs and devices (Marshall D. et al., 2010; Hall J. et al., 2004; Louviere J. et al., 2000; 

Johnson F.R. et al., 2016). We describe previous case examples and how CBC and other 

patient preference measurement techniques are being evaluated as a useful tool for risk 

benefit decisions of regulatory FDA bodies. CBC studies performed to assist in 

regulatory decisions differ from other uses of CBC in several ways. First, they cannot 

include factors of price/cost because this cannot be part of the FDA approval decisions 

for medicines or devices. Additionally, the CBC attributes generally must be applicable 

across products rather than specific to one product. Positively, patient subjects are 

generally very invested in the CBC process, what is being asked and the importance of 

giving their opinions, which means that engaging them in the process may be easier than 

for marketing studies. Validity for discrete choice experiments has been primarily tested 

for non-health care examples (Louviere J. et al., 1992; Menictas C., Wang P.Z., Louviere 

J., 2012).  Finally, because of the need to ensure patient safety establishing the validity of 

these methods is even more important. Although work still is needed to identify the most 

valid methods of measuring patient preference for regulatory decisions, there is general 

agreement that including the patient voice is essential to making these difficult decisions 

of what treatments are safe and effective. 



44 

 

       

 Leslie Wilson Jordan Louviere 

REFERENCES 

1. US Food and Drug Administration, USDHHS, 

https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh

/cdrhpatientengagement/ucm462830.htm. Accessed August 3, 2017. 

2. Medical Device Innovation Consortium (MDIC) Patient Centered Benefit-Risk Project 

Report. 2015 http://mdic.org/wp-

content/uploads/2015/05/MDIC_PCBR_Framework_Web1.pdf. Accessed August 3, 

2017. 

3. Center for Devices and Radiological Health and Center for Biologics Evaluation and 

Research. Guidance for Industry and Food and Drug Administration Staff: Factors to 

Consider When Making Benefit-Risk Determinations in Medical Device Premarket 

Approval and De Novo Classifications. Issued on October 23, 2016. Available from: 

https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidan

cedocuments/ucm517504.pdf. [Accessed July 28, 2017]. 

4. U.S. Department of Health and Human Services #1., Food and Drug Administration, 

Center for Devices and Radiological Health and Center for Biologics Evaluation and 

Research. Patient preference information—submission, review in PMAs, HDE 

applications, and De Novo requests, and inclusion in device labeling: draft guidance 

for industry, Food and Drug Administration staff, and other stakeholders. October 23, 

2016. Available from: 

https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidan

cedocuments/ucm446680.pdf. [Accessed July 28, 2017]. 

5. US Department of Health and Human Services #2. US Food and Drug Administration. 

Patient-Focused Drug Development: Disease Area meetings held in Fiscal Years 

2013–2017. 

https://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm347317.htm

Accessed August 3, 2018. 

6. US Department of Health and Human Services #3. US Food and Drug Administration. 

Advancing the use of patient preference information as scientific evidence in medical 

product evaluation. 

https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhpatientengagement/ucm462830.htm
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhpatientengagement/ucm462830.htm
http://mdic.org/wp-content/uploads/2015/05/MDIC_PCBR_Framework_Web1.pdf
http://mdic.org/wp-content/uploads/2015/05/MDIC_PCBR_Framework_Web1.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm517504.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm517504.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446680.pdf
https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm446680.pdf
https://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm347317.htm
https://www.fda.gov/ForIndustry/UserFees/PrescriptionDrugUserFee/ucm347317.htm


45 

https://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm574320.

htm. Accessed August 3, 2018. 

7. University of California San Francisco. Schools of Pharmacy and Medicine, 

Department of Bioengineering and Therapeutic Sciences. UCSF-Stanford Center of 

Excellence in Regulatory Science and Innovation (CERSI). 

https://pharm.ucsf.edu/cersi. Accessed August 3, 2018. 

8. PREFER. Patient Preferences. Patient preferences in healthcare decision-making 2017. 

https://www.imi-prefer.eu/news/news-item/?tarContentId=642846. Accessed August 

3, 2018. 

9. Durelli L., Bongioanni M.R., Cavallo R., Ferrero B., Ferri R., Verdun E., Bradac 

G.B., Riva A., Geuna M., Bergamini L., Mult Scler., et al. 1995;1 Suppl 1:S32-

7.Interferon alpha treatment of relapsing-remitting multiple sclerosis: long-term study 

of the correlations between clinical and magnetic resonance imaging results and 

effects on the immune function. 

10. Klawiter E.C., Cross A.H., et al. Neurology. The Present Efficacy of Multiple 

Sclerosis Therapeutics. 2009. 73(12): 984–990. 

11. Wenning W., Haghikia A., et al. Treatment of progressive multifocal 

leukoencephalopathy associated with Natalizumab. NEJM. 2009. 361:1075–1080. 

12. MS Society. March 8, 2006. People with MS surveyed for Views. 

https://secure.nationalmssociety.org/site/SPageServer/?NONCE_TOKEN=F134B1D

B91A17F9773C8103FB557C04E&pagename=HOM_RES_tysabri_surveyresults. 

Accessed August 3, 2018. 

13. Shingler S.L., Swinburn P., Ali S., Perard R., Lloyd A.J. A discrete choice experiment 

to determine patient preferences for injection devices in multiple sclerosis. J Med 

Econ. 2013; 16:1036–1042. 

14. Johnson F.R., Van Houtven G., Ozdemir S., et al. Multiple sclerosis patients’ benefit-

risk preferences: serious adverse event risks versus treatment efficacy. J. Neurol. 

2009; 256: 554–562. 

15. Poulos C., Kinter E., Yang J.C., Bridges J.F., Posner J., Reder A.T. Patient preferences 

for injectable treatments for multiple sclerosis in the United States: a discrete-choice 

experiment. Patient. 2016; 9:171–180. 

16. Utz K.S., Hoog J., Wentrup A., et al. Patient preferences for disease modifying drugs 

in multiple sclerosis therapy: a choice-based conjoint analysis. Ther Adv Neurol 

Disord. 2014; 7:263–275. 

17. Rosato R., Testa S., Oggero A., Molinengo G., Bertolotto A. Quality of life and 

patient preferences: identification of subgroups of multiple sclerosis patients. Qual 

Life Res. 2015; 24:2173–2182. 

18. Wicks P., Brandes D., Park J., et al. Preferred features of oral treatments and 

predictors of non-adherence: two web-based choice experiments in multiple sclerosis 

patients. Interact J Med Res. 2015; 4: e6. 

https://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm574320.htm.%20Accessed%20August%203
https://www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/ucm574320.htm.%20Accessed%20August%203
https://pharm.ucsf.edu/cersi
https://www.imi-prefer.eu/news/news-item/?tarContentId=642846
https://www.ncbi.nlm.nih.gov/pubmed/?term=Durelli%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bongioanni%20MR%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Cavallo%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferrero%20B%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ferri%20R%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Verdun%20E%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bradac%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bradac%20GB%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Riva%20A%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Geuna%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bergamini%20L%5BAuthor%5D&cauthor=true&cauthor_uid=9345396
https://www.ncbi.nlm.nih.gov/pubmed/9345396
https://secure.nationalmssociety.org/site/SPageServer/?NONCE_TOKEN=F134B1DB91A17F9773C8103FB557C04E&pagename=HOM_RES_tysabri_surveyresults
https://secure.nationalmssociety.org/site/SPageServer/?NONCE_TOKEN=F134B1DB91A17F9773C8103FB557C04E&pagename=HOM_RES_tysabri_surveyresults


46 

19. Wilson L., Loucks A., Bui C., et al. Patient centered decision making: use of conjoint 

analysis to determine risk-benefit trade-offs for preference sensitive treatment 

choices. J Neurol Sci. 2014; 344: 80–87. 10. 

20. Wilson L.S., Loucks A., Gipson G., et al. Patient preferences for attributes of multiple 

sclerosis disease-modifying therapies: development and results of a ratings-based 

conjoint analysis. Int J MS Care. 2015; 17: 74–82. 

21. Peay, H.L., Hollin I., Fischer R., Bridges J.F.P. Clinical Therapeutics/Volume 36, 

Number 5, 2014 A Community-Engaged Approach to Quantifying Caregiver 

Preferences for the Benefits and Risks of Emerging Therapies for Duchenne Muscular 

Dystrophy. 

22. Hollin I.L., Peay H.L., Bridges J.F. Patient. 2015 February; 8(1):19–27. Caregiver 

preferences for emerging duchenne muscular dystrophy treatments: a comparison of 

best-worst scaling and conjoint analysis. 

23. U.S. Department of Health and Human Services, Food and Drug Administration, 

Center for Devices and Radiological Health and Center for Biologics Evaluation and 

Research. Duchenne muscular dystrophy and related dystrophinopathies: developing 

drugs for treatment guidance for industry draft guidance. June 2015. Available from: 

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/G

uidances/ UCM450229.pdf. [Accessed July 28, 2017]. 

24. Ho M.P., Gonzalez J.M., Lerner H.P., Neuland C.Y., Whang J.M., McMurry-Heath 

M., Hauber A.B., Irony T. Incorporating patient-preference evidence into regulatory 

decision making. 2015. Surg Endosc 29(10); 2984. 

25. Ziegler-Graham K., MacKenzie E.J., Ephraim P.L., Travison T.G., Brookmeyer R. 

Estimating the prevalence of limb loss in the United States: 2005–2050. Arch Phys 

Med & Rehab. 2008:89(3):422–429. 

http://biomed.brown.edu/Courses/BI108/BI108_2003_Groups/Hand_Prosthetics/stats

.html; https://www.ncbi.nlm.nih.gov/pmc/articles/PMC31936371 

26. Raichle K.A. et al. Prosthesis use in persons with lower- and upper-limb amputation. 

J Rehabil Res Dev. 2008; 45(7):961–972. 

27. Marshall D., Bridges J.F., Hauber B., et al. Conjoint analysis applications in health—

how are studies being designed and reported? An update on current practice in the 

published literature between 2005 and 2008. Patient 2010;3:249–56. 

28. Hall J., Viney R., Haas M., Louviere J. Using stated preference discrete choice 

modelling to evaluate healthcare programs. J Bus Res 2004; 57:1026–32. 

29. Louviere J., Hensher D., Swait J. Stated Choice Methods: Analysis and Applications. 

Cambridge University Press, Cambridge, UK, and New York, NY, 2000. 

30. Johnson F.R., Ma M.Z. Patient Preferences in Regulatory Benefit-Risk Assessments: 

A US Perspective Value in Health. 2016; 19:741–45). 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Hollin%20IL%5BAuthor%5D&cauthor=true&cauthor_uid=25523316
https://www.ncbi.nlm.nih.gov/pubmed/?term=Peay%20HL%5BAuthor%5D&cauthor=true&cauthor_uid=25523316
https://www.ncbi.nlm.nih.gov/pubmed/?term=Bridges%20JF%5BAuthor%5D&cauthor=true&cauthor_uid=25523316
https://www.ncbi.nlm.nih.gov/pubmed/25523316


47 

31. Louviere J.J., Timmermans H.F.P. Testing the External Validity of Hierarchical 

Conjoint Analysis Models of Recreational Destination Choice. Journal Leisure 

Sciences. 14:(3) 179-194. 

32. Menictas C, Wang P.Z., Louviere J.J. 2012. Assessing the Validity of Brand Equity 

Constructs, Australian Marketing Journal, 20(1) 3-8.





49 

A DIRECT COMPARISON OF DISCRETE CHOICE 

AND ALLOCATION CONJOINT METHODOLOGIES 

IN THE HEALTHCARE DOMAIN 

JAMES PITCHER 

TATIANA KOUDINOVA 

DANIEL ROSEN 
GFK 

1. ABSTRACT 

Patient Based Discrete Choice (PBC) and Allocation Based Conjoint (ABC) are both 

commonly used to estimate new product preference shares in the healthcare space. For 

the first time, this research directly compares the accuracy of the two methods, their 

characteristic similarities and differences, as well as their ease of implementation and 

respondent-friendliness. Our research revealed significant differences between the two 

models both in terms of modelled preference share estimates and directly reported 

preference share. 

2. BACKGROUND 

GfK commonly uses two distinct methodologies to estimate new product preference 

shares in the healthcare and pharma space, the first of which asks physicians to report 

prescribing preferences for specific real world patients, and the second of which asks 

physicians to report their prescribing decisions at a practice level rather than on a per-

patient basis. This distinction reflects a trade-off market researchers often make when 

designing a research study, whether to have the research environment closely resemble 

the real world decision environment, or whether a carefully designed, albeit “artificial,” 

research environment elicits more accurate information from respondents. 

It is generally beneficial to have one’s statistical toolbox stocked with multiple 

methodologies, but in this case there is a lack of clear guidance as to which method is 

best (or in which situations one method is preferred over another). There is currently no 

fact-based evidence to guide method selection, nor is there any third party literature 

directly related to this problem. The result is that method selection is not determined by 

empirical research, but simply by the historical experience and comfort level of the 

research teams. 

In this study we attempt to put method selection on an evidenced based track by 

comparing two specific research methodologies in order to understand their relative 

predictive accuracy, differential characteristics and comparative user-friendliness. The 

two methods studied are: 
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Patient Based Discrete Choice (PBC): 

In this method physicians are asked to consider real patient cases. They then are 

presented with treatment options and answer a set of questions on their product 

preferences and estimated behavior in regards to these patients, taking into account all 

patient characteristics that could play a role in their decision making. 

Allocation Based Conjoint (ABC): 

In this method physicians are also presented with a handful of treatment options, 

except instead of being asked to choose their most preferred treatment for a particular 

patient, they are asked to imagine the treatment choices they would make for their next 

group of patients. (We typically define a group as 10–100 patients.) Physicians then 

report how many of these patients they would choose to treat with the first treatment 

option, how many with the second, and so on. This is called an allocation exercise since 

different numbers of patients are allocated to each of the treatment options. 

In addition to comparing these two DCM methods, we also report results from a test 

of an internally developed incentive alignment method, termed Bayesian Truth Serum 

(BTS). Incentive alignment studies attempt to increase the accuracy of information 

collected in a survey by rewarding study respondents according to the accuracy of their 

responses rather than simply for completing the research survey. 

While in academic research settings incentive alignment DCM studies have been 

shown in to deliver greater predictive accuracy than standard DCM methods, commercial 

market research providers have been stymied in their efforts to migrate the method from 

academia to the marketplace by the perceived financial and legal hurdles that must be 

overcome in order to successfully implement an accuracy based cash or product 

compensation program. 

The BTS method that GfK is developing removes these hurdles by implementing a 

grade-based reward system, whereby respondents receive a letter grade indicating the 

degree to which they accurately answered key survey questions. The grade, of course, has 

no cash value and raises no practical or legal concerns. This grading method provides 

emotional rewards for physicians, as well as a sense of being monitored, recalling their 

many years in school where accuracy on exams was key to professional prestige and 

advancement. Initial results indicate that it is particularly effective among physicians, a 

highly educated population long accustomed to having their skill and knowledge tested 

and graded. 

3. STUDY DESIGN 

3.1 Overview 

In January of 2017 we conducted an online survey of 400 general practice physicians, 

half in the US and half in the UK. The topic of the study was the treatment of high BMI 

Type II diabetes (T2D), and qualifying physicians were limited to those who treat at least 

20 high BMI T2D patients. The core of the study was a conjoint exercise where 

physicians were queried as to their likelihood to prescribe an imagined new treatment for 
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high BMI T2D patients. It is important to note that in this disease domain it is not 

uncommon for patients to receive multiple simultaneous treatments. The new treatment 

profile, referred to as Product X in the survey, was generated from the following attribute 

profile table: 

Attributes Level 1 Level 2 Level 3 Level 4 

Reduction in HbA1c (%) 1.0% 1.2% 1.5% 
 

Reduction in body weight (kg) 2kg 3kg 4kg 5kg 

Impact on systolic blood pressure (mmHg) 3mm Hg 4mm Hg 5mm Hg 
 

Incidence of hypoglycaemia (%) 1% 2% 3% 4% 

Incidence of UTIs / Genital mycotic infections (%) 2% 4% 6% 8% 

Flexible doses available Yes No 
  

The set of available current treatments is as follows: 

Current Treatments 

Metformin 

Sulphonylureas 

DPP-4 inhibitors 

SGLT-2 inhibitors 

GLP-1 agonists 

Insulin 

Within each country the physicians were randomly assigned to complete either the 

PBC or the ABC version of the survey. Half the respondents in both the PBC and ABC 

cohorts completed standard versions of the survey (described below) and half were a BTS 

version of the survey (also described below). 

3.2 PBC Survey 

The survey administered to physicians in the PBC condition had six main sections: 

3.2.1 Patient Record Form and Current Treatment Report 

In the first section of the survey physicians completed a patient record form for three 

of their most recent patients, one each from their populations of low, moderate, and 

severe patients. For each of these real life patients, physicians recorded numerous details 

of the patient’s clinical and demographic profile. Physicians also reported the treatments 

currently prescribed for the patient. 

3.2.2 Choice Exercise 

Physicians then completed a discrete choice exercise where they were asked to select, 

from a set of three potential treatments, the one they considered to be “most suitable” for 
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each of the three patients. The profile for each of the treatment options was drawn from 

the attribute profile table shown above. A “None” option was also provided. 

3.2.3 Fixed Profile Calibration Task 

Physicians were then shown a sequence of five treatment profiles, each drawn from 

the attribute profile table shown above, and asked whether they would prescribe the 

profiled treatment to each of the three patients reported on in the previous sections. The 

five treatment profiles were presented in sequence, from the one expected by the 

researchers to be least appealing to physicians (e.g., having low safety and efficacy 

profiles) to the one expected to be the most appealing to physicians. 

In addition, for each of the three patient types (low, medium and high severity) 

respondents reported the maximum percentage of patients for whom they would prescribe 

the “best” drug profile instead of their current therapy. We term this the “maximum 

prescribing percentage.” 

3.2.4 Holdout Tasks 

Physicians then completed two holdout tasks. In each task they were shown a single 

product profile and ask to report the percent of their total patient population for whom 

they would prescribe the profiled treatment if it were available. The holdout task was 

conducted using a standard allocation format, and respondents were reminded that since 

patients might receive multiple simultaneous treatments, the percentages reported in the 

holdout tasks were allowed to sum to greater than 100%. 

3.2.5 Physician Peer Question 

Physicians were then asked to estimate how likely their peers—physicians similar to 

them—would prescribe a particular version of the new product profile. An example of the 

question seen by physicians is shown below. The “Product X” referenced in the question 

is a version of the new potential product shown in the first holdout task. 
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So far in this survey we asked you to tell us about your own prescribing behavior.  For 

the following question we would like you to change perspective and think about how 
other physicians taking this survey will answer. Some of the physicians answering the 

survey will be similar to you—in age, gender, practice size, etc.—and others will be 

different. Overall they represent a cross-section of primary care physicians who treat 
patients with uncontrolled high BMI T2D. 

 

If Product X were available today you indicated you would prescribe it to (PROG: 
insert percentage) of your uncontrolled high BMI T2D patients. Thinking about 

other physicians completing this survey, please let us know the percent of those 

physicians who would prescribe Product X to: 
 

 

 Percent of Other Physicians 

who would prescribe Product X 

to each of the following groups 

of their uncontrolled high BMI 

T2D patients  

1 
Less than 10% of their uncontrolled 

high BMI T2D patients 
__% 

2 
Between 10%–30% of their 

uncontrolled high BMI T2D patients 
__% 

3 
More than 30% of their uncontrolled 

high BMI T2D patients 
__% 

3.2.6 Experience Reports 

Finally, physicians were asked a series of questions to gauge the quality of their 

experience answering the survey. 

3.3 ABC Survey 

The survey administered to physicians in the ABC condition had five main sections: 

3.3.1 Current Prescribing Pattern Report 

In the first section of the survey physicians reported, via an allocation format, the 

percent of patients for whom they prescribed each of the currently available treatments. 

An example screenshot from the survey is shown below. 
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3.3.2 Choice Exercise 

Physicians then completed a series of 13 choice tasks. In each task they were shown a 

single product profile and were asked to report the percent of their total patient 

population for whom they would prescribe the profiled treatment if it were available. 

These tasks were also conducted using a standard allocation format, and respondents 

were reminded that since patients might receive multiple simultaneous treatments, the 

percentages reported in the holdout tasks were allowed to sum to greater than 100%. 

3.3.3 Holdout Tasks 

Physicians then completed two holdout tasks. Structurally these were identical to the 

choice exercise tasks. In each task they were shown a single product profile and were 

asked to report the percent of their total patient population for whom they would 

prescribe the profiled treatment if it were available. The holdout task was conducted 

using a standard allocation format, and respondents were reminded that since patients 

might receive multiple simultaneous treatments, the percentages reported in the holdout 

tasks were allowed to sum to greater than 100%. 

3.3.4 Physician Peer Question 

Physicians were then asked to estimate how likely their peers—physicians similar to 

them—would prescribe a particular version of the new product profile. This was identical 

to the example shown above. 

3.3.5 Experience Reports 

Finally, physicians were asked a series of questions to gauge the quality of their 

experience answering the survey. 
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3.4 Bayesian Truth Serum 

Half the physicians in each the PBC and ABC cohorts completed surveys structured 

as described above. The other half—those assigned to the BTS cohort—completed 

surveys identical to those just described with the following three exceptions: 

3.4.1 Choice Exercise Text 

Before the Choice Exercise respondents in the PBC cohort were shown the following 

text: 

As you complete this section of the survey, please note that in order to increase the 

validity of this research, we will be grading you on the accuracy of your answers using 

a five-letter grading system (A, B, C, D, F). This grading method was recently devised 

by an MIT professor and published in the journal, Science. The method rewards you 

for answering accurately, and the best strategy for receiving a high grade is to carefully 

consider each question, and answer as accurately as you can. 

You will receive your grade in a few weeks after we have collected all responses to 

this survey. 

3.4.2 Holdout Task Text 

Before the Holdout Tasks were presented respondents in the PBC cohort were shown 

the following text: 

As with the previous section, your answers here will influence your final grade. 

And as before, since the grading method rewards you for answering accurately, the best 

strategy for receiving a high grade is to carefully consider each question, and answer as 

accurately as you can. 

3.4.3 Physician Peer Question Task Text 

The same text shown in the holdout task was shown a second time just before the 

physician peer question was asked. 

4. ANALYSIS 

The collected data were used to generate two key estimates of prescribing: 

“prescribing share” and “total prescribing.” Prescribing share is defined as “the percent of 

patients prescribed a particular treatment” while total prescribing is defined as “the 

average number of treatments prescribed to each patient.” Below we describe the 

methods we used to generate these metrics in both the PBC and the ABC domains. 

4.1 PBC Data Analysis 

Using data collected in the Choice Exercise section of the PBC version of the survey, 

we estimated conjoint utilities for the varying features of the new product profile via 

Sawtooth Software CBC/HB using a part-worth estimation procedure. No constraints 
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were included in the estimation procedure, though whether or not a physician had been 

exposed to the BTS question was used as a covariate. 

We use these utilities to calculate what we term a “threshold utility” for each patient 

type. This measure represents the level of value a potential treatment must reach in order 

for physicians to prescribe the treatment. The threshold utility equals the utility sum of 

the lowest rated product that the physician reports, in the fixed profile calibration task, 

they would prescribe to their patients. The working assumption is that physicians will not 

prescribe any product whose utility sum is lower than this threshold utility. 

Prescribing shares for any Product X profile are generated in the simulator via the 

following steps: 

1. We first calculate the preference share (versus a None option) for the tested 

Product X profile. 

2. We then calculate a take-up percentage by comparing the utility sum for the tested 

Product X profile to the utility level at which a new drug would not be prescribed 

at all and to the level at which it would be prescribed 100% of the time (as 

determined via the fixed product profile task).  As that utility sum is low in 

comparison to those levels, we set the take-up percentage to be closer to 0, and as 

it is high, we set the take-up percentage to be closer to 1. 

3.  We then calculate the Product X Prescribing Share as follows: 

Product X Prescribing Share = 

Preference Share * Take-Up Percentage * Maximum Prescribing Percentage 

4. The previous three steps are completed for each of the three patient types and the 

final Product X prescribing share is calculated as a weighted average of each of 

the patient types, so the proportion of overweight, moderately obese, and severely 

obese patients matched the proportion of patients physicians stated they treated at 

the start of the survey. 

The new drug is assumed to steal share from the current treatments in proportionally 

equal amounts. 

4.2 ABC Data Analysis 

Using data collected in the Choice Exercise section of the ABC version of the survey, 

preference shares for each of the 8 treatment options were independently estimated using 

HB-Reg models. The new product attribute/level indicators served as the independent 

variables in each model. 

Prescribing share for each of the 8 treatments was simply the output of each of the 8 

HB-Reg models, expressed as a percentage of total patients. Total prescribing was 

calculated by summing the output of the 8 HB-Reg models. 

4.3 Bayesian Truth Serum 

Prescribing share and total prescribing for the BTS cohort were calculated as 

described above, depending on whether a respondent was assigned to the PBC or the 

ABC condition. 
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The letter grade communicated to each respondent was generated by first calculating 

a BTS score for each respondent using the holdout task and peer question task responses 

according to the method described in Prelec (2004), and then assigning a letter grade to 

each score based on the total distribution of BTS scores. The BTS score was not used in 

the analysis other than as a tool to generate the letter grade. 

5. RESULTS 

5.1 New Product Prescribing Share 

Figure 1 shows the new product prescribing shares that were directly stated in the 

allocation format holdout tasks in both surveys, as well as the new product prescribing 

shares predicted by the ABC and PBC models. (In all cases the reported numbers are the 

average of shares taken across both holdout tasks.) 

The PBC model predicts the new product will get 30% share, whereas the ABC 

model predicts the new product will only get 17% share. Within each cohort the modelled 

shares closely match the stated responses (PBC—31%; ABC—18%). In both the stated 

and modelled results, the difference between the two cohorts was significant at the 0.01 

level. 

Figure 1. Product X prescribing share, both stated and modelled, 

taken as an average across the two holdout tasks. 

 

Figure 2 shows the new product prescribing shares predicted by the PBC model for 

holdout task 1, split by severity of patient. The new product prescribing share is higher 

the more severe the patient is; low severity = 24%, moderate severity = 32%, high 

severity = 41%. 
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Figure 2. New product prescribing shares, generated by the PBC model for 

holdout task 1, split by patient severity. 

 

5.2 Total Per Patient Prescribing 

Figure 3 shows total per patient prescribing, both stated and modelled, for both the 

PBC and ABC cohorts. (We define total prescribing as the average number of prescribed 

treatments per patient. As above, the presented results are an average of responses taken 

across the two holdout tasks.) 

Figure 3. Number of prescribed treatments per patient, taken as an average 

across the two holdout tasks. 

  

In the stated case, both PBC and ABC cohort physicians report a willingness to 

prescribe an average of 1.4 treatments per patient. The modelled results, however, show a 
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different pattern, with the PBC model predicting that patients will receive an average of 

2.3 simultaneous treatments, whereas the ABC model predicts only 1.4. 

Figure 4 shows the average number of treatments per patient as predicted by the PBC 

(2.3) and ABC model (1.3) compared with figures from third party sources. By taking an 

average of five third party sources (see Appendix), we get a figure of 1.7 treatments per 

patient, which falls between the figures predicted by each model. 

Figure 4. Number of treatments per patient compared to 

third party data sources. 

 

(Note that 3rd party data sources reflect treatment levels for all T2D patients, rather 

than the subset of uncontrolled, high BMI, patients used to generate the ABC and PBC 

numbers. It may well be that the prescribing rate for this subset of patients is higher than 

it is for the broader T2D patient population.) 

Figure 5 shows the average number of prescribed treatments predicted by the PBC 

model for holdout task 1, split by severity of patient. The average number of prescribed 

treatments is higher the more severe the patient is; low severity = 2.1, moderate severity 

= 2.4, high severity = 2.5. 

Figure 5. Average number of prescribed treatments predicted by the PBC model for 

holdout task 1, split by patient severity. 
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5.3 Relative vs. Absolute Prescribing Share 

Figure 6 shows the new product prescribing shares predicted by the ABC and PBC 

models for 5 Product X profiles ranging from poor to high quality. For the “worst” 

profile, where each attribute is set to the “worst” level, the shares predicted by the ABC 

and PBC models, 7% and 6% respectively, are similar. However, for the “best” profile, 

where each attribute is set to the “best” level, the 37% share predicted by the PBC model 

is much higher than the 21% share predicted by the ABC model. Hence, changes in the 

new product profile causes a larger change in share in the PBC model compared with the 

ABC model. 

However, when the shares are rescaled so that the total share across all products in the 

model sums to 100% (previously this figure was greater than 100% as detailed above), 

the resulting “relative prescribing shares” are comparable. 

Figure 6. Simulated preference shares for 5 Product X profiles ranging from 

poor to high quality. 

 

5.4 Sensitivity Analysis 

We measured each model’s sensitivity by first setting each attribute to its “worst” 

level then recording the uplift in new product prescribing share obtained as each attribute 
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is independently changed to its “best” level. The uplifts are expressed as percent change 

in prescribing level. 

The uplifts are higher across all attributes in the PBC model compared to the ABC 

model. For example, for the “most important” attribute, “Reduction in HbA1c (%),” the 

uplift is 10.9% in the PBC model compared to 2.4% in the ABC model. 

Figure 7. Absolute and relative attribute sensitivity. 

 

However, when the uplifts within each model are rescaled relative to each other, so 

that the uplifts in each model sums to 100%, the resulting “relative sensitivities” of each 

attribute are again comparable. The “relative sensitivity” for the four “most important” 

attributes is almost identical. 

5.5 User Experience Comparison 

Three user experience questions were included at the end of each survey to 

understand differences in user experience across the different methodologies. The 

questions were asked on a 7-point anchored scale. An additional question about 

willingness to answer a similar survey again was also asked on a 5-point anchored scale. 

Figure 8 shows that there was little difference between the responses of the physicians 

completing the two surveys. No significant differences were found at the 0.05 level. 
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Figure 8. User Experience Ratings 

 

5.6 Bayesian Truth Serum 

As we discuss below, the previous analysis strongly suggests that a significant 

number of respondents did not correctly understand (or follow) the survey instructions. 

For example, in the PBC cohort it appears that respondents may not have reported data 

from their most recent patients, but rather for a subset of those recent patients whose 

severity makes them top of mind. It is also likely that a certain percentage of physicians 

assumed that their responses to the allocation format holdout tasks were required to sum 

to 100% despite receiving explicit instructions that this was not the case. Essentially, 

these physicians acted as if they were being asked to report share of total prescriptions 

accounted for by each treatment, rather than share of patients receiving each treatment. 

This incorrect reading of the allocation question—if it occurs—would mask much of 

the effect of the BTS methodology, which is primarily expected to counter the survey 

induced bias of physicians to overreport their potential prescribing. Therefore, in the 

subsequent analysis we excluded those respondents whose total per patient prescribing 

equaled 1 in both holdout tasks. In other words, we limit our BTS analysis to those 

physicians who report prescribing, on average, more than 1 prescription per patient. Note 

that this results in reported prescribing numbers that differ from those reported in the 

previous section of the report. 

Figure 9 shows that the PBC cohort physicians in the BTS case reported a lower 

Product X prescribing share than did those in the non-BTS case (difference significant at 

the 0.05 level), while no BTS effect was seen in the ABC cohort. Figure 10 shows a 

similar pattern when Total prescribing is used as the outcome measure. 
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Figure 9. Effect of BTS on Product X prescribing share by PBC and ABC cohorts. 

 

Figure 10. Effect of BTS on Total prescribing, by PBC and ABC cohorts. 

 

Figure 11 shows that BTS total prescribing estimates more closely match 3rd Party 

estimates than do non-BTS estimates. BTS and Non-BTS figures include both ABC and 

PBC cohorts. Numbers reported for 3rd Party data sources represent an average of the 

available sources. 
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Figure 11. Comparison of total prescribing as reported by 3rd party 

data sources to both the BTS and non-BTS cases. 

 

6. DISCUSSION 

The study shows the profound impact that question format can have on physician 

estimates of their own prescribing behaviour and, subsequently, on researcher estimates 

of preference share and market impact. Furthermore, the results emphasize that the 

standard tools available to researchers to control for model accuracy—comparing 

modelled results to holdout tasks—are best described as internal consistency checks 

rather than as methods capable of gauging the predictive accuracy of the survey. The 

findings of this study well exhibit this point, as the PBC and ABC models generate 

dramatically different preference share estimates, yet both models accurately predict 

physician responses to the holdout tasks. 

6.1 The Patient Based Model Potentially Overestimates Share 

Compared to the ABC model, the PBC model predicts higher prescribing shares for 

the preferred profiles of the new product and a higher average number of prescribed 

treatments per patient. One hypothesis is that the PBC model overestimates shares. 

In the PBC survey we asked physicians to think of their three most recent patients 

who had type 2 diabetes, were uncontrolled on their current treatment, and had a high 

BMI. The hope underlying this instruction is that it would result in a representative 

sample of the actual patient population. It may well be that the instruction actually led 

physicians to select a patient sample skewed to more involved patients, with more 

extreme characteristics than average. 

This might be the case because extreme patients are naturally more memorable and 

likely to have seen the physician a greater number of times. Therefore, our sample of 

patients may be more extreme than what is representative of this subpopulation of T2D 

patients. The results show that both new product prescribing share and the average 
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number of prescribed treatments per patient both increase as the severity of their obesity 

increases, which suggests, if such a bias is present, it would lead to the PBC model over-

estimating shares. 

However, this is controlled to some extent by the fact we had quotas on how many 

patients fell into the low, moderate and severely obese sub-populations and weighted the 

sample so the proportion of patients in each group matched the proportions physicians 

stated they treated earlier in the questionnaire. However, patients could still have been 

more severe than average within each severity band. 

The fact that within the lower severity group the new product prescribing shares 

(24%) and the average number of prescribed treatments per patient (2.1) is still much 

higher than predicted by the ABC model, 17% and 1.4 respectively, suggests even if this 

bias exists it is not enough to fully explain the share differences between the models. Of 

course, there could be factors other than obesity that make a patient more extreme in their 

characteristics and therefore more likely to receive a greater number of treatments. 

6.2 The Allocation Based Model Potentially Underestimates Share 

Conversely, there is evidence to suggest that the ABC model underestimates share. 

Amongst of the physicians completing the PBC survey, 57% stated their patients would 

be on a monotherapy in the allocation format of the question, whereas the same 

physicians stated only 26% of patients would be on a monotherapy via the multi-punch 

question in the patient record form. 57% monotherapy feels intuitively much too high in a 

therapy area where we know patients are commonly on multiple treatments 

simultaneously. Perhaps some respondents thought the allocation had to sum to 100%, or 

they find it cognitively difficult to make numbers sum to more than that and are attracted 

by the nice round number 100 represents. Having too many physicians only allocating a 

total share sum of 100% would naturally lead to the ABC model underestimating the 

average number of prescribed treatments per patient. 

6.3 Difference in Stated Responses to Holdout Tasks 

It is curious that the stated responses to the exact same two holdout tasks is so 

markedly different, with physicians completing the PBC survey stating a new product 

prescribing share of 31% compared with 18% given by physicians completing the ABC 

survey. It appears the survey questions the physician answers prior to completing the 

holdout tasks has a large influence on how much share they allocate to the new product. 

One hypothesis is that the patient record form engages physicians to think about their 

patients in much more detail and they therefore identify a greater proportion of patients 

that the new drug could be prescribed to. The lack of patient detail in the allocation 

survey means physicians miss certain patients that would be good candidates to receive 

the new drug. 

An alternative hypothesis is that there is an exposure bias towards the new product in 

the PBC survey. Physicians completing the PBC conjoint exercise are exposed to more 

profiles of the new product as three new products are shown per task versus only one per 

task in the ABC. This greater exposure may lead to the physician being more likely to 

allocate more share to the new product. Also, since these three new product profiles are 
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only evaluated versus a “none” option it is likely that physicians will pick a new product 

with some regularity, which creates an affinity for the new product, stronger than that 

gained from the allocation conjoint exercise, where share is allocated to the new product 

in a competitive context. 

6.4 Impact of BTS on Physician Responses 

The BTS method mitigates DCM response biases, and generates prescribing estimates 

that more closely match those reported by validated third party data sources. It also 

appears to minimize some of the response biases inherent in survey research. 

6.5 Recommendations 

Researchers should pay careful attention to how we ask the prescribing questions in 

our survey, as the question format can have significant impact on survey responses. 

Instructions given to the respondents must be clear in order to minimise 

misinterpretation, and testing should be done before a survey is fielded in order to gauge 

the degree to which respondents are accurately understanding the questions. In the PBC 

method, perhaps detailed guidelines should be given on how to select sample patients. In 

the ABC method, perhaps respondents whose allocation sums to 100% could be reminded 

that the allocation is allowed, and even expected, to sum to more than 100%. 

Other recommendations: 

 When using the ABC methodology, ask the allocation question by patient type to 

ensure that different types are well represented. 

 Conduct more research to improve PBC methodology and add flexibility for 

further calibration of the prescribing shares estimates. 

 Compare two methodologies in a monotherapy disease domain where high quality 

3rd party prescribing data exist. 

 

    

 James Pitcher Tatiana Koudinova Daniel Rosen 
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INTRODUCTION 

Market researchers employing hierarchical Bayesian (HB) analysis on conjoint and MaxDiff 

data have often employed shortcut methods to compute share predictions from estimated models. 

Specifically, many researchers rely solely on the mean of the posterior draws of the lower-level 

part-worth parameters (“betas”) in their calculation of preference share. Sawtooth Software, in 

particular, uses this method in its standard utility and preference output. Those using the 

Sawtooth Software method estimate the variance around the utility means and preference shares 

by treating each point estimate as a measured value and using           or     , where p is 

the aggregate preference share estimate, s is the standard deviation of individual point estimates 

in the lower-level model, and n is the sample size (Sawtooth Software Inc., 2009). 

Other researchers use all the posterior draws from the lower-level model (Chapman & Feit, 

2015). Those using this method calculate preference share for each respondent for each of the 

converged beta draws, and average those shares within each iteration. With the preference share 

estimates for each draw, they then take the 95% credible interval (2.5% and 97.5% percentiles) 

and use this to estimate the variance around their estimates. 

Lastly, some researchers emphasize using the posterior draws for the upper-level model 

parameters instead. These researchers use the mean and covariance matrix for the upper level to 

calculate utilities and simulate preference shares. They then take the average of the parameters of 

interest in each posterior draw and calculate a 95% credible interval across the converged draws. 

This method will focus just on the overall population parameters of interest, and if specific 

subset analysis is needed use covariates to examine how subsets of the data differ from the 

overall population (Allenby et al., 2014; Lee, 2016; Kurtz & Binner 2016). Relying on the upper-

level posterior distribution in this manner requires the researcher to rerun the model every time 

with the appropriate covariates when a new subgroup of interest comes up, which may not be 

acceptable in many research situations. 

To summarize, there are three popular methods to simulate using HB conjoint data: 

1. Estimate uncertainty with the formula           or     . 

2. Use the posterior draws from the upper-level model (population mean part-worths) to 

estimate uncertainty. 

3. Use the posterior draws from the lower-level model (individual-level part-worths) to 

estimate uncertainty. 

Our goal with this study is to compare these three methods. 
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We analyze the results from all three methods for 50 conjoint or MaxDiff research projects 

conducted by Survey Sampling International in 2017. We compare the impacts of these methods 

across both types of projects. In comparing each of these three simulation methods, we focus on 

the mean and interval width of each part-worth utility and the mean and interval width of the 

preference share given a specific market condition. 

MOTIVATING EXAMPLE 

Greg Allenby revolutionized conjoint analysis in market research by introducing the 

hierarchical Bayesian (HB) model (Allenby & Ginter, 1995). The HB model captures 

respondent-level heterogeneity in product preferences extremely well. This advantage comes by 

allowing each respondent to have his or her own preference parameters. Everyone’s part-worth 

utility (point estimate and uncertainty) is captured when simulating from the posterior 

distribution (Allenby & Rossi, 2003). It also contains an upper-level posterior distribution which 

could be used to simulate from the entire population rather than just those composed in the 

sample (Allenby et al., 2014). 

While all these elements of the model are available for use in a market simulator, many 

researchers instead employ a shortcut suggested by Sawtooth Software to simplify the 

computation in a market simulator. Researchers instead take the converged iterations of the HB 

model and average the part-worth estimates for each respondent (can be exported in the 

utilities.csv file) as found in the default market simulation calculations for Sawtooth Software 

products. This point estimate method retains the respondent-level heterogeneity in the average 

part-worth estimates, but does not consider the degree of uncertainty around those estimates. 

Ignoring the individual uncertainty in this way can lead to some non-intuitive results. In 

general, more choice tasks should increase our certainty about the part-worth utilities (decrease 

the variance of the aggregate estimates) as more information should decrease uncertainty. 

However, using the point estimate method, which ignores the uncertainty around a single 

individual’s part-worth utility, you see the opposite result. For example, we consider a conjoint 

data set with 709 individuals completing 10 choice tasks containing 3 attributes with 2–5 levels 

each. With the data, we estimate two HB models; one that uses only 2 of the 10 available choice 

tasks, while the other uses all 10. We take the point-estimates from both HB models and graph 

normal distributions for the mean part-worths of each parameter. Figure 1 demonstrates how the 

point estimate method predicts that collecting more information per respondent decreases the 

amount of certainty we have around the aggregate part-worth utility estimates! How can more 

data lead to more uncertainty? 
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Figure 1 

 

The underlying cause of this paradox from the point estimate method is Bayesian shrinkage. 

Bayesian shrinkage is a result of borrowing information from the overall group of respondents 

when there is not enough information from a single respondent (Morris, 1983). The lower-level 

part-worth estimates in a Bayesian model will tend to shrink towards the overall mean when 

there is less data on each respondent. Because the point estimate method doesn’t consider the 

individual-level certainty, it will erroneously view the Bayesian shrinkage as actually reducing 

the amount of heterogeneity among the individuals. 

The upper-level or lower-level posterior distributions do account for the variability of the 

individual level and thus show the appropriate narrower confidence intervals when more data is 

collected. Figures 2 and 3 use the same data set put forth in Figure 1 to demonstrate how more 

tasks should decrease the uncertainty rather than increase it. In both figures, the uncertainty 

about the utility of each feature is predicted to be smaller when there are more observed choices, 

that is, the darker distributions are narrower than the lighter ones. 
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Figure 2 

 

Luckily, Sawtooth Software is also capable of outputting either the posterior draws for the 

upper-level posterior distribution parameters (the alpha.csv and covariance.csv files) or the lower 

level posterior distribution parameters (draws.csv) by iteration for those who would like to use 

either of these methods to construct a market simulator. While these market simulators might be 

more difficult to construct in Excel, they are certainly options for market researchers to use, 

given the computing power available today. 
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Figure 3 

 

RESEARCH DESIGN 

Our analysis includes 50 HB choice models run by SSI in the marketing research field across 

multiple methodologies, industry sectors and model characteristics. We include 26 conjoint 

projects, 22 of which are CBC and 4 of which are ACBC. 12 of the 26 have alternative-specific 

designs. We also include 24 MaxDiff studies, with the number of items ranging between 13 and 

42 depending on the project. Sample sizes across these 50 projects varied widely, between 50 

and 6,800 respondents. Number of tasks shown ranges from 6 to 15, and number of attributes 

ranges from 3-20. 

All models were estimated with Sawtooth Software products, either with Lighthouse Studio 

or CBC/HB. Convergence was monitored by viewing trace plots and enough iterations were 

included in each model to ensure convergence. At least 1,000 draws were saved after the burn-in 

period on each model using a skip factor of 5 or more for saving random draws. While many 

researchers use covariates, especially when using the upper level, SSI does not have the industry 
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vertical expertise to always incorporate meaningful covariates. As such, no covariates were used 

in any model, each using default settings for the prior alpha and covariance matrix. Constraints 

were sometimes applied (e.g., negative price constraints) on select projects based on original 

project specifications. 

We explored the posterior distributions of each model and compared the impacts of Bayesian 

versus frequentist methods of assessing uncertainty using three methods: 1) Using point 

estimates based on frequentist statistical methods, 2) using the HB lower level posterior 

distribution and 3) using the HB upper level posterior distribution. 

Point Estimate Method 

The point estimate (frequentist) method averages the part-worth utilities from the lower-level 

posterior distribution into a single measurement of preference. Share estimates apply the logit 

rule to the summed part-worth utilities of each configuration. Uncertainty is then measured by 

calculating confidence intervals for means using             ) and proportions using 

                as if preference was a measured variable (such as weight or height of a 

person) and not a model prediction. 

HB Lower-Level Posterior Distribution Method 

The lower-level posterior distribution method directly uses the beta draws, which are the 

individual-level part-worths for each respondent. Average utilities are generated and share of 

preference is calculated using the logit rule across all saved posterior draws for each respondent. 

Uncertainty is measured by taking the 2.5% and 97.5% percentiles of the saved draws. 

HB Upper Level Posterior Distribution Method 

The upper-level posterior distribution method draws from the alpha and covariance files 

simulating “synthetic respondents” for each draw. From these synthetic respondents, we 

calculated part-worth utilities as well as the share of preference for each product in the simulated 

preference using the logit rule. To accomplish this, the upper model covariance matrix produced 

under Sawtooth Software dummy coding option needs to be used and converted to a symmetric 

matrix (see Appendix A for R code). With that we then simulate from the multivariate normal 

distribution to generate the synthetic respondents. Note that for the MaxDiff projects, dummy 

coded alphas and the covariance matrix output can be obtained through CBC/HB rather than 

Lighthouse Studio. Once this simulation was complete we then averaged these metrics across 

multiple (up to 5,000) draws or synthetic respondents repeated for every iteration in the upper 

level model and then take the 2.5% and 97.5% percentiles for the credible interval. 

In each study and for each method we measured the following: 

1. Average utilities for each parameter 

2. Average utility interval width for each parameter 

3. Average distances from the point estimate for Preference Share from 10 configurations 

4. Average Preference Share interval widths averaged across 10 configurations 
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RESULTS 

Conjoint Results—Utilities 

Figure 4 demonstrates an example of one of the CBC project’s part-worth distribution, and 

similar results were yielded from other conjoint projects. Each attribute level’s mean part-worth 

utility distribution is shown in a violin plot by estimation method. Each method has a mean 

center in the same place for each level, which is to be expected, as the point estimate is the mean 

of the lower level posterior distribution, and the upper level posterior distribution should 

converge to the same part-worth as well. However, the width of each distribution is quite 

different between methods. This reflects different estimates of how much certainty we have 

about the part-worths. As you can see from the figure, the uncertainty in the utilities is greatest 

for the upper level model, somewhat smaller for the lower-level model method and smallest for 

the formula method. This means that the simple formula method is often understating the 

uncertainty in part-worths. 

Figure 4 

 

If we compute a ratio between the widths of 95% credible and confidence intervals between 

methods, we learn that the lower level posterior distribution’s credible interval is, on average, 2.2 

times larger than the point estimate’s confidence interval, and the upper level posterior 

distribution method’s credible interval is, on average, 2.9 times larger. Figure 5 shows these 

ratios per project in a bar chart. In all 26 of these conjoint projects, the point estimate method 

underestimated the confidence interval compared to these other two methods, sometimes by as 

much as nearly 5 times the point estimate’s distribution width. While the underestimated 

variance may not alarm some researchers (many who do not do significance testing on the 

conjoint results anyways), it can lead to substantially different share of preference estimates as 

we show in the next section. 
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Figure 5 

 

Conjoint Results—Shares of Preference 

Figure 6 shows share of preference distributions for the three methods, split by configuration 

and then simulation scenario. The scenarios shown below are typical for other simulations and 

among other projects. The distributions of shares of preferences show not only differences in 

distribution widths, but also in differences in where those distributions are centered (their 

means). Moreover, these differences are often practically and statistically significant when tested 

with a chi-squared test. Table 1 shows the average percent of simulations that have significant 

differences between product share of preference estimates. 

Figure 6 
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Table 1 

 Lower Upper 

Point Estimate 12.1% 44.3% 

Upper 51.7%  

Figure 7 shows again the project to project average distribution width ratios, this time for 

share of preference. Differences in these widths varied widely from project to project, but 

showed that on average, the point estimate method tended to overestimate the spread compared 

to the lower level posterior distribution method, with a mean ratio of 0.76, and slightly 

underestimate the spread compared to the upper level method, with a mean ratio of 1.09. 

Figure 7 

 

During our research, we noticed a pattern among particularly the lower-level posterior 

distribution method share of preference compared to the point-estimate method. The mean point-

estimate share of preference tended to underestimate the low mean share estimates from the 

lower level method, and vice-versa. This was not as clearly observed when comparing the point 

estimate shares to those resulting from the upper-level method. The clear linear trend in the 

lower-level method from Figure 8 demonstrates this observation. Shares of preference estimates 

tend to be more flat in the lower level model (i.e., in a 4-product simulation, shares are more 

likely to be closer to 25%). It should be researched in the future whether this is the result is 

capturing more respondent noise, indifference, or both. 
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Figure 8 

 

MaxDiff Results—Utilities 

Surprisingly, MaxDiff projects yielded very different results compared to conjoint, and much 

less alarming in terms of impact to inference. Figure 9 shows us the part-worth distributions on 

an example MaxDiff project. The figure demonstrates that unlike CBC projects, the distributions 

of part-worth utilities between estimation methods are very similar. However, like CBC projects, 

the point estimate method still tends to underestimate the variance, but to a much smaller degree. 

Figure 9 

 

Figure 10 lays out the mean distribution width ratios for all MaxDiff projects. As seen in 

Figure 9, the point estimate distribution width is underestimated. On average, the point estimate 
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underestimated the lower level posterior distribution method by a factor of 1.25, and 

underestimated the upper level posterior distribution method of the upper method by 1.9. 

Figure 10 

 

MaxDiff Results—Share of Preference 

MaxDiff analysis measuring share of preference yielded something very different from CBC 

projects. Figure 11 shows an example mean share of preference distributions among the three 

estimation methods tested. One can observe here that all three share distributions for each 

MaxDiff item are approximately centered in the same place, and that the point estimate method 

overestimates the variance quite a bit. 

Figure 11 

 

The overestimation of the point estimate method of MaxDiff items here can be observed in 

all of the MaxDiff projects in the study, which is demonstrated by Figure 12. The lower-level 
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posterior distribution method had an average distribution width ratio of 0.44, and the upper-level 

posterior distribution method, 0.56, when compared to the point estimate distribution. 

Figure 12 

 

DISCUSSION 

Our analysis shows that the shortcut point-estimate method for approximating the posterior 

distributions of utilities and shares of preference is substantially different than the upper-level or 

lower-level posterior distributions. Our data suggests that the point estimate method 

underestimates the variance around part-worth estimates, and often produces significantly 

different shares of preference in conjoint simulations. The shortcut method may be safer to use 

for MaxDiff simulations, as utility distributions are very similar, and share of preference 

distributions are conservative (wider than the lower or upper level posterior distributions). 

Conjoint studies tend to not only have very different distributions between methods, but mean 

shares of preference estimates are often significantly and substantially different from one 

another. 

There are several ways this research could be extended and/or improved upon in the future. 

While we know that these methods produce different distributions of part-worth and share of 

preference. We did not cross-validate with true choice data, holdout tasks, or other prediction 

metrics to see which one was more accurate. Likewise, we did not compare other popular 

simulation techniques, like randomized first choice, which could put variance back into the part-

worth estimates to make it more similar to upper and lower level posterior distributions. Adding 

meaningful covariates, especially in the upper level posterior distribution simulations, could have 

improved the quality of our models as well. 

The point-estimate method could still be advantageous to the researcher, when the need for 

convenience, access to individual-level estimates, and the need to build simulators in Excel 

outweigh the need to estimate distributions of utilities and share of preference in a more 

theoretically consistent way. Researchers using any method should be careful when drawing 
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inference from these methods, and keep in mind that these methods may affect their research 

outcomes. When deciding between the upper- and lower-level posterior distribution when 

simulating preference share, it would be advantageous to consider the following questions: 

1. Do you believe the sample to be representative of the overall population? 

2. Are you trying to make inferences about these specific individuals or the population? 

3. Did you include all the important upper level covariates to capture enough heterogeneity? 

Due to the strong differences between simulation methods and their impact on inference, we 

believe that researchers should be making informed decisions about which method to simulate 

from. There are not only theoretical considerations, but practical considerations at play. Can your 

simulation tool accept the number of rows needed when using draws from the lower-level 

posterior distribution? Can your simulation tool filter to appropriate subsets of data in a 

reasonable amount of time? We encourage a holistic and informed approach when deciding on 

which method to use for generating insights fit for the business purpose. 

 

   

 Jacob Nelson Edward Paul Johnson Brent Fuller 
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APPENDIX A— 

HOW TO SIMULATE RESPONDENTS FROM THE SAWTOOTH ALPHA FILE OUTPUT USING R 

Before you estimate your HB model, make sure that you tell Lighthouse Studio that you want 

additional output files from the Advanced Output Options menu: “Successive estimates of alpha 

(CSV)” and “Successive variance-covariance matrix of mean part-worths (CSV).” 

 

Note that if you are simulating for a MaxDiff project, these output files are not currently 

available in Lighthouse Studio (version 9.5.3). You will have to estimate in Sawtooth Software’s 

CBC/HB instead. You can do this by exporting a .CHO file, and importing it into CBC/HB. 

For convenience, you should also tell your model to code variables using dummy coding, 

which you can do in the estimation settings. If you do not do this, you must dummy code the 

variables yourself. 
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Once your model is complete and you are satisfied with it, you’ll be ready to simulate 

respondents in R. In this paper, we use some tidyverse-friendly approaches, but it should not be 

difficult to adapt to base-R techniques, if you prefer. 

You will need to make sure that these packages are installed and loaded (all of which are 

available on the CRAN repository). 

library(readr) 

library(dplyr) 

library(purrr) 

library(tidyr) 

library(tibble) 

library(metaSEM) 

library(mvnfast) 

Once the packages are loaded, you will need to load your alpha and covariance csv files into 

R. 

alpha_raw <- read_csv(“<PATH TO YOUR ALPHA CSV FILE>”) 

covariance_raw <- read_csv(“<PATH TO YOUR VARIANCE-COVARIANCE.CSV FILE>”) 

These files will need to be cleaned before we can simulate from them. Each row of both the 

alpha and covariance data frames represent a draw, and contains every iteration used in the 

model, including the burn-in iterations (but also skipping per the skip factor that was set in the 

estimation settings). We will need to filter the data to include only the converged draws. You may 

decide to only use some of the converged draws to make this problem easier on your computer. 

For this example, we will use 5000 converged draws. We will also get rid of the “Iteration” 

column from both data frames, and all the holdout variables from the alpha data (variables where 

the dummy-coded part-worths are equal to 0), as they are not used. 

keep_converged <- 5000 

 

alpha <- alpha_raw %>% 

tail(keep_converged) %>% 

select(-Iteration, -which(map_lgl(., ~all(.x == 0)))) 

 

covariances <- covariances_raw %>% 

tail(keep_converged) %>% 

select(-Iteration) 

Each row of the covariance file that Sawtooth Software produces represents a flattened 

symmetric matrix for each draw, so they need to be unflattened. This is done by looping through 

each row of the covariances data frame and applying the “vec2symMat()” function from the 

metaSEM package to each row (Cheung, 2015). Each matrix will be nested in the data frame. 

sym_covariances <- pmap(covariances, ~vec2symMat(c(...))) %>% 

 tibble(sigma = .) 

We can now combine the alphas and symmetric covariance matrices into a single data frame 

with more nesting, which we will name “upper_draws.” 

upper_draws <- alpha %>% 

group_by(draw = 1:n()) %>% 

nest(.key = mu) %>% 

ungroup() %>% 



84 

bind_cols(sym_covariances) 

If everything has executed correctly, you should have a two-variable data frame, containing 

the nested part-worths (mu) and the nested covariance matrices (sigma). Each part-worth 

observation should have the same number of columns as the covariance matrix in observation. 

Printing the upper draws object to the console will look like this (depending on your data). 

upper_draws 

# A tibble: 5,000 x 3 

draw mu sigma 

<int> <list> <list> 

1 1 <tibble [1 x 22]> <dbl [22 x 22]> 

2 2 <tibble [1 x 22]> <dbl [22 x 22]> 

3 3 <tibble [1 x 22]> <dbl [22 x 22]> 

4 4 <tibble [1 x 22]> <dbl [22 x 22]> 

5 5 <tibble [1 x 22]> <dbl [22 x 22]> 

6 6 <tibble [1 x 22]> <dbl [22 x 22]> 

7 7 <tibble [1 x 22]> <dbl [22 x 22]> 

8 8 <tibble [1 x 22]> <dbl [22 x 22]> 

9 9 <tibble [1 x 22]> <dbl [22 x 22]> 

10 10 <tibble [1 x 22]> <dbl [22 x 22]> 

# ... with 4,990 more rows 

At this point, you are ready to begin simulating respondents. You will need to decide how 

many simulated respondents you will want to simulate for each draw. For this example, we will 

simulate 1000 respondents. Depending on the complexity of the data, you may need more 

simulated respondents if you want each draw to converge to the mean. 

n_resp <- 1000 

Simulating respondents is done by drawing from the multivariate normal distribution via the 

rmvn() function from the mvnfast package (Matteo, 2016), given mu and sigma for each draw. 

simulated_respondents <- pmap_dfr(upper_draws, function(draw, mu, sigma) { 

rmvn(n = n_resp, mu = as.numeric(mu), sigma = sigma) %>% 

as_tibble %>% 

add_column(draw = draw, sim_resp = 1:n_resp, .before = 1) 

}) 

This may take several minutes to run. Note that this operation may require significant 

amounts of memory (this example, for instance, will result in a data frame of 5 million rows). If 

your computer resources are limited, you may need to split your upper draws object into batches, 

or you may need to reduce the number of draws or simulated respondents you use. 

After you are done simulating respondents, your final data frame should contain a draw index 

variable, a simulated respondent index variable, and simulated part-worth scores (dummy coded) 

from the multivariate normal distribution. 
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PREFERENCE-BASED CONJOINT—CAN IT BE USED TO MODEL 

MARKETS WITH MANY DOZENS OF PRODUCTS? 

JEROEN HARDON 

MARCO HOOGERBRUGGE 
SKIM 

SUMMARY 

In this paper we explore two alternative conjoint approaches that aim to predict better in a 

situation when we have dozens of products in the simulator—but not so many on the screen 

during the interview. Both approaches are a significant improvement over current practices. 

However, more work in this area is still needed. 

INTRODUCTION 

In a number of markets, for example in the services industries and the technology industries, 

every operator or manufacturer has a large assortment of different products that potential 

customers can choose from. For research based on Choice-Based Conjoint this often leads to 

market simulators in which many dozens of products are listed. However, this conflicts with the 

design of the conjoint exercise in which (merely due to screen capacity) we typically show three 

or four products. The result of this discrepancy between interview environment and analysis 

environment is that our predictions are certainly inaccurate and perhaps also biased. As we will 

see later, with a few dozens of products in the simulator, we are only able to predict the correct 

preferred product (based on first choice) for some 20%–30% of the respondents. In this situation 

there must be a lot of improvement possible. 

Intuitively, Adaptive Choice-Conjoint (ACBC) should be able to better cope with the 

situation that we described. The occurrence of levels in ACBC differs per individual respondent, 

dependent on a prior Build-Your-Own (BYO) task. The result is that the respondents much more 

often evaluate attribute levels that are relevant to them personally during the choice tasks. For 

example, if a respondent really wants to have something from brand A (as indicated in the BYO 

task), then brand A is being shown more in the conjoint exercise and we will better know which 

product the respondent will take within the assortment of brand A. However, as we will see later, 

in practice it does not always work better with dozens of products in the simulator. Our 

hypothesis about ACBC is that it is too extreme in its execution and it does not give a good 

enough insight in realistic trade-offs that respondents have to make. This can, for example, be 

due to the fact that respondents actually have preference for 2 levels of an attribute (e.g., 2 

brands), which is not captured in the BYO task. 

The two new ideas that we will discuss in this paper are: 

1. Preference-Based Conjoint (PBC), which is conceptually a variation of ACBC approach 

where we have unlimited flexibility to tune the occurrence of attribute levels. We tested a 

variant in which we considerably decreased the occurrence of the most preferred level (in 

comparison in ACBC), considerably increased the occurrence of the adjacent levels of the 
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most preferred level and kept the low occurrence of the levels that are far from the 

respondent’s preferred level. 

2. PBC
2
 (pronounce PBC square), which is a variation of Choice-Based Conjoint—as it 

does not make use of a prior BYO task—it increases the probability of the attribute levels 

being shown based on the actual responses during the choice tasks. In other words, it is 

even more an on-the-fly approach. We named it “square” because during the interview it 

increasingly adjusts based on the responses: in the last task the respondent’s preferred 

levels are much often more shown than in the beginning, because in the beginning we do 

not know a lot about these preferences. 

PREFERENCE-BASED CONJOINT 

While conceptually PBC is more like a variation of ACBC, technically it is executed in a 

CBC environment. Suppose we have six levels of data allowance (in a mobile subscription 

study), we program for example eight levels, with 6 fixed levels, varying from no data to 

unlimited data, and make a reservation for two flexible levels of which the text is any of the 6 

levels, dependent on the respondent’s initial preference (as expressed e.g., in a BYO task). In the 

end, we are using a complete enumeration design with 8 levels for this attribute: 

 6 fixed levels 

 2 flexible levels for the respondent’s preferred level 

Suppose level 3 was the preferred level, then the chance of level 3 being shown in the choice 

tasks is three times higher, because the text of level 3 shows up when the complete enumeration 

design indicates level 3, 7 or 8. 

Note that we are entirely flexible in our survey design. We might alternatively define 15 

levels: 

 6 fixed levels 

 3 flexible levels for the respondent’s preferred level 

 2 flexible levels for the respondent’s preferred level +1 

 2 flexible levels for the respondent’s preferred level -1 

 1 flexible levels for the respondent’s preferred level +2 

 1 flexible levels for the respondent’s preferred level -2 

Note, in addition, that the determination of the preferred level does not have to be based on a 

BYO task (in ACBC it has to). Alternatively, we can also assume preferred levels from various 

separate select questions in the survey. However, in the test studies that we did we used a BYO 

task after all, just in order to have a fair comparison with ACBC. 

An additional (assumed) advantage of PBC over ACBC is that we are not limited to a certain 

amount of concepts per task. ACBC only allows 2 or 3 concepts per task. 

PBC2 

The idea behind PBC
2
 is the same as for Preference-Based Conjoint but the “feeding” of the 

flexible levels is entirely different. So again we may have: 
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 6 fixed levels 

 3 flexible levels varying per respondent 

But in this case the flexible levels are not dependent on any prior questions before the 

conjoint exercise. They are instead dependent on the choices in the conjoint exercise. So it 

becomes, for example in task 4: 

 6 fixed levels 

 Flexible level, namely the level of the chosen concept of task 1 

 Flexible level, namely the level of the chosen concept of task 2 

 Flexible level, namely the level of the chosen concept of task 3 

The amount of flexible levels increases in the course of the interview, for example in task 10 

we have 6 fixed levels and 9 flexible levels for 15 levels in total. So in task 10, in the most 

extreme case (which is highly unlikely), one level will have a probability to occur of 10/15 and 

the other five levels 1/15 each. 

Just for ease of processing, we implemented PBC
2
 as follows, in four series: 

 No flexible levels in task 1–3 

 3 flexible levels in task 4–6 (the levels of the chosen concepts of task 1–3 are duplicated) 

 6 flexible levels in task 7–9 (the levels of the chosen concepts of task 4–6 are duplicated) 

 9 flexible levels in task 10–12 (the levels of the chosen concepts of task 7–9 are 

duplicated) 

Note that PBC
2
 has a strong theoretical advantage over ACBC and PBC, in the sense that it 

does not require making any assumptions/choices in the design. In ACBC and PBC one has to 

determine upfront for which attributes the frequencies of the levels depend on earlier answers. 

Consequently we may vary the frequencies of an attribute that appears to be entirely 

unimportant, or we may not vary the frequencies of an attribute that is important after all. In 

PBC
2
, if an attribute turns out to be unimportant, its frequencies will remain evenly distributed, 

simply by the nature of the algorithm. 

FIRST TEST STUDY 

Introduction 

We have conducted two test studies in the same market, of mobile telephony subscriptions in 

the Netherlands, in early 2017 and early 2018. In this period the prices of the subscriptions have 

decreased substantially. 

We used 7 attributes with the same levels in both studies, but in the second study we adjusted 

the component prices to be in line with the changing market.  
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 Brand (6 levels) 

 Data allowance (7 minutes) 

 Minutes allowance (6 levels) 

 Data out-of-contract usage (3 levels) 

 Contract period (3 levels) 

 Expiration of allowance (3 levels) 

 Summed pricing
1
 +/-30% 

The Holdout Task 

The biggest challenge was how to define a holdout task. After all, the aim is to predict a 

simulator with dozens of products well. So the holdout task should somehow represent a 

simulator that contains dozens of products. In the first test study, we defined a holdout task with 

20 products, omitted a number of attributes (so it was a partial profile holdout task) and showed 

the products on one screen in two columns, sorted by brand, in order by make. In retrospect we 

tend to believe that the sorting by brand may well have been a bias factor, making brand 

more/too important. Therefore we will discuss the first test study more briefly than the second 

test study. 

Figure 1. Holdout Task 1
st
 Test Study 

Which product would you choose? 

 

The Test Legs 

We had test legs of 250 respondents per leg. In all test legs we had a Build-Your-Own task, 

even if we didn’t use that task for the generation of the design (like in CBC and PBC
2
). 

Furthermore, while summed pricing is the default in ACBC, we have implemented the summed 

pricing approach in CBC, PBC and PBC
2
 as well, on the one hand for fair comparison, and also 

because it is entirely realistic in the market. The ACBC leg as described below did not contain a 

screening exercise, which implied that all respondents evaluated a full set of choice tasks. 

                                                           
1 For more information about summed pricing, see for example https://www.sawtoothsoftware.com/help/lighthouse-

studio/manual/priceinadaptivecbc.html 
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In ACBC, PBC and the default PBC
2
 leg we only varied the frequencies of three attributes: of 

data, minutes, and expiration of allowance, and we only had these attributes in the BYO task 

including the summed price total. Note that we did this for PBC
2
 only for comparison reasons, 

because as noted earlier the advantage of PBC
2
 is that we do not need to establish upfront which 

attributes have levels with varying frequency. In addition we also had another leg with PBC
2
 in 

which levels of all attributes were allowed to vary in frequency. 

The Results 

We evaluated the study based on hit rate and mean absolute error (MAE) in the holdout task, 

in three different ways: 

 Utilities based on HB only based on choice tasks, without covariates 

 Utilities based on HB based on choice tasks and BYO task, without covariates 

 Utilities based on HB based on choice tasks and BYO task, with current brand used as a 

covariate 

In all cases we run HB with a prior variance of 0.5 and 5 degrees of freedom and we used the 

point estimates. Furthermore we run HB in three replications with different starting seeds each 

time, and took the average hit rate and average MAE across the replications. We have done this 

after we noted that every replication resulted in a different hit rate and MAE, even with huge 

amounts of iterations. 

The outcomes are as follows: 

Table 2. Hit Rates (Average Across 3 Replications) 

 HB choice tasks 

only 

HB choice tasks + 

BYO 

HB choice tasks + 

BYO, with 

covariate 

CBC 19.6% 23.6% 29.4% 

ACBC (without screening) 19.0% 19.8% 27.3% 

PBC 24.8% 26.2% 31.9% 

PBC
2
 (varying level freqs of 

same 3 atts as ACBC and 

PBC) 

21.9% 22.5% 28.4% 

PBC
2
 (varying level 

frequencies of all attributes) 

28.0% 28.5% 32.6% 
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Table 3. Mean Absolute Error (Average Across 3 Replications) 

 HB choice tasks 

only 

HB choice tasks + 

BYO 

HB choice tasks + 

BYO, with 

covariate 

CBC 1.8% 1.7% 1.6% 

ACBC (without screening) 1.8% 1.8% 1.8% 

PBC 1.3% 1.2% 1.2% 

PBC
2
 (varying level freqs of 

same 3 atts as ACBC and 

PBC) 

1.9% 1.9% 1.8% 

PBC
2
 (varying level 

frequencies of all attributes) 

1.2% 1.2% 1.1% 

By and large a higher hit rate correlates with a lower MAE, which is very fortunate for 

drawing conclusions about the different methods. In all cases the second PBC
2
 leg is the 

“winner” but only when allowing all attributes to vary in the design. PBC (allowing only 3 

attributes to vary in the design) follows closely. This led us to believe that we could improve 

PBC by varying more attributes in the design. Note that good old CBC did not perform badly at 

all when looking at hit rate, but relatively worse when looking at MAE. 

The figures are not only interesting for the sake of comparing the different legs. We can also 

draw some conclusions across the legs. First of all, adding BYO data to the utility estimation 

(even if the BYO data hadn’t been used in the design, in CBC and PBC
2
) adds a little value in 

the predictions but not so much. On the other hand, adding the current brand covariate has a huge 

impact and this is an effect that we have not seen before. Here we were getting a bit suspicious 

about the set-up of our holdout task: could we artificially have increased brand loyalty in the 

holdout task by sorting the concepts by brand? 

The figures as in the tables are not the whole picture though, because when we analyzed the 

MAE calculations in more detail we saw that all research legs were biased in the sense that the 

actual counts of the holdout tasks revealed that respondents chose more expensive products than 

had been predicted. This is a finding that returns in our second test study. We also found 

significant deviations between counts and predictions when we looked at aggregate shares at 

brand level. So deviations between actual choice in a 20-concept holdout task and predictions 

based on 3 or 4 concepts per task is not only a matter of accuracy but also of a matter of bias. 

SECOND TEST STUDY 

The Holdout Task 

As noted, in hindsight we were a bit hesitant about the holdout task in the first test study. For 

the second test study we developed an alternative holdout procedure. First of all, we now had 40 

concepts in the holdout instead of 20 which is more realistic in the sense that actual market 

simulators also often have 40 or more concepts. Second, we split the holdout exercise into three 

questions: 
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1. For 20 concepts we asked which concepts the respondent would consider buying 

(multiple choice). 

2. On a next screen, for 20 other concepts, we asked the same question. 

3. On the last screen, we only showed the concepts that the respondent would consider 

buying and we asked which one they would most likely buy (single choice). 

For sorting of the concepts in this exercise, we split each leg randomly in half: 

 For half of the respondents we first sorted on brand: 3 brands with 22 concepts on the 

first page, 3 brands with 18 concepts on the second page. 

 For half of the respondents we first sorted on “tier”: 20 low tier products sorted by brand 

on the first page, 20 high tier products sorted by brand on the second page 

 On the final page with only the evoked set of the respondent, we randomized the order. 

Typically respondents chose 2 to 7 products in their evoked set. So despite randomization 

this was still a doable task for respondents, and because of the randomization in this final 

task we hoped to avoid bias toward brand. 

The Test Legs 

In this case we also had an ACBC leg with screening exercise (including two unacceptable 

questions), just for comparison. Most respondents in this leg had a reduced number of choice 

tasks, in case they rejected concepts or attribute levels. 

For PBC
2
, we no longer included the variant with only three attributes to be flexible in level 

frequency, since in the first study the variant with all attributes to be flexible in level frequency 

outperformed the former variant so much. So all attributes were allowed to vary in level 

frequency. 

For PBC, we also included brand as an attribute to be flexible in level frequency. We did that 

because we saw that PBC
2
 performed so much better when having flexible level frequency with 

all attributes included. We presumed (probably wrongly, as we will see) that brand would be the 

most important attribute to be added. So on behalf of PBC we included the brand attribute in the 

BYO exercise, and we did that also in all other legs. 

How Did the Level Frequencies Work Out in This Test Study? 

In PBC and even more in ACBC we have enforced that one brand appears more often in the 

choice tasks. However, when we checked the PBC
2
 data we noticed that brand level frequencies 

were pretty evenly distributed for a large amount of respondents. So in hindsight it may not have 

been a good idea to add brand to the BYO task and enforce the most preferred brand level to 

occur more often. (The question then becomes how PBC
2
 can reasonably predict the right brand 

in the holdout task, the answer must be that this is due to adding the BYO data as conjoint tasks 

in the utility estimation.) 

For minutes and data we obviously see that especially in ACBC a certain level of minutes 

and data is shown more often. The distribution in PBC is more flat (as intended), except when a 

respondent chooses the very lowest or very highest level of these attributes. In PBC
2
 we see an 

interesting phenomenon: the frequency of the adjacent higher level of data and minute is a lot 
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more than the adjacent lower level of data and minutes (we mean adjacent to the BYO level). 

Apparently respondents are more prepared to give in on price than giving in on minutes and data, 

comparing to the BYO task. With ACBC and PBC we cannot foresee effects like this, while 

PBC
2
 adjusts naturally to this phenomenon. 

We looked at the occurrences of price, and for that purpose we set apart two sets of 

respondents who answered one particular combination of brand, minutes and data in the BYO 

task. One set consists of certain “mid-high end” respondents and the other of certain “low end” 

respondents. In Table 4 we showed for each of the methods the “typical” price range of the 

concepts shown to these respondents. In this range there is a close to uniform distribution while 

outside this range the relative frequencies reduce quickly. We have established this “typical” 

range by face value, looking at the histograms, so these values are not very precise. Nevertheless 

two important phenomena immediately become clear: 

1. All adaptive methods (ACBC, PBC and PBC
2
) contain a huge price range for the middle-

high end respondents, hardly any better than CBC, while the latter is non-adaptive. 

2. ACBC tests more concepts that are below the BYO price for the low end respondents and 

tests more concepts that are above the BYO price for the high end respondents. But the 

flipside of this is that ACBC has an even wider price range. 

Table 4. “Typical” Price Range in Choice Tasks (For Two Types of Respondents) 

Method Example “mid-high end” respondent: in 

BYO brand #2, 10 GB, unlimited 

minutes, €29 

Example “low end” respondent: in 

BYO brand #5, 1 GB, 100 minutes, €8 

CBC €5–€25 €5–€25 

ACBC 

(without 

screening) 

€8–€40  

(but with a pretty steep valley in the 

range of €22–€26) 

€4–€18 

PBC €10–€32 €8–€14 

PBC
2
 €8–€28 €8–€18 

In any case, this suggests that there must be huge room for improvement for PBC and 

especially for PBC
2
 beyond what we discuss in this paper, such that they keep the prices in the 

choice tasks 1) in a narrower range around the BYO price and 2) in a range that is equally under 

and above the BYO price level. For ACBC the former point of improvement is even more 

important, while the latter point of improvement has already been reached a bit. By and large we 

may conclude that currently none of the methods is very adaptive in terms of the prices being 

shown in the choice tasks. 
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The Results 

The outcomes are as follows: 

Table 5. Hit Rates (Average Across 3 Replications) 

 HB choice tasks 

only 

HB choice tasks + 

BYO 

HB choice tasks + 

BYO, with 

covariate 

CBC 18.0% 24.6% 26.9% 

ACBC (with screening and 

unacceptables) 20.4% 28.1% 27.2% 

ACBC (without screening) 23.5% 31.4% 29.8% 

PBC 22.9% 26.4% 27.2% 

PBC
2
 23.2% 31.3% 32.0% 

Table 6. Mean Absolute Error (Average Across 3 Replications) 

 HB choice tasks 

only 

HB choice tasks + 

BYO 

HB choice tasks + 

BYO, with 

covariate 

CBC 1.2% 1.1% 1.1% 

ACBC (with screening and 

unacceptables) 1.1% 1.1% 1.1% 

ACBC (without screening) 1.1% 0.9% 0.9% 

PBC 1.1% 1.0% 1.0% 

PBC
2
 1.0% 1.0% 1.0% 

Like in the first test study, PBC
2
 is the “winner.” The improvement that we hoped to reach for 

PBC (by including brand as an attribute with flexible level occurrences) does not occur at all, 

rather on the contrary. Also ACBC without screening is performing quite well, while ACBC with 

screening (but mostly fewer choice tasks) performs clearly worse than ACBC without screening. 

We have no explanation why ACBC without screening performs so much better in the second 

test study than in the first test study (except for sampling error, to be discussed at the end of this 

presentation). 

We can also draw some conclusions across the legs. First of all, adding BYO data to the 

utility estimation (even if the BYO data hadn’t been used in the design, in CBC and PBC
2
) adds 

much more value in the predictions than in the first study. We believe this is due to the difference 

in brand signal. In the first study brand was not a part of the BYO, and we do not see a large 

improvement when adding the BYO to the data. But we do when adding brand as a covariate. In 

the second study (where brand was part of the BYO) we see the impact occurring when adding 

the BYO data already, concluding that adding more brand signal either via the BYO or the 

covariates helps the prediction of brand choice in the holdout task. 

The figures as in the tables are not the whole picture though, because when we analyzed the 

MAE calculations in more detail we saw that the CBC and ACBC research legs were biased in 

the sense that the actual predicted choice of the holdout tasks revealed lower prices than had 

been actually chosen. The results of this are shown in the table below. 
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Table 7. Percentage of Respondents for Whom the Price of the Predicted Choice in the 

Holdout Task Was Higher/Lower Than the Actual Choice in the Holdout 

 CBC 

ACBC 

with 

screening 

ACBC 

without 

screening 

PBC PBC
2
 

Underestimated 39.1% 36.4% 31.0% 35.9% 33.2% 

On par 29.8% 31.6% 36.7% 29.4% 34.0% 

Overestimated 31.0% 32.0% 32.2% 34.7% 32.8% 

Average price 

difference (in 

€) 

-0.30 -0.60 -0.40 0 +0.10 

By the way, the table above does not mean to suggest that the predictions of PBC and PBC
2
 

were overall unbiased. We just happen to look here at the results from one particular angle, 

namely price. There were biases for PBC and PBC
2
 as well, when we analyzed aggregate brand 

shares or by data allowance, but they were not pointing in any particular consistent direction. 

This phenomenon may well have a mathematical rather than a psychological cause (see paper “A 

Meta-Analysis on Three Distinct Methods Used in Measuring Variability of Utilities and 

Preference Shares within the Hierarchical Bayesian Model,” by Jacob Nelson, Edward Paul 

Johnson, and Brent Fuller, in these same proceedings). So the above results are nice, but not 

conclusive. 

Looking At an Alternative Metric 

A hit rate of 25%-30% sounds like a very good performance, taking into consideration that 

the holdout task consists of 40 products. Random data would result in a hit rate of only 2.5%. 

However, when we look at it in more detail, by checking the share of preference of the chosen 

concept in the holdout task, it appears that with no less than half of the respondents that share is 

below 10% which implies that it was a pretty bad prediction. With 10% of the respondents the 

share of preference is even below 1% which implies an awfully bad prediction. 
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Figure 8. Histogram of Shares of Preference of the Chosen Concept 

in the Holdout Task of All Legs Combined 

 

A better, and also theoretically sounder, metric to capture these differences in quality of 

prediction, is by looking at the geometric mean of these shares of preference. The percentages 

then become a lot lower, around 8%, which is also closer to the median share of preference. The 

conclusions about the relative performance of PBC
2
 versus ACBC versus PBC versus CBC did 

not change when using this measure, but the relative magnitude of the difference increases. In 

particular PBC
2
 outperforms better than before, i.e., is better able to prevent exceptionally bad 

predictions. And anyway we think it is important to share this little piece of analysis in order to 

emphasize that there is a BIG gap between 8% and 100% that we should still improve on, 

somehow. 

Table 9. Traditional Hit Rate Versus Geometric Mean of Share Predictions 

of the Chosen Concept 

Leg 
Hit rate (with 

covariates) 

Geometric mean 

SoP (with 

covariates) 

CBC 26.9% 7.1% 

ACBC with screening 27.2% 7.3% 

ACBC without 

screening 
29.8% 8.1% 

PBC 27.2% 7.6% 

PBC
2
 32.0% 9.2% 
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COMPARING THE RESULTS OF THE TWO STUDIES 

Across the two studies, PBC
2
 performs best and plain CBC does not perform as well. Those 

conclusions can be drawn without much doubt. With the other methods there is more nuance 

needed. 

PBC has been tested in two slightly different variants in the two studies and we may well 

conclude that the set-up of the second study, with additionally including brand as a flexible 

attribute, was not as successful. On the other hand PBC
2
 has been tested in two variants within 

the first study and inclusion of all attributes as flexible attributes was more successful there. This 

sounds quite contradictory. The problem is that PBC enforces a different probability distribution 

of level occurrences for every respondent, even if brand is largely irrelevant for a particular 

respondent. On the other hand, PBC
2
 only changes the probability distribution of level 

occurrences if it becomes clear during the survey that an attribute is a relevant choice criterion. 

So brand may an important criterion for a couple of respondents, or it may be one of the three 

last “less important” attributes for a couple of respondents, and PBC
2
 will then take that into 

account on an individual respondent basis (while PBC has kept the last three attributes equally 

distributed for all respondents). So PBC
2
 is much more flexible and much better individualized 

than PBC. 

ACBC without screening performs relatively poorly in the first test study and relatively well 

in the second test study. We do not have a good explanation for this phenomenon. The only thing 

that we can say about it, for now, is that there is also some measurement error involved in our 

estimations, which may make the results vary anyway. So that could be the reason for the 

deviation between the two studies. Measurement error may be divided in two components: 

1. Sampling error. Every leg contained 250 respondents which results in 95% confidence 

intervals for the hit rates of +/-2% (total width 4%). That is a pretty big range and so we 

may just have had bad luck in the sense that the point estimate of hit rate of the ACBC 

leg may have been at the lower end of the confidence interval in the first study and at the 

higher end of the confidence interval in the second study. In retrospect, 250 respondents 

is not an awful lot. 

2. HB estimation error. We have noticed that HB does not globally converge when there are 

constraints in play (not even with 100,000 iterations). Our procedure to come around this 

problem was as follows: we have taken three replications for each leg (with different 

starting seeds), calculated hit rate and MAE of that leg, and in the end calculated the 

average hit rate and MAE of those three replications. From a practical perspective this 

doesn’t feel too good, because we normally only do one replication. What should we now 

do in practice, take averages of multiple replications like we did here, or take the 

replication with the highest hit rate across multiple replications? More research is needed 

here. 

 

Just as an illustration of this phenomenon, Table 10 shows 6 replications for two legs. 
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Table 10. Hit Rate in Different Replications (With Different Starting Seeds) with 

20,000 Burn-in Iterations and 30,000 Saved Iterations 

Starting 

seed 

Hit rate ACBC 

without screening 
Hit rate PBC 

1 28.6% 26.1% 

2 30.2% 27.3% 

3 32.7% 26.9% 

4 29.8% 24.9% 

5 29.0% 24.9% 

6 31.8% 25.7% 

POSTSCRIPT 1 

During the Sawtooth Software Conference we fielded another 250 respondents with an 

alternate version of PBC
2
. Instead of duplicating the levels of concepts that were chosen by 

respondents, we even triplicated these levels. So this was a variant with a steeper rate of 

adaptation to the individual respondents’ choices. We were aiming at addressing the problem that 

we described in the section “How did the level frequencies work out in this test study?” 

Unfortunately, on the one hand the price range of the concepts moved only a little: 

 For the mid-high end respondent the price range moved from €8–28 to €10–30. 

 For the low end respondent the price range from €8–18 did not move at all. 

Also, when testing the survey, we noticed that we might move into a respondents’ evoked set 

more quickly. But on the other hand it also happened, accidentally, that levels of irrelevant 

attributes were chosen more often and then the number of occurrences of that level exploded 

quickly. This is due to the fact that our algorithm is based on absolute frequency of levels 

(picked) rather than relative frequency (picked/shown). 

Finally, probably as a result of the latter, hit rate was somewhat lower than regular PBC
2
. So 

this is a direction that we do not need to explore any further. The question remains how we can 

tweak the design such that more concepts are being shown to an individual respondent that are in 

his/her preferred price range?  
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POSTSCRIPT 2 

After we delivered the presentation at the Sawtooth Software Conference, Bryan Orme came 

to us and said: “You had a similar idea (to PBC
2
) some 10 or 15 years ago, don’t you 

remember?” Honestly at that point of time we didn’t remember, but in the meantime some of our 

memories came back. 

First of all, it was an idea that failed (based on hit rate), so we never presented it, and that is 

probably the reason we forgot. 

Second, it had been implemented as a direct replacement of attribute levels, rather than by 

changing the probability of occurrence of attribute levels. So for example in the 5
th

 task we 

replaced the levels of attributes 1 and 5 by the level in the winning concepts of the 1
st
 to 4

th
 task. 

And in the 6
th

 task we replaced levels of attributes 2 and 4. And so on. In retrospect it is difficult 

to judge whether changing the probability of occurrence is better or worse than direct 

replacement. 

Third, we most probably tried this before ACBC was introduced, because it had been 

implemented in Ci3, and so most probably we treated price the same as any other attribute and 

alternated in replacing price levels of winning concepts throughout the exercise. In retrospect 

that may have been a likely reason for failure, because on the one hand products were getting 

more attractive content for a respondent in the course of the survey, but also potentially were 

getting less expensive during the survey (or at least getting more value for money). This may 

well have converged to concepts that were “too good to be true” and would never exist in the real 

market. On the other hand in ACBC, PBC and PBC
2
, when applying summed pricing, price is 

being varied independently of the consumer’s previous choices (while price does depend on the 

attribute levels) and that may work out much better. 

Looking back, while it had never so explicitly been promoted, we think that (the easy way of) 

applying summed pricing has actually been one of the most important innovations of ACBC. In 

practice, the idea of summed pricing has drastically reduced the design space: in old-school CBC 

applications with price as an independent attribute we often just had some prohibitions with 

price, reducing the design space by for example 30%, while with summed pricing we reduce the 

design space by for example 80%, thus limiting the design space more drastically to products 

that are more realistic in the actual market. The latter is one key element of predicting the right 

choice in a simulator with dozens of products, even while much more work is needed in that 

area. 

CONCLUSIONS 

1. The issue of having dozens of products in the simulator (while having only a few 

concepts per screen in the survey) has not been explored in depth so far. We hope, by 

means of this paper, to have made a start in this area. 

2. We are glad that one of our ideas to cope with the problem performed better in the 

simulator than the standard solutions that are available on the market. 

3. Nevertheless we do not have the illusion that we have really solved the problem. A 

geometric mean SoP of 9.2% is an improvement compared to standard solutions, but still 

low. 
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4. One point we may definitely improve upon is that we should show concepts to a 

respondent in a price range that is more relevant for him/her. Despite the adaptiveness of 

the design algorithms (except in CBC), the prices of different concepts varied hugely for 

a single respondent, and besides the range was biased: for high end respondents we 

mainly show concepts that are less expensive than in the BYO, for low end respondents 

we mainly show concepts that are more expensive than in the BYO. ACBC performed 

somewhat better in preventing this bias, but only because the price range of the shown 

concepts was even wider. 

 

   

 Jeroen Hardon Marco Hoogerbrugge 
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ABSTRACT 

A new adaptive approach for developing MaxDiff typing tools achieves high accuracy with 

only 8 binary comparisons (tasks, pairs) in an 8-segment example. Reduction to 7 tasks can be 

achieved if triples are included in the mix. We also provide a theoretical framework for further 

task reduction by applying a hierarchical latent class tree (LCT) structure to reduce segment 

similarity. Preliminary results with and without adjustment for scale confounds suggest that the 

LCT approach not only yields further task reduction but also provides more meaningful 

segments. These methods can be implemented with commercial software such as Latent GOLD® 

and CHi-squared Automatic Interaction Detection (CHAID). 

INTRODUCTION 

Once a meaningful set of segments is obtained, it is a common practice to develop a typing 

tool to assign new cases to the most appropriate of these segments (Figure 1). Typing tools 

typically consist of a short battery of questions together with an algorithm for mapping each 

response pattern to the appropriate segment. To minimize respondent fatigue, the tool should be 

as simple as possible but not so simple that it fails to achieve acceptable classification accuracy. 

Figure 1. A typing tool attempts to assign a new respondent into 

the most appropriate segment. 

 

Typing tools can be static, with the same questions administered to all respondents, or 

adaptive, where the tasks administered to a given respondent depend upon their responses to 

previous questions. Magidson and Bennett (2016) described an approach to develop a static 

typing tool with simple paired comparisons which achieves high accuracy of classifying new 

cases into the correct latent class (LC) segment. 

In Part 1 of this paper we begin by reviewing that static approach using MaxDiff data from a 

sample of 200 respondents. We then modify the approach to develop an adaptive tool and 
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compare the expected accuracy (and the number of tasks required to achieve 80% accuracy) for 

both approaches. We also compare and contrast our typing tool development approach to earlier 

approaches (e.g., Orme and Johnson, 2009; Lyon, 2016; Komendant, 2016). 

Part 2 of this paper introduces a new hierarchical LC tree-based framework to reduce 

segment similarity and make it easier to interpret the segments. This framework facilitates 

further task reduction, as shown by applying it to the scale-adjusted latent class (SALC) model to 

achieve more meaningful segments. We also discuss differences in the typing tool tasks that 

might be expected after scale heterogeneity is removed from the segments. All analyses 

presented here were performed with Latent GOLD
®
 and SI-CHAID

®
. 

PART 1: STATIC AND ADAPTIVE TYPING TOOLS 

There are three key components to our typing tool development based on LC segments. The 

only change to make the static approach adaptive is to modify component 3. 

1. Use latent class modeling to obtain segment-specific worth parameters (utilities) that 

define each segment. 

2. Simulate responses to all potential typing tool tasks for a large sample generated from 

each segment population.
1
 

3. Use stepwise multinomial logit (MNL) model for the static approach, or CHi-squared 

Automatic Interaction Detection (CHAID) for the adaptive approach, to select the tasks 

to include in the typing tool. 

Component 1: Latent Class Segmentation 

The starting point is to obtain segment-level MaxDiff utilities which serve to define the LC 

segments. These utilities are often obtained using a tandem approach, where hierarchical Bayes 

(HB) is used in step 1 to obtain individual level utilities, and then LC is used to cluster these 

utilities in step 2. However, that approach is theoretically inconsistent
2
 and typically yields 

segments that are less interpretable than segments obtained in 1-step by applying an LC choice 

model directly to MaxDiff responses.
 
For that reason, we agree with Eagle (2013) and Magidson 

(2003) in recommending that segment-level utilities be obtained using a 1-step approach by 

applying a LC choice model directly to the MaxDiff responses
3
. The 1-step vs. tandem 

approaches are compared further in Appendix B: One-Step vs. Tandem Approach to Obtain 

Segments from MaxDiff Data. 

Component 2: Simulating Respondents from Each LC Segment 

In Magidson and Bennett (2016), the most preferred alternative for all possible (36) paired 

comparison tasks were simulated for 1000 generated respondents from each of eight LC 

                                                           
1 As described later, potential tasks include best only responses to pairwise comparisons (pairs), triples, quads, etc. 
2 The multivariate normal (MVN) prior (used in step 1) is tantamount to the assumption that segments do not exist (MVN random effects), while 

latent class clustering on the individual utilities obtained in step 1 assumes the existence of K > 1 segments (MVN random effects within 

classes). Since the distribution of individual utilities cannot be governed both by overall MVN (step 1) and mixture MVN (step 2 assumes 
MVN within each segment), this approach is inconsistent. Replacing the MVN prior with the MVN mixture prior in Step 1 (using covariates in 

the upper model) does not solve the problem and may even yield a worse segmentation if the covariates are not related to the behavioral 

segments. See Appendix A for a summary of three different LC choice models for 1-step analysis of MaxDiff responses.  
3 Sawtooth Software also cautions users regarding this tandem approach and recommend the 1-step approach. 
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segments based on the utilities that define each segment.
4
 These simulated responses were then 

used as predictors of the (true) segments in a stepwise multinomial logit (MNL) model to 

determine the pairs most predictive of the segments, for inclusion in the typing tool. 

The two primary benefits of using this simulation strategy with generated respondents are 

1. The sample size (N = 8000) is sufficiently large so that the simulated responses contained 

the appropriate variability needed to obtain reliable results from the stepwise MNL.
5
 The 

typical sample size for a MaxDiff experiment (200–800 cases) is insufficient to achieve 

reliable results. In particular, Magidson and Bennett (2016) showed that the resulting 

accuracy from a typing tool where tasks were obtained by a MNL analysis of the original 

MaxDiff sample fell far short of the accuracy from a comparable tool where MNL 

variable selection was applied to a large number of generated respondents. 

2. Since LC modeling is probabilistic in nature, respondents are assigned to the most likely 

class, and thus there is a non-zero probability that respondents are misclassified. Since 

the simulation approach generates respondents directly from the LC segment populations, 

their true class membership is known, and hence the dependent variable in the MNL 

represents true segment membership. In contrast, an MNL designed to predict the class 

assignments for the original MaxDiff respondents mistakenly assumes misclassification 

error is zero. 

It should be noted that the utilities defining the LC segments were estimated using the 

sequential logit model as implemented in the Latent GOLD
®
 program (Vermunt and Magidson, 

2005). An alternative 1-step LC approach for analyzing MaxDiff responses, proposed originally 

by Louviere (1993) and implemented in the Sawtooth Software Latent class modeling program, 

cannot be used to simulate data without some complications.
6
 

Component 3: Methodology for Typing Tool Task Selection 

In Magidson and Bennett (2016), the best subsets of tasks were identified using stepwise 

MNL to predict segment membership based on simulated responses to the tasks. The resulting 

typing tool was “static” in the sense that all future respondents to the typing tool are administered 

identical questions. In this paper, we extend the methodology in two directions: 

1. We extend the static typing tool to an adaptive (dynamic) tool where questions posed to 

each respondent differ according to their earlier responses, and 

2. We allow triples, quads, etc. into the mix of potential tasks to include in the typing tool. 

The key to accomplishing these extensions is to replace stepwise MNL with the CHAID 

decision tree technique.
7
 Using the same simulated data and generated respondents, we simply 

                                                           
4 Simulating data for an equal number (N = 1000) of cases from each of the eight segments represents a non-informative prior, which corresponds 

to the common situation where the typing tool is used on future populations that are not necessarily the same as the population from which the 

MaxDiff sample respondents were selected. In the situation that the future respondents to be typed are representative of the original MaxDiff 

population, unequal samples from each segment can be used to match the class sizes estimated by the LC analysis. Production of the simulated 
data is straightforward using the simulation capability in the Advanced/Syntax version of Latent GOLD®. 

5 An additional sample of 9000 respondents were generated in the same way and used as a validation sample to estimate the classification 

accuracy that would be achieved from the typing tool with different numbers of pairs. 
6 Simulation is not straightforward with the 1-step approach based on the original Louviere (1993) MaxDiff algorithm implemented in the 

Sawtooth Software Latent class modeling program because data so simulated would contain some responses where the same alternative is 

selected as both best and worst (see Appendix A). 
7 We used Statistical Innovations’ SI-CHAID package. 
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substitute the CHAID algorithm for the stepwise MNL for task selection, as illustrated in detail 

in the example below, to yield an adaptive typing tool. 

CHAID’s tree structure provides a natural way to determine the most statistically significant 

task to include in the typing tool based on responses elicited from previous tasks. CHAID also 

deals with categorical predictors in a natural way, making the extension from pairs to triples, 

quads, etc. transparent.
8
 

MaxDiff Data: Sydney Independent Transport Inquiry 

To illustrate the approach and to compare the performance of the adaptive typing tool with 

the static tool, we utilize the MaxDiff response data from the Sydney Independent Transport 

Inquiry. More specifically, this is an example of a Case 1 Best-Worst Scaling study conducted in 

2010 to determine how Sydney residents differ in their prioritization of nine short-term 

improvements to the transportation network (Table 1). For further details, see Louviere, Flynn, 

and Marley (2015). 

Table 1. Sydney Independent Transport Inquiry 

      

Object number   Object name (transportation improvement) 

1  More frequent off-peak trains between major centers 

2  Improved peak rail capacity 

3  More frequent bus services on major routes 

4  Extensions of light rail services 

5  Integrated fares 

6  Integrated ticketing 

7  Real-time arrival information 

8  New cycleways; more bike and scooter parking 

9   Trains use green power 

With 9 objects, there are a total of   
 
  = 36 object pairs that were considered as potential 

tasks for inclusion in the typing tool. The study used a Balanced Incomplete Block Design 

(BIBD) with each respondent being administered 12 sets of 3 options. The best and worst 

responses to task #1 (Table 2) yields preference orderings among each of the 3 paired 

comparisons, namely {2, 4}, {2, 8}, and {4, 8}. 

Table 2. Example of the of the BIBD design for choice task #1 of 12. 

            

Object 

number 

  Object name (transportation improvement)   Best Worst 

2  Improved peak rail capacity    

4  Extensions of light rail services    

8   New cycleways; more bike and scooter parking       

                                                           
8
 As pointed out by Lyon (2016), use of stepwise MNL is clear with dichotomous (and numeric) predictors, but the extension from pairs to 

triples, quads, etc. is not so straightforward. On the other hand, the CHAID algorithm is designed for categorical predictors and thus has no 
problem with extensions beyond pairs. 
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With 12 choice tasks each yielding orderings among 3 pairs, it follows that orderings are 

obtained for all 36 pairs in this efficient design (12 x 3 = 36). 

Results from the Static Typing Tool Development 

The starting point in the development of the static typing tool developed in Magidson and 

Bennett (2016) of these data was to obtain the utility parameters from an 8-segment LC Best-

worst model using the 1-step sequential logit modeling approach as implemented in Latent 

GOLD
®
.
9
 These segment-specific utility parameters serve to define the 8 segments (see Table 3). 

Table 3. Traditional latent class modeling results for 8-classes 

(from Latent Gold® tutorial 8A). 

 

The next step was to simulate “best” responses to all possible pairs for 1,000 respondents 

generated from each of the 8 segments (the training data) based on the LC segment utilities given 

in Table 3. As mentioned above, generation of a large number (N = 8,000) of respondents is 

necessary to obtain sufficient variation in the responses. Figure 2 shows the simulated “best” 

responses for pairs {1, 2}, {1, 3}, . . . , {8, 9} from the first 20 respondents, together with their 

true class membership (class#). For each of the eight segments, “best” responses to all 36 pairs 

were simulated. 

                                                           
9 For a detailed description of how these parameters were obtained, see Choice Tutorial 8A. www.statisticalinnovations.com/wp-

content/uploads/LGChoice_tutorial_8A.pdf 

Object name Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

More frequent off-peak trains between major centers 1.2 1.0 0.4 -0.1 -0.3 -0.7 -0.1 -0.4

Improved peak rail capacity 1.3 3.1 0.8 3.6 0.7 2.2 1.1 1.3

More frequent bus services on major routes 1.4 1.8 0.2 2.6 0.6 2.2 0.8 0.6

Extensions of light rail services 0.5 -1.9 -1.2 -1.8 -0.3 -1.4 -2.4 1.3

Integrated fares -0.5 0.4 0.3 -1.0 -0.3 -0.3 2.0 2.0

Integrated ticketing -0.7 0.4 0.1 -1.2 -0.4 -0.4 2.7 2.6

Real-time arrival information -0.8 -0.1 0.4 -1.9 -2.0 -1.1 -1.3 0.4

New cycleways; more bike and scooter parking -1.3 -2.6 -1.6 -2.0 0.4 0.9 -1.9 -3.6

Trains use green power -1.0 -2.2 0.6 1.7 1.6 -1.4 -0.8 -4.1

Standard deviation 1.1 1.9 0.8 2.1 1.0 1.4 1.8 2.4

Size 0.21 0.18 0.14 0.12 0.12 0.11 0.08 0.04

Utility parameters

http://www.statisticalinnovations.com/wp-content/uploads/LGChoice_tutorial_8A.pdf
http://www.statisticalinnovations.com/wp-content/uploads/LGChoice_tutorial_8A.pdf
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Figure 2. Simulated “best” responses for all possible pairs (n = 36). 

 

The final step was to analyze these training data using stepwise multinomial logit modeling 

(MNL) to determine the K most predictive pairs to include in the typing tool. Specifically, 

Stepwise MNL predicted true class membership (“Class#” in Figure 2 denotes true class) as a 

function of the 36 pairs. Data on an additional 9,000 persons per segment were simulated and 

used to validate the accuracy of a typing tool based on K pairs. Table 4 shows the top four pairs 

obtained from the stepwise MNL. 

Table 4. The top four pairs used in the static typing tool. 

Pair No./Object No. Objects Most Important 

1 = (6, 9) Integrated ticketing  

Trains use green power  

   

2 = (7, 8) Real-time arrival information  

New cycleways; more bike and scooter parking  

   

3 = (4, 9) Extensions of light rail services  

Trains use green power  

   

4 = (3, 6) More frequent bus services on major routes  

Integrated ticketing  

Figure 3 summarizes the expected accuracy computed as a function of K, the number of 

tasks. These results show that a typing tool consisting of 8 pairs would be expected to reproduce 

the true segment membership with 74% accuracy.
10

 

                                                           
10 Accuracy is estimated based on the additional N = 72,000 cases generated as validation data, where task selection was based on N = 8,000 

generated cases (training data). 
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Figure 3. Expected accuracy from a static typing tool with K paired comparison tasks. 

 

We note that if MNL task selection were instead performed using the original sample (N = 

200), the expected accuracy for a typing tool with 8 pairs would have been substantially lower 

(reduced from 74% to 63%), a result that supports the benefit of generating respondents.
11

 

Comparison of Results: Static vs. Adaptive Typing Tool 

For development of the adaptive tool the tree-based CHi-squared Automatic Interaction 

Detection (CHAID) algorithm replaces stepwise MNL for task selection. At each respondent 

subsample represented by a tree node, CHAID selects the predictor that is most significant 

(lowest p-value) based on a chi-squared test of each 2-way table of the predictor tabulated 

against segment membership. The sample is then split into subsamples according to the 

simulated responses for the most significant of the predictors (Magidson, 1994). 

For comparison with the static typing tool we begin by limiting the potential tasks to pairs, 

using the same data generated previously for the development of the static tool. Figure 4 shows 

that the single best predictor is pair {6, 9} which asks respondents to choose the improvement 

they prefer: “Integrated ticketing” (object 6) or “Trains use green power” (object 9). Respondents 

are then administered either pair {3, 6} or {1, 8} depending on their response to the first paired 

comparison {6, 9}. 

                                                           
11 Stepwise MNL on the original sample data with modal assignments as the dependent variable was found to overfit the data substantially. The 

in-sample accuracy with 8 binary predictors was 74% but fell-off to 63% when applied to the simulated validation data. The in-sample 

accuracy with 12 paired comparisons was 91.5% which fell-off to 69% on the validation data. For further details see Magidson and Bennett 
(2016). 
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Figure 4. Results for adaptive typing tool using pairs in CHAID. 

 

The pair {6, 9} selected by CHAID as the most significant predictor overall, was also 

identified as most significant by the MNL analysis used to develop the static typing tool (recall 

Table 4). As shown in Figure 4, CHAID splits the training sample of 8,000 simulated 

respondents into two subgroups (N1 = 4690 and N2 = 3310) according to whether they chose 

“Integrated ticketing” (object 6) or “Trains use green power” (object 9) as most important. 

CHAID next selects either the pair {3, 6} or {1, 8} as the second pairwise comparison task for 

the adaptive typing tool depending on the subgroup (i.e., depending on their response to the first 

task {6, 9}). This dynamic feature of CHAID is what makes the typing tool adaptive. 

The end result of this CHAID tree is that each respondent is placed in one of the four 

terminal nodes (buckets) depicted at the bottom (“Tree level K = 2”) of Figure 4. For example, 

the first bucket consists of the 2,494 respondents who select statement “6” as best among the pair 

{6, 9} at tree level 1 and then select statement “3” as best among the pair {3, 6} at tree level 2. 

Since these respondents were generated, we know that 20.47% belong to true segment 1 and 

29.91% to true segment 2, etc., as depicted in the first bucket (first terminal node) of the CHAID 

tree. 

Depending on which of these four buckets one falls into, respondents are then assigned to the 

segment having the highest probability. Thus, persons in bucket #1 are assigned to segment 2, 

since the highest percentage for that bucket is 29.91% associated with segment 2. Persons in 

bucket #2 are assigned to segment 8 (the associated percentage being 40.03%), persons in bucket 

#3 are assigned to segment 4 (with percentage 37.32%) and those in bucket #4 are assigned to 

segment 5 (with 58.33% correctly assigned to segment 5). 

Overall, only 38% would be assigned to the correct segment based on this hypothetical 

adaptive typing tool consisting of two pairwise comparisons per respondent, the same accuracy 

achievable by the static typing tool with two pairs. Figure 5 shows that for K = 3 or more pairs, 
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the adaptive tool yields higher accuracy than the static tool using the same number of pairs.
12

 In 

particular, with 8 pairs, the adaptive approach yields 80% accuracy compared to 74% for the 

static tool. 

Figure 5. Accuracy comparison of static and adaptive typing tools using K pairs. 

 

The simulated response data used to develop the static typing tool was then expanded by 

simulating the “best” response to all possible triples and adding that to the mix for the adaptive 

typing tool development. 

Figure 6. Accuracy comparison for adaptive pairs vs. adaptive pairs plus triples. 

 

                                                           
12 The accuracy for both the static and adaptive tools was computed using the validation data of N = 72,000 simulated respondents. For the 

adaptive tool with (at most) K = 8 pairs, approximately 30% of the respondents were associated with terminal CHAID nodes defined by fewer 
than 8 pairs: K = 7 (13%), K = 6 (16%) and K = 5 (0.5%). 
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When the   
 
  = 84 triples were added to the mix, the triples tended to be selected ahead of 

pairs by CHAID and overall accuracy improved, especially for K < 8 tasks. In particular 80% 

accuracy was achieved in the adaptive tool (Figure 6) with at most 5 tasks (pairs and/or triples) 

per respondent, as compared to K = 8 tasks with pairs only.
13

 

Summary of Results: Static vs. Adaptive 

 Limited to pairs, the CHAID tree stopped after 13 levels, achieving accuracy of 85% 

(84% in validation data), the same level of accuracy achieved by the static approach 

where all respondents reply to 13 paired comparisons. In contrast, the average number of 

pairs to which respondents were exposed with the adaptive approach was 8, with some 

being classified after responding to as few as 5 pairs. Thus, the adaptive tool reduces 

fatigue, with no respondent required to reply to more than 13 pairs, and most only 

needing to reply to 8 or fewer pairs. 

 With triples allowed to enter the mix, CHAID selected triples over pairs for the initial 

tree splits, but then completed the tree with binary splits, terminating after 12 levels, and 

yielding validation accuracy of 85%.
14

 Thus, including triples improves the accuracy 

slightly and also reduces the fatigue somewhat, the average number of tasks to which 

respondents are exposed being 7. 

We conclude that a major advantage of adaptive typing tools is that fewer tasks are required 

in order to achieve high accuracy. In this example with 8 segments, 13 tasks are needed to 

achieve accuracy in the range of 83% to 85%. In contrast, using the adaptive approach, that 

number is reduced to an average of 8 tasks. 

Table 5. Comparison of expected classification accuracy for static and adaptive approaches. 

 

If choice tasks with three objects (triples) are also allowed in the experiment, along with 

pairs, that number of tasks is further reduced to seven. It is also possible that the inclusion of 

quad-based tasks could result in further task reduction, although that hypothesis has not been 

formally tested at this point. It is clear that the results suggest that adaptive surveys have the 

potential to improve both the classification accuracy and efficiency in choice experiments. 

Adaptive surveys are, however, more difficult to program. The algorithms needed to determine 

the “best task” at every choice juncture are not typically available “off the shelf.” Researchers 

and policymakers will need to decide whether investing in this type of capacity is necessary for 

their choice experiments. 

                                                           
13 Note: the overall “best” triple was the one containing objects “6-8-9” for comparison. 
14

 Since MaxDiff tasks can be represented by selection of a triple followed by response to the relevant paired comparison MaxDiff tasks are 

included in the accuracy comparisons. MaxDiff tasks were never selected by CHAID (see Appendix D). 

Static

MNL regression Pairs Only Pairs and Triples

Accuracy-Validation 83.9% 83.0% 84.6%

Accuracy- Sample 84.8% 88.7% 93.1%

Average no. of items 13.0 8.3 7.0

Adaptive
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Comparison with Other Approaches 

Typing tool development for segments derived from MaxDiff Response Data has been 

addressed earlier by Orme and Johnson (2009), Lyon (2016) and Komendant (2016), which we 

collectively refer to as Naïve Bayes Classifier (NBC) approaches. Our approach differs 

fundamentally from these approaches. Specifically, our approach: 

 yields simpler typing tools (by excluding complete MaxDiff tasks and asking only for the 

“best” responses),
15

 

 defines segments in terms of their preferences (i.e., parameters), not in terms of those 

respondents assigned to the segments, and 

 computes expected accuracy directly, not as the hit rates to the assigned classifications for 

the original MaxDiff respondents. 

One-Step vs. Tandem Approach to Obtain Segments from MaxDiff Data 

Our approach requires only that segment-level MaxDiff utilities are available from some 

process. We recommend that the sequential logit (also known as “best-worst”) model, be used as 

the process to obtain these utilities, directly from responses observed from the original MaxDiff 

respondents (see Appendix A). These estimated utilities serve to define each segment. In 

contrast, a tandem approach is commonly used where individual level utilities from a 

hierarchical Bayesian (HB) analysis of the MaxDiff responses are obtained as a first step, and 

segments are then obtained by clustering these utilities as a second step. 

Presumably, persons who use HB may choose the tandem (two-step) approach because they 

desire to obtain segments that are most consistent with the HB utilities. However, our research 

suggests the surprising result that the 1-step LC approach in fact yields segments that are not 

only more meaningful but also more in agreement with HB utilities than segments obtained using 

the tandem approach (see Appendix B for an example with the data used in Lyon, 2016). 

Thus, regardless of the availability of HB utilities, we follow Magidson (2003) in 

recommending that the 1-step approach be used to obtain the segment-level utilities. Moreover, if 

HB utilities are available, the resulting segment-level utilities obtained using the 1-step approach 

may provide additional insight into the heterogeneity that exists among these HB utilities (for an 

example of this, see Magidson, 2018). 

PART 2: FURTHER TASK REDUCTION WITH STRUCTURED LC MODELING 

The accuracy of a typing tool is determined in part by segment differences. All things being 

equal, the more different the segments, the higher the accuracy that can be achieved by the 

resulting typing tool. In this section we consider ways to improve the typing tool accuracy by 

refining the segments themselves to be more different in meaningful ways. 

Segments that are similar with respect to their preferences, by definition, are more difficult to 

differentiate. Reducing the number of segments by combining similar segments, increases 

accuracy because there are fewer segments into which new respondents can be misclassified. 

Therefore, if it is possible to reduce the number of segments (from the eight in the standard LC 

solution, in our example) while retaining the core segment differences, it should be possible to 

                                                           
15 Our research suggests that requesting the worst choice adds little value to the typing tool. See Appendix D. 
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form segments that are both more useful (from a practical substantive standpoint) and more 

accurate (from a statistical classification standpoint). A related benefit is that the resulting typing 

tool can achieve high accuracy with fewer tasks. The easiest way to reduce segment similarity is 

to identify and combine similar segments, each segment grouping having preferences that differ 

from the other segment groupings. 

Part 2 of this paper addresses the following questions: 

 Can the standard LC modeling paradigm be modified in a statistically sound manner to 

yield segments that are more policy-relevant? 

 With a relatively small number of segments that show clear differences in preferences, 

can a typing tool achieve high accuracy with only a few tasks? 

 What is the least number of tasks that yield high accuracy? 

Goal #1: Identifying a Smaller Subset of Policy-Relevant Segments 

Results from standard LC modeling suggest that at least eight segments are needed to capture 

the different preference groups for these survey respondents (recall Table 3). Because eight is a 

relatively large number of segments, interpretation presents a challenge to policymakers and 

managers who look to focus on a smaller number of core “themes” that reflect primary segment 

differences. Transportation planners would be hard-pressed to implement the changes to the 

city’s system where eight distinctly different choice preferences exist. If it were possible to 

reduce the eight segments down to a smaller number that reflected the most salient differences 

among the survey participants, then there is a greater opportunity to make meaningful 

improvements. 

The standard LC modeling paradigm relies on information criteria such as the Bayesian 

Information Criteria (BIC) to determine the number of classes. For the Sydney transport data, 

Table 6 shows that whether we use a standard LC model or a scale-adjusted (SALC)
 
model (to 

provide segments that are more meaningful), at least 8-classes would be suggested by the BIC. 

(The LC solution with the lowest BIC value is preferred.)
16 

                                                           
16 For an introduction to SALC models and explanations as to how they make segments more meaningful see Appendix C. 



115 

Table 6. BIC Comparison for standard LC models and SALC models with 2 scale classes. 

 

Policymakers using latent class analysis to identify segments in their data are often faced 

with the need to reduce the number of classes obtained in standard solutions to a smaller set of 

more policy or marketing relevant segments. This has not been an easy problem to solve largely 

because the criteria used to inform decisions about segment extraction, the BIC and similar fit 

statistics, are sensitive to any class differences, not just primary differences that correspond to 

general core themes. Since traditional fit statistics do not differentiate between primary and 

secondary segments, it is necessary to consider modeling approaches capable of accounting for a 

hierarchical structure. Before trying the more formal structured LC modeling approaches, we 

begin in a qualitative way to achieve segment reduction and show how this can lead to a typing 

tool with higher accuracy. 

A qualitative inspection of Table 7 suggests the following: 

 Segments 1 and 2 share a preference for “More frequent off-peak trains.” 

 Segments 7 and 8 share a preference for “Integrated fares” and “Integrated ticketing.” 

 Segments 3, 4, and 5 share a preference for “Trains use green power.” 
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Table 7. Identifying similar segments among the 8-class solution. 

 

Goal #2: Improving Segmentation Accuracy in the Sydney Transportation Inquiry 

In addition to improving the meaning of segments, segment reduction also results in 

increased classification accuracy. To illustrate this reduction, suppose that some of the original 

eight segments are combined—the boxes in Figure 7 indicate the segments that are combined 

(i.e., classes 1 and 2 are combined; classes 3, 4 and 5 are combined; and classes 7 and 8 are 

combined). Revisiting our simple adaptive typing tool example based on CHAID with only two 

paired comparisons (recall Figure 4), the computations below (Figure 7) illustrate the increased 

accuracy expected if these similar segments were combined. 



117 

Figure 7. Increased accuracy resulting from combining similar segments: 

Illustration with adaptive typing tool based on 2 pairs. 

 

Specifically, combining the segments in the rectangles shown in Figure 7 increases accuracy 

from 38% to 68%. For example, the first bucket, consisting of 2,494 respondents, were assigned 

originally to segment 2 since the segment 2 percentage (29.91%) is the highest among the 8 

segments. So, about 30% (29.91%) of these 2,494 respondents would be classified correctly. 

Overall, with 8 segments, we see that 38% would be classified correctly: 

                                                

    
     

Alternatively, if true segments 1 and 2 were combined into a single joint segment, a total of 

20.37% + 29.91% = 50.28% of these 2,494 respondents would be classified correctly into this 

combined segment, and overall, the accuracy increases to 68%: 

                                                                               

    
     

So, the question becomes one of how to justify reducing the number of segments if the BIC 

suggests we need 8 segments to explain all of the heterogeneity in the data. We will see that the 

answer to this question is to replace the standard unstructured LC modeling paradigm with the 

hierarchical latent class tree (LCT) structure proposed by van den Bergh et al. (2018). 
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Goal #3: Formalizing (Tree) Structure in Latent Class Analysis 

The development of LCT was motivated by the observation that in practice, the number of 

policy relevant segments for strategic purposes is often 3 or 4, each of which represents a 

different theme. Figure 8 depicts a hierarchical LCT structure that first identifies three core or 

theme classes, respondents in each class differing in their primary preferences. Each of these 

primary segments splits further into two subsegments (child classes) to reveal secondary 

differences. The entire process, displayed in Figure 8, results in a total of 3 x 2 = 6 terminal 

segments at the bottom of the tree. The splitting process would continue further if warranted—

i.e., if additional secondary differences were found to be statistically significant.
17

 

Figure 8. LC Tree Models provide an alternative structure to standard LC models. 

 

The identification of central root, theme, or basic level classes represents arguably the most 

important step in the LCT approach. The importance stems from the fact that these classes reveal 

the primary differences in preferences, and each of these themes are often maintained in all 

subsequent splits of that theme class.
18

 Since the primary differences are generally meaningful 

from a policy perspective, the LCT paradigm provides the interpretative power needed to make 

sense of the segments. In this respect LCT improves over the standard LC paradigm which often 

results in many unstructured classes which are often difficult to interpret in a meaningful way. In 

summary, the LCT paradigm explains all the heterogeneity in the data by applying a hierarchical 

tree structure that begins at the root of the tree with a small number of root (theme) classes. 

To help identify the value K* representing the number of theme classes, van den Bergh et al. 

(2018) proposed a new statistic, called the relative log-likelihood (RLL). This statistic 

summarizes incremental improvements in the log-likelihood (LL) as additional classes are 

extracted. 

The RLL statistic is 
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RLL recognizes that the largest increase in the log likelihood (LogL) occurs when the number of 

classes increases from one to two (logL2 - logL1).
19

 As a result, increases in logL that occur for 

K > 2 classes are expressed relative to this initial increase. The approach to identify the K* is 

analogous to the use of the scree plot in factor analysis to determine the number of factors. Using 

the Sydney Transportation Inquiry as an example, the scree plot in Figure 9 shows that the 

relative change in LogL levels off beginning at K = 3, so we select 3 as the number of theme 

classes. 

                                                           
17 While the LCT procedure can be employed using Latent GOLD 5.1, it will be fully automated in release 6.0. 
18 See Table C2 in Appendix C for an example where the theme from class 1 is maintained. 
19 The 1-class model is known as the aggregate model which assumes a single homogeneous population. 
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Figure 9. Relative log-likelihood (RLL) by K = number of classes. 

 

The general idea is that while adding another class beyond class K* = 3 improves the model 

fit somewhat, if the improvement “levels off” when adding class K*+1, incremental 

improvement after K* = 3 theme classes is treated as “secondary” to the earlier “primary” 

differences revealed by the first K* segments. In summary, while eight segments were selected 

under the standard LC paradigm, the LCT paradigm yields three core segments that identify 

primary preference differences among the MaxDiff survey respondents. 

Relating these theme classes to the objects (attributes), Table 8 shows that a defining 

characteristic differentiating theme class 1 from the others is that they have a high utility (0.9) for 

“More frequent off-peak trains,” and thus are more likely to choose this option as best (i.e., better 

than the average object) than respondents in the other classes. Similarly, theme class 2 

respondents are more likely to choose the option “Trains use green power” and theme class 3 

tends to prefer “Integrated fares” and “Integrated ticketing.” The shading in Table 8 summarizes 

the defining characteristics and associated utilities distinguishing the 3 classes.
20

 

Defining characteristics of the theme classes are highlighted in Table 8 along with the 

associated utilities. Despite the obvious differences between the classes, the statistics in the 

bottom two rows of Table 8 suggest that membership in theme class #2 may be confounded with 

scale.
21

 

                                                           
20 Note that the standard deviation column in Table 8 also flags these objects as most important in explaining the heterogeneity (highest standard 

deviation). See Appendix B for the use of these standard deviations in practice and how they relate to the standard deviations of the individual 

utilities derived from HB. 
21 Specifically, the relatively small standard deviation (0.75) for the utilities defining theme class #2 suggests that this class not only contains 

those who prefer green power but also includes (low scale) respondents who tend to be somewhat inconsistent in their responses, even if their 

preferences tend to be more in line with class 1 or class 3. That is, low scale respondents may be included in class 2 simply because this class 

is the one that tends to have estimated utilities of lower magnitude. See Table C1 in Appendix C for the SALC model alternative to Table 8 
where the scale confound is removed, transforming the utility parameters to preference parameters. 
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Table 8. Utility parameters for the three “theme class” model. 

 

IMPLICATIONS FOR A TREE STRUCTURED ADAPTIVE APPROACH 

The basic idea is that an adaptive typing tool can take advantage of the LC Tree structure to 

achieve improved parsimony by identifying fewer “golden” questions (tasks to be included in the 

typing tool). In the extreme, we consider the possibility of including only a single golden 

question for each level of the LC tree. In the current example, at the first (core) level, where 

there are 3 “theme classes,” we might expect that a triple would achieve higher accuracy than a 

pair. At the second level, where each theme class may be split into 2 child classes, we might 

expect that a pair achieves high accuracy. The end result would be a substantial further reduction 

to only two tasks and thus make the classification of new respondents more economical. 

Thus, a typing tool can first classify respondents into the most appropriate theme class, and 

then further refine the classification of these segments into the most appropriate second level 

segment using additional tasks. This approach has the additional advantage that persons who 

terminate the survey after the first task would still provide sufficient information for level-1 

classification. 

Since the theme classes should reflect differences in respondents’ primary preferences free 

from differences in scale we employ the SALC model with the current data so that the resulting 

class-specific parameter estimates are more clearly interpretable as preferences. (Compare the 

utility parameter estimates in Table 8 with the corresponding preference parameters shown in 

Table C1 of Appendix C.) The resulting SALC Tree splits each of these theme classes into 2 

child nodes to reveal secondary preferences as depicted in Figure 8. Again, these secondary 

preferences should be relatively free from scale differences. (See Table C2 for the resulting 

preference parameters associated with the 2 child nodes of theme class 1.) 
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Based on data simulated from this SALC model
22

, Figure 10 shows that with one task 

consisting of a choice among the three options (1, 6, and 9), on average, respondents can be 

classified with 75% accuracy into the most appropriate theme class. 

Figure 10. Accuracy using one 3-object task (triple) for classification at the theme level. 

 

A more complete picture of the data generation and the resulting CHAID analysis, is 

provided in Figure 11. The graphic on the left shows the sample sizes for each of the three theme 

classes. Ten percent of the 40,000 respondents generated into each theme class were then 

randomly split into a 10% training sample and a validation sample (90%). The CHAID tree on 

the right shows the first step of the analysis on the training data (validation = “1”), where the 

triple {1, 6, 9) is selected as the most significant predictor and used to assign respondents to the 

appropriate theme class. 

                                                           
22 Since each of the 3 SALC model theme classes split into 2 child classes, the simulation assumed that the size of each of these 3x2=6 segments 

was identical, and that each consisted of an equal number of lower and higher scale respondents. Specifically, one thousand respondents were 

generated from each 6x2=12 segment x scale class populations for the training sample, and an additional 9000 respondents for the validation 

sample. In practice, whether or not to split into 2 child classes is determined by the BIC criteria. The 1-class and 2-class models are compared 
and if the 2-class model has a lower BIC, this theme class is split into 2 child classes. See van den Bergh et al. (2018) for details. Since we 

simulated based on the SALC model, we can estimate accuracy separately for the high and low scale respondents. Our simulation suggests that 

the accuracy obtained for high scale respondents would be 87% and for lower scale respondents, who may be less certain about their 
preferences, expected accuracy is 63%. 
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Figure 11. Data simulated from SALC tree model demonstrates lower accuracy 

for low scale respondents. 

 

The classification accuracy could be improved by adding another task. Alternatively, the 1-

task accuracy would be higher if the typing tool were only administered to high scale 

respondents. In particular, the 1-task classification accuracy improves from approximately 75% 

to 87% for high scale respondents, which means that fewer tasks would be required.
23

 

Use of an LCT-structured segmentation allows integration of the segmentation and typing 

tools in ways that were not possible previously. Specifically, we obtained three theme classes, 

and by examining the preference parameters we were able to identify defining characteristics for 

each theme class. In many cases, identifying such “defining characteristics” directly from the 

preference parameters may suggest the best tasks to use in a typing tool. In the current situation, 

we see that task {1, 6, 9} identified by CHAID might also be identified from the preference 

parameters (Table 8), since the objects 1, 6 and 9 are among the 4 objects highlighted. 

By engaging in a “deeper dive” into the tree, the LCT approach allows further refinement of 

our understanding of respondent preferences. The CHAID analysis of data simulated from the 

SALC 3x2 tree model (with 3 theme classes each of which splits into 2 child nodes as depicted in 

Figure 8) shows an 81% accuracy would be expected at the 2
nd

 level of classification (see Figure 

13), given that one is classified correctly into the most appropriate theme class. 

For example, Table C2 in Appendix C shows that sub-segments 11 and 12 share the primary 

theme class 1 preference for “More frequent off peak trains.” Examining the preferences of these 

sub-segments in more detail we find that they differ from each other in their preference for 

“Extension of light rail” (see Figure 12). Thus, we might expect that “Extension of light rail” 

might be paired with another object to serve as the best pair to classify theme class 1 respondents 

further into the most appropriate sub-segment.
24

 

                                                           
23 Typically, it is difficult to identify respondents by scale class in advance, but it is not impossible. If, for example, known covariates are 

predictive of scale class, it may be possible to use this information to predict the average number of tasks needed for classifying new cases. 
24 Based on this formulation of latent class analysis, a latent class tree model with no splits on the theme classes simply reduces to the standard 

latent class model. This suggests that standard latent class models are special cases of latent class tree models, having no significant secondary 
heterogeneity. 
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By using hierarchical trees, it is possible to administer tasks to respondents dynamically and 

segment them quickly. In addition, it is possible to conduct “deeper dives” on respondents to 

reveal their secondary preferences by administering additional tasks. In this transportation policy 

survey shown in Figure 12, the first task includes three objects: one about “off-peak trains,” 

another about the “use of green power,” and a third about “integrated ticketing.” Respondents are 

asked to select the best option among these three, and their choice provides what can be 

understood as the “primary preference” or “theme segment” assignment. 

Figure 12. Create additional meaningful segments to explain more heterogeneity. 

 

Preference at this root level of the LCT is often maintained with the respondent as 

respondents make additional choices.
25

 For example, if a respondent identifies “off-peak trains” 

in the first task, they will continue to be identified as a person that prefers that policy. Secondary 

preferences are simply added to the primary preference allowing the segmentation to become 

more refined.
26

 

                                                           
25 Based on this formulation of latent class analysis, a latent class tree model with no splits on the theme classes simply reduces to the standard 

latent class model. This suggests that standard latent class models are special cases of latent class tree models, having no significant secondary 

heterogeneity. 
26 See Table C2 in Appendix C for an example of the resulting preference parameters for the 2 child class segments formed by splitting theme 

class 1. 
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Figure 13. Final 2-level hierarchical typing tool achieves high accuracy 

with 2 adaptive tasks. 

 

DISCUSSION 

Data from a typical MaxDiff exercise were used to illustrate the traditional approach to LC 

segmentation. According to the standard LC paradigm, BIC suggested that at least eight classes 

are needed to explain all the heterogeneity in the data. Using the resulting class-specific 

parameters to define the segments, following Magidson and Bennett (2016), a simulation 

approach with generated respondents was employed with stepwise multinomial logit modeling 

(MLM) to select a relatively small subset of tasks to be used in a static typing tool, where all 

respondents are administered the same tasks. It was shown how this simulation approach could 

be used to develop an adaptive tool with a reduced number of tasks by substituting the CHAID 

algorithm for MLM. 

The simulation strategy was shown to be superior to earlier approaches for typing tool 

development, the two major benefits being: 

1. A large sample size can be generated easily. The large sample is needed to prevent 

inflated estimates of accuracy (overfitting) resulting from analysis of data from a 

relatively small sample that is overly affected by sampling fluctuation. 

2. The approach allows us to work directly with true segments, rather than modal 

assignments, thus eliminating artifacts and inflated accuracy associated with ignoring 

misclassification error. 

In part 2 of this paper, we explored the use of a structured hierarchical tree-based paradigm 

for LC segmentation that allows integration of the segmentation and typing tools in ways that 

were not possible previously. In particular, replacing the standard LC paradigm with the LC Tree 

paradigm reduced the number of segments from eight to six. These six segments were structured 

in a way that identified three meaningful theme classes which formed the root of the tree, each of 

which differed in their primary preferences. Each of these theme classes then split into two sub-

segments which formed the second level of the tree, revealing meaningful secondary differences 

within each of these theme classes. 
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By taking advantage of the meaningful hierarchical structure in these six segments an 

adaptive typing tool was developed which drastically reduced the number of tasks further, 

resulting in only two tasks. An additional advantage of employing the hierarchical tree structure 

is that if respondents terminate the survey early, say after answering only the first of the two 

golden questions, they can still be classified into the most appropriate theme class. Table 9 

summarizes the advantages and disadvantages of the various methods of developing typing tools 

that were described here. 

Table 9. Advantages and disadvantages of the 3 typing tool approaches. 

 

The SALC Tree paradigm has been proposed as a replacement for the traditional LC 

paradigm (Magidson, 2018) and it has been shown that the resulting segments are actually more 

consistent with HB utilities than segments derived by clustering individual HB utilities. Research 

in this general area is ongoing. 

 

   

 Jay Magidson John P. Madura 
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APPENDIX A: THREE DIFFERENT LC MODELS FOR ONE-STEP ANALYSIS OF 

MAXDIFF RESPONSES 

There are primarily 3 different LC models that can be used to segment respondents based on 

their MaxDiff choices. All 3 approaches can be estimated with Latent GOLD
®
. 

1. Sequential Logit (Best-Worst)—Vermunt and Magidson (2005) 

2. MaxDiff model (Joint Best-Worst)—Marley and Louviere (2005) 

3. MaxDiff Independence—Louviere (1993) 

1. Best-Worst (sequential logit) model (used in this paper) 

This approach models the best and worst alternatives as a sequential choice process 

(Bockenholt, 2002; Croon, 1989; Kamakura et al., 1994). That is, selection of the best option is 

equivalent to a first choice and then selection of the worst option is a (first) choice out of the 

remaining alternatives, where the worst choice probabilities are negatively related to the best 

utilities of these alternatives. This approach was used here, both in its standard form as well the 

extended SALC model form where the utilities are scale-adjusted to preference parameters. For 

more details, see Vermunt and Magidson, 2013. 

2. MaxDiff Model (Marley and Louviere, 2005) 
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This model is also known as the joint best-worst or MaxDiff Quasi-Independence model. It 

assumes best and worst options are selected simultaneously. That is, respondents are assumed to 

make their choices by evaluating all possible option pairs (Best, Worst), and selecting that pair 

having the largest difference in utilities (maximum difference). It is implemented in the Syntax 

module of LG Choice 5.0.
27

 

This model has a serious disadvantage from the others in that the best margin from the 

MaxDiff model is not consistent with the MNL model (see Marley and Louviere, 2005).
28

 

3. MaxDiff Independence Model 

This model was proposed initially by Louviere (1993) and implemented by Sawtooth 

Software in its CBC/Latent Class program. Unlike the other two approaches that are based on 

true distributions, by relaxing the constraint that the most and least preferred options have to be 

different (Bacon et al., 2007), the probabilities from this model do not correspond to a correct 

theoretical probability distribution. As a result of this theoretical inconsistency, the BIC and 

related fit statistics for determining the number of classes are not appropriate for use with this 

                                                           
27 This model can also be estimated with Sawtooth Software’s CBC/HB package if the number of options is not too large (see Bacon et al. 2007). 
28 Both models 1 and 3 assume best and worst options are evaluated independently – not simultaneously. Both of these models yield best margins 

that are consistent with MNL. 



127 

model. Nevertheless, in practice this model generally yields parameter estimates that are similar 

to the sequential logit model (approach 1) when estimated with the same number of classes.
29

 

APPENDIX B: THE ONE-STEP VS. TANDEM APPROACH TO SEGMENTATION 

In the widely used tandem approach, hierarchical Bayes (HB) analysis of MaxDiff responses 

is used in Step 1 to obtain individual utilities for each respondent, and in Step 2 these utilities are 

treated as continuous indicators in a LC Cluster model. By clustering the HB coefficients, one 

treats part of the individual variation as systematic (between clusters) and the remaining part as 

noise (within clusters). 

In contrast, the standard 1-step LC choice model analyzes the choices from the MaxDiff 

exercise directly to determine the LC segments that differ with respect to their utilities. Again, 

the between-class heterogeneity is treated as systematic, and the within-class heterogeneity is 

treated as noise. Compared to the tandem approach, the 1-step approach with the same number of 

clusters picks up much more systematic variation, and with enough classes about the same 

amount as the HB model itself, so no systematic variation gets lost. 

To demonstrate this result, we use the MaxDiff data provided by Lyon (2016), in his Case 

Study 1, who applied the tandem approach by obtaining HB utilities, and then estimating LC 

models having between 2 and 6 classes, settling on the 4-class model as best. The results from 

these LC models are presented in Table B1, with the standard deviation of the HB utilities as a 

measuring stick. The standard deviation statistic provides a useful measure of the total amount of 

heterogeneity that exists for each of the tasks. 

As can be seen in column 1 of Table B1, (repeated in Tables B2, B3 and B4 where results are 

presented for various 1-step LC models), the HB utilities for six of the 14 tasks have relatively 

high standard deviations. Thus, we can say that these six tasks are responsible for most of the 

heterogeneity in the MaxDiff responses. We compare these HB standard deviations with the 

corresponding systematic standard deviations obtained under the tandem approach as well as 

under several 1-step LC approaches. 

Table B1 compares these standard deviations (column 1) with the systematic (between-

cluster) variability resulting from the clusters obtained from Step 2 of the 2-step HB/LC 

approach for models with 2–6 clusters. Note the following results: 

 As the number of clusters increase, the standard deviations from the 2-step LC approach 

tend to increase but still remain far short of those of the HB utilities, even with 6 classes. 

 The 4-class model (the one selected by Lyon) is fairly consistent with HB in identifying 

the tasks with the highest standard deviations (tasks A, D, F and J are highlighted in Table 

B1 compared to tasks B, D, F, H, J, and N identified by HB as most important).  

                                                           
29 Allowing non-zero probabilities to be estimated for situation where the same alternative is selected as both best and worst violates the MaxDiff 

design that rules out this possibility (structural zeroes) and therefore always yield poor model fit according to the BIC. As a result, the BIC will 
always suggest more segments (classes) are needed, in an attempt to reduce these nonzero probability estimates to zero. 
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Table B1. Standard deviations for the HB individual utilities as reproduced in the 

second step of the 2-step approach. 

                

  Standard Deviation 

Item   HB Observed 2-class 3-class 4-class 5-class 6-class 

A  0.70 0.55 0.54 0.60 0.61 0.62 

B  1.13 0.41 0.48 0.57 0.57 0.56 

C  0.78 0.54 0.51 0.57 0.59 0.59 

D  1.03 0.4 0.58 0.61 0.59 0.64 

E  0.78 0.39 0.43 0.49 0.48 0.52 

F  1.00 0.11 0.69 0.70 0.79 0.83 

G  0.82 0.29 0.52 0.57 0.62 0.65 

H  0.96 0.14 0.3 0.28 0.33 0.37 

I   0.78 0.3 0.39 0.39 0.45 0.46 

J  1.16 0.61 0.73 0.71 0.77 0.8 

K  0.7 0.24 0.3 0.30 0.3 0.29 

L  0.85 0.07 0.11 0.22 0.18 0.2 

M  0.87 0.25 0.25 0.30 0.29 0.27 

N  1.18 0.3 0.41 0.42 0.4 0.46 

  

 

     

# parameters 
 

119 43 58 73 88 103 

BIC     20240 19715 19444 19264 19125 

Table B2 below shows results obtained from the standard 1-step LC approach. Compared to 

Table B1: 

 The standard deviation in Table B2 are higher and closer to those obtained from HB. 

 The highlighted tasks are more consistent with those identified by HB. In particular, the 5 

tasks selected as most important by the 4-class model (tasks B, D, F, J and N) correspond 

to 5 of the 6 tasks identified by HB as most important. 

Thus, it is clear in this example that the 1-step approach yields segments that are more 

consistent with HB than the 2-step approach, a result consistent with other MaxDiff data that we 

have examined. 

Table B3 shows 1-step LC results obtained when Scale-Adjusted LC (SALC) models are 

used instead of the standard LC models. The standard deviations are similar to those obtained by 

the standard LC model but the tasks with the highest standard deviations are even more similar to 

those obtained by HB.  
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Table B2. Standard deviations for standard latent class (1-step) best-worst. 

                

  Standard Deviation 

Item   HB Observed 2-class 3-class 4-class 5-class 6-class 

A  0.70 0.42 0.73 0.72 0.76 0.82 

B  1.13 0.07 0.89 0.98 1.12 1.24 

C  0.78 0.40 0.56 0.55 0.68 0.74 

D  1.03 0.89 0.84 1.00 1.05 1.08 

E  0.78 0.51 0.53 0.53 0.59 0.68 

F  1.00 0.46 0.95 0.76 0.95 0.95 

G  0.82 0.06 0.61 0.51 0.65 0.68 

H  0.96 0.46 0.48 0.54 0.76 0.90 

I   0.78 0.45 0.48 0.73 0.77 0.80 

J  1.16 0.88 0.94 1.11 1.20 1.24 

K  0.70 0.05 0.31 0.31 0.33 0.37 

L  0.85 0.09 0.22 0.38 0.39 0.38 

M  0.87 0.34 0.36 0.45 0.44 0.44 

N  1.18 0.54 0.66 0.93 1.11 1.18 

        

# parameters  119 27 41 55 69 83 

BIC     25606 25047 24842 24635 24514 

Table B3. Standard deviations for scale-adjusted latent class (SALC) best-worst. 

 

Item HB Observed 2-class 3-class 4-class 5-class 6-class

A 0.70 0.44 0.62 0.61 0.74 0.82

B 1.13 0.13 1.04 1.01 1.27 1.36

C 0.78 0.38 0.44 0.47 0.63 0.75

D 1.03 0.87 0.98 0.94 1.03 1.09

E 0.78 0.50 0.48 0.49 0.58 0.68

F 1.00 0.52 0.92 0.84 0.82 0.87

G 0.82 0.08 0.54 0.50 0.54 0.59

H 0.96 0.47 0.42 0.53 0.67 0.84

I 0.78 0.49 0.27 0.74 0.74 0.79

J 1.16 0.93 0.73 1.17 1.19 1.26

K 0.70 0.04 0.21 0.20 0.34 0.34

L 0.85 0.04 0.33 0.37 0.34 0.38

M 0.87 0.30 0.51 0.45 0.48 0.56

N 1.18 0.65 1.08 1.01 1.06 1.23

# parameters 119 29 43 57 71 85

BIC 25283 24843 24645 24504 24387

Standard Deviation
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APPENDIX C. THE SCALE-ADJUSTED LC (SALC) AND SALC TREE MODELS 

With typical ratings data (e.g., Likert tasks) some respondents tend to rate all tasks relatively 

low while others tend to rate all tasks high. In a standard LC analysis of such data, the classes 

differ primarily on scale usage—one class consisting of persons with low ratings, while another 

consists of persons with high ratings. Since these classes are not useful for strategic purposes, a 

random intercept (Magidson and Vermunt, 2006; Popper et al., 2004) is included in the LC 

model to adjust for scale usage so that the resulting classes reflect meaningful differences in 

preference between tasks. 

This type of scale usage problem does not occur with choice-based tasks. However, MaxDiff 

tasks, like other choice-based tasks, are subject to a different kind of scale problem. While not as 

serious as the one affecting ratings data, removing this scale confound requires a similar type of 

adjustment (Louviere and Eagle, 2006). The adjustment we use here is implemented in the Scale-

Adjusted LC (SALC) model, introduced by Magidson and Vermunt (2007). For more details, see 

Groothuis-Oudshoorn et al. (2018).
30

 

Figure C1. SALC eliminates scale confound to obtain more meaningful segments. 

 

This figure is a simplified illustration of how the SALC model eliminates the scale confound. 

Segments A and B differ in their preferences. “Low scale” respondents may fall in a grey area 

where it is difficult to assign them into the most appropriate segment. SALC models recognize 

explicitly that respondents within any preference class differ with respect to scale and classify 

respondents into the most appropriate of these preference classes irrespective of scale. 

Table C1 below is the SALC alternative to Table 8 presented in the body of this paper. Latent 

GOLD® was used to estimate both the LC and SALC models. (See Appendix A regarding LC 

models for MaxDiff data). Compared to the results from the standard 3-class model (Table 8), we 

see that the size of class 2 has now been reduced to 32% of respondents, re-assigning some of the 

low scale respondents into a class that is more consistent with their choices. Also, the objects 

(attributes) explaining the most heterogeneity—those with relatively high standard deviation 

(bolded in the Std. Dev. column)—are the same as in Table 8. However, the standard deviation of 

the class 2 preference parameters is now more comparable to those of the other classes. 

                                                           
30 The scale problem was also recognized by Orme (2013). For additional applications of SALC models, see Burke et al. (2010). 
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Table C1. SALC model removes scale confound yielding preference parameters. 

 

The split of Class 1 into 2 child classes at level 2 of the LC Tree shows that these child 

classes maintain the theme of a preference for “More frequent off-peak trains,” but differ 

secondarily with respect to their preference for “Extensions of light rail services” (see Table C2). 

Table C2. Preference parameters associated with the 2 child classes 

formed by splitting class 1. 

              

Object 
  Preference Parameters 

    Class 11   Class 12   Std. Dev. 

More frequent off-peak trains between major centers   1.1   1.8 

 

0.26 

Improved peak rail capacity  4.0  2.2 

 

0.63 

More frequent bus services on major routes  2.5  2.5 

 

0.03 

Extensions of light rail services   -2.0   0.8 

 

1.04 

Integrated fares  -0.3  -0.8 

 

0.19 

Integrated ticketing  -0.5  -1.3 

 

0.28 

Real-time arrival information  -0.8  -1.5 

 

0.27 

New cycleways; more bike and scooter parking  -1.7  -2.2 

 

0.19 

Trains use green power  -2.2  -1.6 

 

0.22 

     

 
 

Standard deviation  1.45  1.27 

  Size   0.28   0.16     



132 

APPENDIX D: THE VALUE OF COLLECTING INFORMATION ON THE 

“LEAST IMPORTANT” RESPONSE 

The value of collecting information on the “least important” response in MaxDiff exercises is 

well documented. To examine the value of collecting such information in a typing tool we 

performed a CHAID analysis as documented below. 

In the case that MaxDiff tasks consists of triples, a MaxDiff choice task can be represented 

by selection of the best alternative from a triple followed by the best response to the relevant pair 

formed from the triple by eliminating the alternative selected as best. Since the pair consists of 

only 2 objects, the object not selected as best from the triple or pair would represent the least 

important among the three objects. 

Figure D1. The accuracy for an adaptive typing tool using a sequential MaxDiff approach. 

 

Using SI-CHAID in the exploratory mode, we split first on the triple {6, 8, 9} which is the 

most significant of all triples. Next, for each of the three resulting subgroups, we examined the p-

value for all pairs, and split on the most significant of these pairs. The three pairs used to split 

were pair {2, 6}, pair {1, 6} and pair {7, 9}. None of these three pairs completed a (sequential) 

MaxDiff task. In fact, in all three cases, the pairs completing a MaxDiff task were ranked among 

the least significant of the pairs. The accuracy for the items is summarized in Figure D1. 

Thus, we conclude that inclusion of MaxDiff tasks in a typing tool is not necessary to 

achieve high accuracy. Improved segment recovery (accuracy) in a typing tool can be expected 

by simply asking respondents to choose the best option from among two or more in each task. 

REFERENCES 

Bacon, L., Lenk, P., Seryakova, K., Veccia, E. (2007). “Making MaxDiff More Informative: 

Statistical Data Fusion by Way of Latent Variable Modeling,” Proceedings of the 2007 

Sawtooth Software Conference. 



133 

Bockenholt, U. (2002). “A Thurstonian Analysis of Preference Change,” Journal of 

Mathematical Psychology, 46, 300–314. 

Burke, P., Burton, C., Huybers, T., Islam, T., Louviere, J., and Wise, C. (2010). “The Scale 

Adjusted Latent Class Model: Application to Museum Visitation,” Tourism Analysis, 15(2). 

147–65. 

Croon, M. A. (1989). “Latent Class Models for the Analysis of Rankings,” in G. De Soete, H. 

Feger, & K. C. Klauer (Eds.), New Developments in Psychological Choice Modeling, 99–

121. North-Holland: Elsevier Science. 

Eagle, Thomas (2013). “Segmenting Choice and Non-Choice Data Simultaneously,” Proceedings 

of the 2013 Sawtooth Software Conference. 

Groothuis-Oudshoorn, C.G.M., Flynn, T.N., Yoo, H.I., Magidson, J. and Oppe, M. (2018). “Key 

Issues and Potential Solutions for Understanding Health Care Preference Heterogeneity Free 

from Patient Level Scale Confounds,” The Patient: Patient-Centered Outcomes Research, 

https://rdcu.be/Mx8e 

Kamakura, W.A., Wedel, M., and Agrawal, J. (1994). “Concomitant variable latent class models 

for the external analysis of choice data. International Journal of Research in Marketing,” 11, 

451–464. 

Komendant, L. (2016). Typing Tools in the Context of Choice Experiments, Proceedings of the 

2016 Sawtooth Software Conference. 

Louviere, J.J. (1993). “The Best-Worst or Maximum Difference Measurement Model: 

Applications to Behavioral Research in Marketing,” presentation at the American Marketing 

Association’s 1993 Behavioral Research Conference, Phoenix. 

Louviere, J.J., and Eagle, T.C. (2006). “Confound It! That Pesky Little Scale Constant Messes 

Up,” Proceedings of the 2006 Sawtooth Software Conference. 

Louviere, J.J., Flynn, T.N., and Marley, A.A.J. (2015). Best-Worst Scaling: Theory, Methods, and 

Applications, Cambridge: Cambridge University Press. 

Lyon, D. (2016). “Naïve Bayes Classifiers, or How to Classify via MaxDiff without Doing 

MaxDiff,” Proceedings of the 2016 Sawtooth Software Conference. 

Magidson, J. (1994). “The CHAID Approach to Segmentation Modeling: CHi-squared 

Automatic Interaction Detection,” in: Bagozzi, R. (ed.), Advanced Methods of Marketing 

Research. Blackwell. 

Magidson, J. (2003). Discussant comments on presentation by Steve Cohen, “Maximum 

Difference Scaling: Improved Measures of Importance and Preference for Segmentation,” 

Proceedings of the 2003 Sawtooth Conference. 

Magidson, J. (2018). “An improved latent class (LC) paradigm to obtain meaningful segments in 

the presence of scale confounds: Scale Adjusted Latent Class (SALC) Tree modeling,” paper 

presented at the 2018 Advanced Research Techniques (ART) Forum. 

Magidson, J. and Bennett, G. (2016). “How to Develop a MaxDiff Typing Tool to Assign New 

Cases into Meaningful Segments,” presentation at American Marketing Association’s 

http://em.rdcu.be/wf/click?upn=lMZy1lernSJ7apc5DgYM8Z-2B6C-2Buqv8z7gJMuu84QDbk-3D_Znd71LAbE-2FMV5RWyMNNxP2dTGHAE3a7xMiepq9Bhjk4arTOUciItjFJiUlWFLgdHp-2FEkxp-2Bd9PPgQ4aWct14JMScPfUXVGNH4NNG9-2Fip62LQbLwwZ-2BxGP5juUHrGknidMrlf-2Bb-2FyMRQvbLa5YnC5TRhxTmm02ltq1va0TP4KJsTtzqCQD5EFhQAQp2bYU-2BRbFv-2FbjPVtPYMYexQCFLr5suXan6s1J5K4pO48tnFwd-2FHBZskIiCgAJwmcE1Wjp23-2BlQNJNRlslok5IZGhcB-2BIwg-3D-3D


134 

Advanced Research Techniques (ART) Forum, https://www.statisticalinnovations.com/white-

paper-maxdiff-typing-tool-final-2/ 

Magidson, J., Dumont, J., and Vermunt, J.K. (2015). “A New Modeling Tool for Identifying 

Meaningful Segments and Their Willingness to Pay: Improving Validity by Reducing the 

Confound between Scale and Preference Heterogeneity,” presentation at American Marketing 

Association’s Advanced Research Techniques (ART) Forum. 

Magidson, J., Eagle, T., and Vermunt, J.K. (2005). “Using Parsimonious Conjoint and Choice 

Models to Improve the Accuracy of Out-of-Sample Share Predictions,” presentation at 

American Marketing Association’s Advanced Research Techniques (ART) Forum. 

Magidson, J. (2018). “An improved latent class (LC) paradigm to obtain meaningful segments in 

the presence of scale confounds: Scale Adjusted Latent Class (SALC) Tree modeling,” 

Proceedings of the 2018 Sawtooth Software Conference. 

Magidson, J., and Vermunt, J.K. (2006). “Use of Latent Class Regression Models with a Random 

Intercept to Remove Overall Response Level Effects in Rating Data,” in A. Rizzi and M. 

Vichi (eds.), Proceedings in Computational Statistics, 351–360, Heidelberg: Springer. 

Magidson, J., and Vermunt, J.K. (2007). “Removing the Scale Factor Confound in Multinomial 

Logit Choice Models to Obtain Better Estimates of Preference,” Proceedings of the 2007 

Sawtooth Software Conference. 

Marley, A.A.J., and Louviere, J.J. (2005). “Some Probabilistic Models of Best, Worst, and Best-

worst Choices,” Journal of Mathematical Psychology, 49(6), 464–480. 

Orme, B. (2013). “Scale Constrained Latent Class,” Research Paper Series, Sawtooth Software. 

Orme, B. and Johnson, R. (2009). “Typing Tools That Work,” Marketing Research, Summer 

2009. 

Popper, R., Kroll, J., and Magidson, J. (2004). “Applications of Latent Class Models to Food 

Product Development: A Case Study,” Proceedings of the 2004 Sawtooth Software 

Conference. 

van den Bergh, M., Schmittmann, V.D., and Vermunt, J.K. (2017). “Building Latent Class Trees, 

with an Application to a Study of Social Capital,” Methodology, 13(Supplement), 13–22. 

van den Bergh, M., van Kollenburg, G.H., and Vermunt, J.K. (in press). “Deciding on the 

Starting Number of Classes of a Latent Class Tree,” Sociological Methodology 2018. 

Vermunt, J.K., and Magidson, J. (2005), Technical Guide for Latent GOLD Choice 4.0: Basic 

and Advanced, Belmont MA, Statistical Innovations. 

Vermunt, J.K., and Magidson, J. (2007). Technical Guide for Latent GOLD 5.1., Belmont MA., 

Statistical Innovations. 

Vermunt, J.K., and Magidson, J. (2013). Upgrade Manual for Latent GOLD Choice 5.0: Basic, 

Advanced, and Syntax, Belmont MA: Statistical Innovations. 

Vermunt, J.K. (2013). “Categorical Response Data,” in: M.A. Scott, J.S. Simonoff, and B.D. 

Marx (Eds.), The SAGE Handbook of Multilevel Modeling, Sage. 



135 

COMMENTS ON “DEVELOPMENT OF AN ADAPTIVE TYPING TOOL 

FROM MAXDIFF RESPONSE DATA” 

THOMAS C. EAGLE 
EAGLE ANALYTICS OF CALIFORNIA 

 

The paper by Magidson and Madura continues the recent trend of developing typing tools for 

segmented choice data. Recent papers by Lyon (2016), Komendant (2016), and Orme and 

Johnson (2009) have shown various approaches to classifying new respondents into segments 

derived from choice data. The papers by Orme and Johnson and Lyon demonstrated their 

methods using MaxDiff models, which are a form of choice models. Komendant reviewed 

various methods using more traditional choice models. Magidson and Bennett also developed a 

typing tool using simulation methods for choice models as applied to MaxDiff (Magidson and 

Bennett, 2016). The methods varied with respect to issues such as: 

1. What is the nature of the tasks a new respondent would see? 

o Are they tasks in the exact same form as those originally used in the modeling 

and segmentation? Or, 

o Are they a reduced form of the task? For example, fewer items in MaxDiff 

task (such as pairs), or fewer alternatives in a choice model. 

2. How were the final set of tasks for the typing tool found? 

o Orme and Johnson (2009) use a Naïve Bayes classifier in the context of 

MaxDiff to create classification tasks of the original size. They use a greedy 

search algorithm to find the final set of tasks. 

o Lyon (2016) generalizes the above to allow for the construction of any size 

MaxDiff or choice modeling task. In addition, he discusses how to allow the 

addition of non-Maxdiff questions or respondent descriptors into the classifier. 

o Komendant (2016) reviews three tools: a simple pairwise classifier, a 

regression using rankings method, and the naïve Bayes classifier of Orme and 

Johnson coupled with a genetic algorithm to search for the best tasks with 

which to classify. The simple pairwise classifier did remarkably well when 

using a random forest method to classify respondents. 

o Magidson and Bennett (2016) use simulation methods and stepwise regression 

to find the best pairs of items to use to classify. 

INNOVATIONS OF THE PRESENTATION 

In their presentation, Magidson and Madura extend the work of Magidson and Bennett. They 

continue to use a simulation approach and make several innovative contributions. They replace 

the stepwise regression method to find the best items with which to classify new respondents 

with a decision tree approach. The decision tree approach produces an adaptive typing tool that 

yields fewer tasks per respondent, on average, and reduces the number of items each respondent 

might need to see in each task. The approach uses generated, simulation, data as the basis for 

developing the tree. 
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Further advancements include the innovative method of Latent Class Tree Modeling, which 

uses a CHAID-like method to develop choice model-based segments, and the use of scale 

adjusted latent classes to lessen the impact of scale in the construction of these segments. I find 

their new model, that combines the scale adjusted parameters and segment creation using the 

Latent Class Tree Modeling to be particularly compelling in the modeling of MaxDiff, and 

choice, data. 

ISSUES THAT ARISE FROM THE PRESENTATION 

How much do we gain by the effort required in using simulated data to generate the decision 

tree classifiers? Clearly, the Magidson and Madura approach shows the best results, but is all this 

effort really worth a few percentage point improvements? These improvements combined with 

those laid out by Komendant suggests the Magidson and Madura approach would be much better 

than the simple pairwise classifier even supplemented by decision tree methods such as CART, 

Random Forests, etc. 

But, is the use of simulation enough to warrant the amount of work required to improve 

accuracy? The graphic in the Magidson and Madura paper, Figure 6, suggests a large 

improvement when moving from simulated adaptive paired comparisons to simulated adaptive 

triples (by 5-8% points), but an apple to apple comparison of the simulation approach using 

triples by the way of CART Trees or Random Forest trees has not been conducted. I suspect the 

improvement is meaningful, but further work should be done. 

Another issue is: what is the best choice set of items/alternatives to show new respondents? 

Is it one that used generated tasks like those originally shown to respondents? Or, is it pairs? Or 

something else? This question arises from my history in using telephone interviews to classify 

new respondents. Using triples or more items per MaxDiff task were too much for respondents to 

handle. Pairs worked well and were easier to evaluate by respondents. Magidson and Madura 

clearly demonstrate that adding triples improves prediction a lot, but at the additional cost of 

more complex typing tasks. 

Do we really need to ask both the best and worst in our MaxDiff classifiers? Magidson and 

Madura suggest we do not have to ask the worst choice. Using pairs eliminates this issue. 

Performing a scale adjusted latent class tree model may yield segments that are easier to 

classify new respondents, but are the segments the best for management to use? This depends 

upon the way the segmentation results will be used. Magidson and Madura compare the results 

of a “standard” latent class choice model with that of a scale adjusted latent class segmentation. 

When clear-cut core “themes” emerge in the standard latent class choice model, then using a 

scale adjusted latent class tree model should result in more meaningful segments that are easier 

to classify new respondents into, and still capture the core “themes” found. But what if core 

“themes” do not emerge? What do we get in such a case? Are the splits in the scale adjusted 

latent class tree model meaningful in a managerially relevant way? I strongly believe in the use 

of scale adjusted MNL models, but there needs to be more applications of the latent class tree 

model to more data sets to evaluate whether such clear-cut themes always arise. 

I do wish to re-emphasize a conclusion I made in 2013, and that the authors reiterate in their 

paper: if segmentation using Best-Worst data (or any choice data for that matter) is a primary 

objective of your project, DO NOT use the 2-step approach as described (See Eagle, 2013). One 



137 

should not first estimate hierarchical Bayesian utilities, rescale them, and then perform a 

segmentation analysis on these data. The process of running the hierarchical Bayes routine, 

which makes draws from the normally distributed upper level parameters, will not produce the 

same results as performing a latent class segmentation directly on the Best-Worst data (1-step 

approach). 

 

  

 Thomas C. Eagle 
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EXTENDING THE ENSEMBLE 
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ABSTRACT 

Increasing variation in Step 1 clustering provides greater opportunity for efficiently 

discovering meaningful latent segments through ensemble analysis. This happens in step 1 by 

varying not only the algorithm and number of clusters, but also the variables that are input into 

the model itself. Finally, we compare the relative performance of this approach using synthetic 

data compared to existing approaches. 

LIFE BEFORE ENSEMBLES 

Developing segmentation solutions is perhaps the most fun and the most maddening portion 

of the marketing scientist’s role. Segmentation is typically described as a mixture of art and 

science. This is because the beauty of a segmentation cannot be fully described by a single 

quantitative measure such as an R-squared or a hit rate. 

However, the challenges on the “art” side are not our only challenges. On the science side, 

the analyst must make a myriad of decisions around inputs, techniques employed, and number of 

segments retained. 

The current process for testing different combinations of these three elements to defining a 

segmentation is largely a matter of trial and error. Often, analysts will create various solutions 

using permutations of these three elements while simultaneously trying to understand not only 

the properties of the individual solution, but also how it relates to solutions using a different 

permutation. 

This approach is obviously an arduous and time-consuming proposition. In addition, the 

manual method provides many opportunities for both human error and simple failure to 

recognize patterns between solutions. 

The reason we test multiple permutations is because we recognize that using a pre-

determined set of inputs, techniques and number of segments is unlikely to result in stumbling 

across the optimal segmentation solution. Not only can different techniques produce different 

results, but the same technique can produce different results depending on the starting point 

(Fern and Brodley, 2004). 

USING ENSEMBLES 

One solution to this trial-and-error approach is cluster ensembles. The idea behind ensembles 

is that while no individual solution may be optimal, we can combine solutions to understand the 

true structure of our latent segments. 
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In the image below, we can see how the same data can produce three separate solutions. With 

just three solutions and just two dimensions, it is easy to identify patterns in the data. By 

combining these three solutions based on their patterns of clustering, we can create an ensemble 

solution. 

 

There are two methods of creating the ensemble solution: 

1. Consensus method: Respondents are assigned to the segment to which they are clustered 

most often. This is the “four out of five dentists agree” approach. NOTE: because 

segments are nominal level metrics, in order for this method to work, we must re-order 

the solutions such that they align. 

2. Clustering of the Clusters method: Rather than using a simple counting rule, this method 

inputs the multiple clustering solutions into a true multivariate model. This model can be 

based on any number of different algorithms (K-means, Latent Class, etc.). The figure 

below illustrates this process. Our individual level data (X) clusters into various solutions 

λ, using algorithms ϕ into consensus solution Γ. 
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The primary benefit of an ensemble solution is the mitigation of risks associated with a single 

solution. Because we don’t have a particularly effective, objective measure of solution quality, it 

is difficult to know whether we have found an optimal solution using a single set of inputs, a 

single technique and/or a single number of solutions. By developing and combining multiple 

solutions, we can have more confidence that the segments exist. Fred and Jain (2002) refer to this 

as the process of evidence accumulation. 

A secondary benefit of this process is that it removes extraneous variables, such as random 

starting points, from the equation. We want our solutions to be guided by attributes of interest, 

not by artifacts of the estimation process. 

Finally, because ensemble solutions incorporate the finding of multiple models, it creates a 

more efficient process for the analyst. This should not be interpreted as a simple automation of 

the process, as ensemble solutions are not foolproof, nor will they necessarily find the optimal 

solutions. 

ENSEMBLE IMPLEMENTATION 

Sawtooth Software’s Convergent Cluster Ensemble Analysis (CCEA) has become an 

important tool in allowing analysts to efficiently develop solutions manipulating both the 

techniques and the number of segments (Orme and Johnson, 2008). Similarly, the CLUE module 

in R (Hornik, 2005) provides an alternative method for the second step in generating an 

ensemble by relying on “evidence accumulation” (Fred & Jain, 2002). 

Ahmadzedeh et al. (2013) provides a valuable review of various ensemble approaches and 

offers their own “graph-based approach for fuzzy partitions.” (See also, Dietterich, 1999) Not 

only do each of these approaches provide a mechanism for evaluating and combining multiple 

cluster solutions, but the process of combining the solutions provides additional stability to the 

final selected solution (Lange et al., 2004). 

Each ensemble approach is highly effective at the second step in generating ensembles—the 

clustering of the clusters. CCEA has the significant advantage of varying step 1 algorithms and 

numbers of segments, while processes such as CLUE focus exclusively on the ensemble 

development (Hornik 2005). However, in our experience, the biggest driver of differences in 

segmentation solutions (both quality and meaning) tend to be the inputs. In this paper, we will 

discuss a new approach in which we manipulate all three primary variables in a segmentation: 

the technique, the number of clusters and the inputs. 

EXTENDED ENSEMBLES 

Each of the existing techniques varies one or more of the three elements in developing 

solutions. But, none of them vary all three elements. For example, CCEA varies techniques and 

number of clusters, but keeps the inputs static while Strehl and Ghosh discuss varying number of 

clusters and inputs. Similarly, Fred and Jain (2002) discuss different ways of varying the 

elements, but settle on an approach in which the basic technique is kept constant, but different 

starting points and other technical parameters are allowed to vary. 
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Extended ensembles combine all three sets of inputs. Depending on the number of potential 

input combinations, we estimate randomly generated combinations of inputs using 

predetermined combinations of techniques and numbers of clusters. 

The table below shows a portion of how this works. We see that Iterations 1–3 use the same 

set of inputs and number of segments but vary the techniques. Then, in Iterations 4–6 we keep 

those inputs static but begin to vary the number of segments. Iterations 6–9 begins the variance 

of the inputs. This process continues until we believe we have generated a sufficient number of 

candidate segmentation solutions for inclusion in the ensembling process. 

 

The second stage of combining the candidate solutions into an ensemble can be done in 

various ways. For these tests, we used Latent Class clustering because of its flexibility in 

handling nominal level inputs without substantial data manipulation. 
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THE TESTS 

Using synthetic data with known properties, we will show the degree to which an extended 

ensemble of solutions varying each of these variables can predict known segmentation 

membership. This will then be compared to alternative approaches, including traditional 

clustering, CCEA and Latent Class. Our approach mimics much of the CCEA approach but adds 

in the element of varying which “active” variables are included in the step 1 clustering. 

Three synthetic datasets were created. These datasets each contained five known segments. 

Each segment had the same profile for each dataset. But, the size of each segment varied 

between the datasets. 

 

Using each of these three datasets, we will determine the ability to recover the known 

segments using several methods: 

1. Individual K-Means Clustering 

2. Individual Hierarchical Clustering 

3. Individual Latent Class Clustering 

4. Ensemble K-Means Clustering 

5. Ensemble Hierarchical Clustering 

6. Ensemble Latent Class Clustering 

7. CCEA 

8. Extended Ensembles 

For each clustering technique, we estimated a total of 500 iterations for 4- and 5-segment 

solutions for a total of 1000 K-means solutions, 1000 Hierarchical solutions and 1000 Latent 

Class solutions. 

Our first test was to determine the ability for any single model estimation to recover our 

known segments. The table below illustrates the results. What is evident is that any individual 

solution is unlikely to recover the segments particularly well, with an average recover rate 

hovering around 35%. 

Instead of looking at the average solution ability to recover the segments, we assume we 

stumble across the best case solution for each technique. In that scenario, each technique does a 

significantly better job at segment recovery. However, the likelihood of a particular technique 

finding that best combination of number of segments and inputs is small, particularly as our set 

of potential inputs increases. 
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Do we need to vary the techniques? 

The second set of tests is to create ensembles within each technique. So, in these tests we are 

varying the number of clusters and the inputs but keeping the technique constant. 

In this scenario, we see a substantial improvement in the ability of both K-Means and Latent 

Class to recover our known segments. This ability drops significantly for K-Means models as the 

distribution of segments becomes more skewed. 

 

Interestingly, Hierarchical models appear to perform no better when combined into an 

ensemble solution that they do individually. Somewhat counter-intuitively, this can happen when 

the solutions are either too similar to “accumulate evidence” or are so different that there isn’t 

enough relationships between the models to identify patterns. 

The final test of existing techniques was to include CCEA as a modeling alternative. This 

was done in two ways. 

1. The first test was an “all inputs” model where all potential input attributes were included 

in the model. 

2. The second was a “variable inputs” in which a random subset of attributes were selected 

for 25 iterations. This “variable inputs” approach was tested to correspond to the 

approach used for each of the single technique tests. 



145 

 

As we saw with the ensemble solutions with K-Means and Latent Class, both variations of 

CCEA are highly effective at recovering our known segments. The “all inputs” version is more 

effective than the “variable inputs” CCEA alternative. This is likely attributable to two aspects of 

the research design. First, our candidate set of solutions for the “variable input” models included 

just 25 randomly generated sets of input metrics. Second, our synthetic data included a total of 

20 attributes, of which just 5 were designed to be irrelevant. Thus, an “all inputs” model will 

primarily include relevant variables, while in the real world our set of potential inputs may be 

heavily weighted towards less relevant metrics. 

Our final segment recovery test is to include our Extended Ensembles approach. Rather than 

looking at varying inputs within a technique, we now create an ensemble across techniques. In 

this way, we are varying all three elements of the solution development. 

The table below illustrates the results. What is evident is that creating ensembles across 

techniques (as with CCEA and Extended Ensembles) is generally more effective than ensembles 

within a technique. The exception to this finding is the strong performance of Latent Class 

ensembles, particularly when we have relatively equal segment sizes. Extended Ensembles 

appear to have the least drop-off in its ability to recover segments as segment size distributions 

become more skewed. However, overall, Extended Ensembles have not been found to be 

significantly better than CCEA models. 

 

CONCLUSIONS 

Combining multiple models into an ensemble, or “evidence accumulation,” appears to be 

highly effective at producing optimal solutions. This appears to be true whether we are looking 

within a single technique or varying the techniques. The key doesn’t appear to be what 

element(s) we are varying, but that we accumulate multiple models with which we can construct 

more information rich and informed segments. 
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Creating ensembles across techniques appears to be most important when our segment sizes 

are less evenly distributed. Obviously, in a real study, we do not know the number of segments, 

much less the distribution of segment sizes. For this reason, multi-technique ensembles like 

CCEA are a safer choice than single-technique ensembles. 

Finally, while varying all three elements, as in Extended Ensembles, does not appear to be 

significantly better than CCEA except in cases with extreme skews in segment sizes, there is 

reason to believe that structure of our synthetic data may be inhibiting the ability for this 

approach to shine. Specifically, our synthetic data was structured to be heavily weighted towards 

relevant variables. In a standard 20-30 minute survey research project, we have a high likelihood 

of a greater proportion of irrelevant variables. In such a scenario, failure to vary the inputs should 

increase our likelihood of finding sub-optimal solutions. 

 

    

 Curtis Frazier Ana Yanes Michael Patterson 
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SYNERGISTIC BANDIT CHOICE (SBC) DESIGN FOR 

CHOICE-BASED CONJOINT 

BRYAN ORME 
SAWTOOTH SOFTWARE 

 

When studying concepts involving strong higher-order interaction effects, Synergistic Bandit 

Choice (SBC) for Choice-Based Conjoint can perform better than standard CBC studies. It is 

most useful for situations such as developing FMCG concepts involving aesthetic packaging 

(style, color, claims, packaging graphics, brand name, nutritional content, etc.) where it is 

expected that there may be strong and complex higher-order interaction effects (among 3+ 

attributes at a time) that are difficult to measure using traditional CBC design strategies. SBC 

leverages the collective knowledge of previously interviewed respondents, filters their choices to 

focus on the most significant interaction effects, and then oversamples the most synergistic 

feature combinations for evaluation by subsequent respondents. 

Why refer to this method as a Bandit approach? The Wikipedia article on Multi-Armed 

Bandit (accessed 2/9/2016) states: 

In probability theory, the multi-armed bandit problem is a problem in 
which a gambler at a row of slot machines (sometimes known as 
“one-armed bandits”) has to decide which machines to play, how 
many times to play each machine and in which order to play them. 
When played, each machine provides a random reward from a 
distribution specific to that machine. The objective of the gambler is 
to maximize the sum of rewards earned through a sequence of 
lever pulls. 

The multi-armed bandit problem models an agent that 
simultaneously attempts to acquire new knowledge (called 
“exploration”) and optimize his or her decisions based on existing 
knowledge (called “exploitation”). The agent attempts to balance 
these competing tasks in order to maximize his or her total value 
over the period of time considered. There are many practical 
applications of the bandit model, for example portfolio design. The 
problem requires balancing reward maximization based on the 
knowledge already acquired with attempting new actions to further 
increase knowledge. This is known as the exploitation vs. 
exploration tradeoff in reinforcement learning. 

For illustration of how the bandit problem relates to designing complex, synergistic products 

in marketing, let’s consider a target FMCG (Fast Moving Consumer Goods) study for SBC with 

six attributes in a 24x20x6x8x12x4 design where there are 1.1 million possible product 

combinations. The concepts might be shown as integrated graphical elements (with transparent 

layers) allowing a concept to be displayed on-the-fly in a computerized survey environment by 

overlaying the graphics. Using the standard CBC approach, the observations would be especially 
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sparse if we wanted to examine the interaction effects. The interaction between the 24-level and 

20-level attribute would involve 480 combinations which standard CBC would sample evenly. 

Even the interaction between the 12- and 8-level attributes involves 96 combinations. And this is 

without even considering higher-order interaction effects which could be meaningful in guiding 

an optimal FMCG package design with interactive and synergistic features. SBC takes a very 

different approach, using the key interaction effects (learned from prior respondents) as filters to 

identify and oversample synergistic joint features for new respondents. The highly preferred 

combinations across multiple attributes are more frequently investigated compared to the less 

preferred combinations, so we gain much higher precision than standard CBC to identify those 

complex level combinations that are near-optimal. SBC exploits prior information and explores 

new design combinations in a way that can lead to a much more efficient, targeted, and relevant 

choice survey experience than traditional CBC. The details are described in Appendix A. 

SBC might involve showing each respondent around 8 to 20 CBC-looking tasks with 

somewhere between about 8 to 10 concepts per task, plus a None alternative. Standard discrete 

choice could be used; but we experimented with a multi-response format that may work even 

better when variety-seeking would be expected, such as for many food categories. 

STRENGTHS OF THIS APPROACH 

1. SBC focuses on discovering and exploiting synergistic interactions across multiple, 

typically categorical (nominal), product attributes. It discovers the synergistic 

combinations of product characteristics and focuses on alternatives with higher 

preference (first identifying key 2-way interaction effects, then later as more respondents 

complete the questionnaire identifying key 3-way interaction effects, etc.). 

2. SBC can converge upon quite diverse products that serve different segments or occasions. 

For example, if half the people like granola power bars and the other half like chocolate 

bars, both desirable chocolate and granola bars will continue to be sampled and 

optimized, with supporting features that are specifically complementary to either 

chocolate or granola. 

3. The use of a multi-check CBC task is more efficient for our purposes than discrete choice 

CBC as it collects more data and encourages within-respondent variety seeking for 

diverse optimal products that can satisfy different occasions and market segments. 

4. The most preferred product features involved in significant interaction effects are soon 

identified and used as filters for discovering the most likely complementary supporting 

features. If two attributes are not important, then by definition their interaction Chi-

square statistic will be small, since the observed and expected frequencies will both be 

flat, representing low signal. 

5. SBC is extremely fast, well suited for on-the-fly computations during data collection. 

6. Drawing new product combinations based on prior preferences and feature interactions 

leads to more efficient choice questionnaires that exploit the prior data, and as more data 

are collected, explores deeper (higher-order) interactions and complementary connections 

among a greater number of features. 
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PROOF OF CONCEPT PILOT TEST 

To test the potential benefits of SBC, we recently conducted a pilot test of the SBC approach. 

We selected a product design situation where we would expect to see very highly interactive 

attributes. Such a design would violate the assumptions of standard additive, main effects + 1st 

order interactions models and could be difficult for the standard CBC design and estimation tools 

to deal with. 

We asked respondents to evaluate various constructed phrases made up of levels from six 

different categorical (nominal) attributes. Here is the pilot test attribute list:  

Attribute 1: 
1 The young couple 
2 The elderly couple 
3 The children 
4 The tourists 
5 The young lovers 
6 The teenagers 
 
Attribute 2:  
1 climbed 
2 strolled 
3 gazed upon 
4 smelled 
5 tasted 
6 enjoyed 
 
Attribute 3:  
1 the beautiful 
2 the picturesque 
3 the majestic 
4 the satisfying 
5 the delicious 
6 the award-winning 

Attribute 4:  
1 hills 
2 beaches 
3 forests 
4 pastries 
5 flowers 
6 wines 
 
Attribute 5:  
1 of California 
2 of France 
3 of Oregon 
4 of Hawaii 
5 of Colorado 
6 of Florida 
 
Attribute 6:  
1 in the summertime. 
2 and took lots of pictures. 
3 with their parents. 
4 in the evening. 
5 and posted the experience on Facebook. 
6 and dreamed of their next adventure. 

This attribute list may be used to construct 6^6 = 46,656 total possible phrases (i.e., product 

concepts), many of which don’t make any logical sense, such as: 

The elderly couple tasted the delicious flowers of Oregon with their parents. 

Some of the phrases make a great deal of sense, such as: 

The young lovers tasted the award-winning wines of France in the evening. 

or . . . 

The children enjoyed the picturesque beaches of Hawaii with their parents. 

Although it’s pretty easy for any English-speaking human to see which combinations of these 

six attributes go well together without the need to conduct a market research study, such is not 

the case for designing consumer packaged goods with highly significant and complex interaction 

effects among categorical (nominal) attributes. 
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We asked our pilot respondents (Survey Sampling International Panelists) to complete 8 

choice tasks, each with 10 concepts (plus a None). Rather than discrete choice, we employed a 

pick-any-3 approach: 

 

For a benchmark comparison, in addition to the choice tasks described above, below each 

pick-any-3 choice task respondents also completed a standard discrete choice CBC choice task 

where each respondent received a unique version (also known as a block), as shown below: 

 

For this pilot test, we didn’t undertake the considerable effort to automate the SBC adaptive 

design algorithm and integrate it within our survey software platform, so we conducted the pilot 

test in small data collection batches and manually performed the design algorithm (using macros 

in Excel) to generate the design for the next batch of respondents. 

We paused the data collection after collecting the first 31 respondents, discarded two of the 

respondents who were obviously speeding, and examined each of the 15 possible two-way 
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interaction tables among the 6 attributes. The most significant interaction according to the Chi-

Square statistic
1
 was between attributes 2 and 4, with raw frequencies of choice as follows: 

Wave 1 Counts (Most Significant Interaction Effect) n=29 

 
hills beaches forests  pastries  flowers wines 

climbed 26 3 11 0 0 0 

strolled 15 25 15 0 8 2 

gazed upon 32 27 26 3 27 5 

smelled 3 1 5 6 28 3 

tasted 0 0 1 20 0 10 

enjoyed 31 31 19 20 28 15 

For the most part, this table of frequencies looks very reasonable, except for a few instances 

(such as one respondent who seemed to think the idea of tasting the forests made sense or the 

two instances in which strolling the wines was chosen). These are complex choice tasks and 

respondents answer with error, so this is to be expected. The most frequently chosen combination 

(chosen 32 times) was the couplet gazed upon the hills. 

With likelihood proportional to the frequencies above (after adding 5 to each cell of the 

table), we drew a few thousand pairs of levels from attributes 2 and 4 to show the next batch of 

about 30 respondents. For each pair, we counted the observed choices containing that level 

couplet and drew levels for the remaining four attributes with likelihood proportional to their 

filtered marginal counts
2
 (after adding 5 to each raw count). For example, let’s imagine a draw of 

the pair climbed the hills. Just isolating the 26 times respondents selected climbed the hills, we 

counted how many times the other six levels of each of the other four attributes (attributes 1, 3, 

5, and 6) were chosen, then drew levels (with likelihood proportional to the observed 

frequencies) to combine with the couplet climbed the hills to form new sentences (i.e., product 

concepts). To those thousands of drawn sentences, we added a few hundred randomly drawn 

additional concepts such that 20% of the designed concepts for the second batch of respondents 

would be randomly constructed. These random concepts serve two purposes. First, they limit the 

possibility that successive iterations might move in the wrong direction because of 

unrepresentative early samples. Second, by retaining a number of items which make little sense, 

respondents in later waves are not confronted with a list where all of the items make sense. In 

that case the task might become overly difficult and less rewarding for a respondent. 

Recall that respondents were asked to complete eight standard CBC tasks as well (placed on 

the same screen under the eight SBC tasks). For the next wave of respondents, we also 

regenerated the standard CBC design plan using a different random seed such that the second and 

later batches of respondents would not simply get a repeat of the first batch of respondents’ 

choice tasks. 

After the second wave of data collection (and after cleaning any obvious speeders) we had a 

total of 58 respondents. The interaction between attributes 2 and 4 was again the strongest 

interaction effect. The frequencies for that interaction table were: 

                                                           
1 We computed the Chi-Square statistic after adding a raw frequency of 5 counts to each cell of the interaction tables. 
2 Although it seems like we are just using 2-way interactions at this stage to draw new product concepts for the next respondents to evaluate, we 

are actually using 3-way interactions. The 2-way couplets are used as filters to observe how frequently that couplet was chosen with levels of 

each other attribute. This involves examining 3-way frequencies to draw new concepts with likelihoods according to those observed 3-way 
effects. 
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Wave 2 Counts (Most Significant Interaction Effect) n=58 

 

  
hills  beaches 

  
forests  pastries  flowers wines 

Climbed 62 8 22 1 0 1 

Strolled 37 73 36 7 19 3 

gazed upon 76 62 57 9 60 9 

Smelled 4 4 10 8 61 7 

Tasted 3 4 3 45 1 31 

Enjoyed 71 89 46 35 64 32 

We hadn’t yet reached our frequency threshold of 100 for any one cell within this interaction 

table (the max count is 89), so we retained this most significant interaction table for drawing the 

product concepts for the next 30 respondents (rather than graduating to a 3-way interaction 

table). 

After the third wave of data collection (and after cleaning any obvious speeders) we had a 

total of 87 respondents. We now had enough data to eclipse the 100 count frequency target for a 

cell within the most significant 2-way interaction, so we felt we had enough data to graduate to 

the most significant 3-way interaction effect (among attributes 2 x 3 x 4). The frequencies for 

that 3-way most significant interaction table were:  
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Wave 3 Counts (Most Significant Interaction Effect) n=87 

 
hills beaches forests pastries flowers Wines 

climbed the beautiful 14 1 3 0 0 1 

climbed the picturesque 22 3 7 0 0 0 

climbed the majestic 31 1 7 0 0 0 

climbed the satisfying 6 4 3 0 0 1 

climbed the delicious 3 0 3 0 0 0 

climbed the award-winning 16 1 4 1 0 0 

strolled the beautiful 19 40 8 0 3 0 

strolled the picturesque 8 34 16 2 3 1 

strolled the majestic 16 20 13 2 6 1 

strolled the satisfying 7 15 4 1 2 0 

strolled the delicious 3 4 1 2 0 1 

strolled the award-winning 8 17 8 0 7 0 

gazed upon the beautiful 25 21 21 3 37 3 

gazed upon the picturesque 36 19 15 0 16 0 

gazed upon the majestic 34 35 35 1 14 2 

gazed upon the satisfying 7 11 9 1 9 2 

gazed upon the delicious 5 0 0 1 2 1 

gazed upon the award-winning 13 8 10 4 24 1 

smelled the beautiful 2 0 3 0 20 0 

smelled the picturesque 0 1 1 0 11 1 

smelled the majestic 2 0 3 0 24 1 

smelled the satisfying 0 0 1 4 18 1 

smelled the delicious 1 1 0 3 2 4 

smelled the award-winning 0 2 3 2 22 3 

tasted the beautiful 1 0 2 4 0 7 

tasted the picturesque 1 0 0 3 0 3 

tasted the majestic 1 1 0 8 1 5 

tasted the satisfying 0 1 0 11 1 7 

tasted the delicious 0 0 0 17 0 17 

tasted the award-winning 1 2 1 23 0 7 

enjoyed the beautiful 36 38 16 7 35 5 

enjoyed the picturesque 43 44 25 1 34 1 

enjoyed the majestic 19 41 18 4 9 7 

enjoyed the satisfying 9 14 5 1 9 8 

enjoyed the delicious 1 4 2 15 3 19 

enjoyed the award-winning 7 20 6 12 16 10 
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At this point, the most commonly picked 3-way attribute combinations for the most 

significant 3-way interaction effect are enjoyed the picturesque beaches (44 count), enjoyed the 

picturesque hills (43 count), and enjoyed the majestic beaches (41 count). But, there are other 

combinations of attributes that also are quite complementary and seem to make a lot of sense to 

the respondents. Plus, we still need to figure out what other three features from attributes 1, 5, 

and 6 go best with these most preferred combinations. On to wave 4, this time using the 3-way 

interaction table above as a filter to make draws
3
 for the most likely combinations of attributes 1, 

5, and 6.  

                                                           
3 Although it seems like we are using 3-way interactions at this stage to draw new product concepts for the next respondents to evaluate, we are 

actually using 4-way interactions. The 3-way triplets are used as filters to observe how frequently that triplet was chosen with levels of each 
other attribute. This involves examining 4-way frequencies to draw new concepts with likelihoods according to those observed 4-way effects. 
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After wave 4 (n=115), the frequencies for the 3-way most significant interaction table were: 

Wave 4 Counts (Most Significant Interaction Effect) n=115 

 
hills beaches forests pastries flowers wines 

climbed the beautiful 16 1 4 1 0 1 

climbed the picturesque 33 3 7 0 0 0 

climbed the majestic 40 2 8 0 0 0 

climbed the satisfying 7 5 3 0 0 2 

climbed the delicious 3 0 3 0 0 0 

climbed the award-winning 25 1 7 1 0 0 

strolled the beautiful 25 58 12 0 3 0 

strolled the picturesque 10 52 23 3 4 1 

strolled the majestic 22 23 18 2 7 1 

strolled the satisfying 8 19 5 2 2 0 

strolled the delicious 4 4 1 3 0 1 

strolled the award-winning 12 22 10 0 7 0 

gazed upon the beautiful 35 27 30 3 56 4 

gazed upon the picturesque 46 32 18 0 26 0 

gazed upon the majestic 47 44 44 1 16 2 

gazed upon the satisfying 11 15 12 1 14 3 

gazed upon the delicious 5 0 1 2 2 1 

gazed upon the award-winning 14 10 12 4 34 2 

smelled the beautiful 2 1 6 0 25 0 

smelled the picturesque 1 1 2 0 17 1 

smelled the majestic 2 0 3 0 32 1 

smelled the satisfying 1 0 2 4 20 1 

smelled the delicious 1 1 1 4 3 4 

smelled the award-winning 0 4 3 2 24 4 

tasted the beautiful 1 0 2 4 0 14 

tasted the picturesque 2 0 0 5 0 4 

tasted the majestic 1 2 0 10 1 7 

tasted the satisfying 0 2 0 14 1 9 

tasted the delicious 0 0 0 23 0 23 

tasted the award-winning 1 2 1 28 0 9 

enjoyed the beautiful 51 53 22 7 47 6 

enjoyed the picturesque 58 65 35 1 38 1 

enjoyed the majestic 26 53 24 4 10 8 

enjoyed the satisfying 9 19 5 2 9 11 

enjoyed the delicious 1 5 2 23 3 23 

enjoyed the award-winning 11 27 7 15 21 16 
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After wave 5 (n=143), the frequencies for the 3-way most significant interaction table were: 

Wave 5 Counts (Most Significant Interaction Effect) n=143 

 
hills beaches forests pastries flowers Wines 

climbed the beautiful 24 1 4 1 0 1 

climbed the picturesque 39 3 7 0 0 0 

climbed the majestic 50 2 9 0 0 0 

climbed the satisfying 8 6 3 0 0 3 

climbed the delicious 3 0 3 0 0 0 

climbed the award-winning 30 1 8 2 0 0 

strolled the beautiful 30 78 14 0 3 0 

strolled the picturesque 16 70 29 3 4 2 

strolled the majestic 26 30 21 2 8 1 

strolled the satisfying 9 26 5 2 2 0 

strolled the delicious 4 5 1 3 0 1 

strolled the award-winning 14 26 12 0 8 0 

gazed upon the beautiful 44 36 37 3 76 4 

gazed upon the picturesque 61 44 20 0 32 1 

gazed upon the majestic 65 53 49 1 20 4 

gazed upon the satisfying 12 15 13 2 17 3 

gazed upon the delicious 7 0 1 2 4 1 

gazed upon the award-winning 14 10 14 4 40 2 

smelled the beautiful 3 2 6 0 28 0 

smelled the picturesque 1 1 3 1 24 1 

smelled the majestic 2 0 3 0 37 1 

smelled the satisfying 2 0 3 4 23 2 

smelled the delicious 2 1 1 5 5 4 

smelled the award-winning 0 4 4 3 31 4 

tasted the beautiful 1 0 3 5 0 20 

tasted the picturesque 2 0 0 5 0 4 

tasted the majestic 1 2 0 11 1 8 

tasted the satisfying 0 2 0 16 1 12 

tasted the delicious 0 0 0 28 0 25 

tasted the award-winning 1 2 1 34 0 11 

enjoyed the beautiful 57 73 29 8 58 6 

enjoyed the picturesque 74 87 40 1 42 1 

enjoyed the majestic 30 64 26 4 11 11 

enjoyed the satisfying 10 19 5 2 11 12 

enjoyed the delicious 1 7 2 29 3 28 

enjoyed the award-winning 13 40 8 17 26 17 
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Now that we’ve collected the data, there are different ways to build models and predict the 

best concept combinations. These are the approaches we used: 

Data Source: Modeling Approach: 

Synergistic (Bandit) CBC - Aggregate Logit with all significant 2-way Interaction Effects 
- Counting-Based Simulator (using the same logic as the  
   design generation steps) 

Traditional CBC - Aggregate Logit with all significant 2-way Interaction Effects 
- HB with Top Two 2-way Interaction Effects 

For the aggregate logit approach, we identified multiple 2-way interaction effects
4
 to add to 

the main-effects specification based on a forward stepwise 2-Log Likelihood approach, with 95% 

confidence level threshold for inclusion. Three-way interaction effects were not possible to 

estimate given the limitations of the data and the number of parameters involved in a 3-way 

interaction term, though we could have remedied that for a larger real study by collapsing 

interactive attributes into a single factor and recoding any levels exhibiting zero or extremely low 

frequency of choice into a single catch-all level of that collapsed factor (as described below in 

footnote #4). The best internal fit model specification including all significant 2-way interaction 

terms was Main Effects: Att1, Att2, Att3, Att4, Att5, Att6; plus Interaction Terms: Att2xAtt4, 

Att3xAtt4, Att4xAtt5, Att1xAtt6, Att2xAtt3, Att1xAtt4. As you can see, there were many 

interaction effects that passed the 95% confidence threshold and continued to improve the LL fit. 

This led to 30 main-effects parameters + 150 interaction parameters + None for a total of 181 

parameters in the aggregate logit model. 

Note that for the Synergistic (Bandit) CBC, we ran aggregate MNL under the assumption of 

chip-allocation (each respondent had 3 chips to allocate among the 10 concepts plus the None; if 

a respondent picked just 1 non-None concept, then 2 chips were assumed to be given to the 

None, etc.). For the Traditional CBC data, we ran the standard aggregate MNL. 

The reader may naturally wonder how well suited the SBC data were for traditional MNL 

modeling. Despite using such an aggressive adaptive design strategy that oversampled the most 

synergistic level combinations, the overall design efficiency (considering all attribute levels) in 

terms of main effects for SBC was 65% as efficient as traditional level-balanced, orthogonal 

CBC. (SBC oversamples most preferred levels, so the efficiency for specific most-preferred 

levels should be enhanced relative to CBC.) The correlation in aggregate logit main effects 

between SBC and CBC was 0.93, which is high given our limited sample size and suggests that 

any selection bias for SBC is quite minimal. 

For the HB modeling, we believed that a 150-parameter model would be too demanding 

given the sparse data conditions of n=143 respondents. Rather, we added the two most important 

interactions to the model (Att2xAtt4; Att3xAtt4), for a total of 30 main effects parameters + 50 

interaction terms + None = 81 parameters in the model. 

To assess face validity, we enumerated the 100 top concepts found (separately) by the SBC 

and CBC methods (it’s simple and extremely quick to conduct an exhaustive simulation search 

                                                           
4 As a technical note, aggregate MNL will not converge if any 2-way combination of levels was picked either 100% or 0% of the time (the latter 

is the more likely outcome with these models). To resolve this, you could simply append a few synthetic tasks to the bottom of the data set 

wherein a synthetic respondent “saw” each combination of the attributes within the same task and placed an allocation of 1 on each concept 

and 0 for the None. Another approach is to collapse attributes involved in interactions into single combinatorial factors and then to recode any 
extremely tiny or 0 probability levels into a single catch-all generic level, which would save many parameters to estimate in the model. 
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across 46,656 possibilities
5
). We then counted how many of these top 100 phrases included any 

illogical attribute combinations. For standard CBC with the aggregate logit solution (with 

extensive 2-way interaction effects), if you believe that elderly people posting to Facebook in 

2016 (when the data collection occurred) is illogical, then 6 of the 100 top combinations lacked 

face validity. Otherwise, all 100 were perfectly logical. For the SBC aggregate logit solution 

(with extensive 2-way interaction effects) 11 of the top 100 combinations involved elderly 

people posting to Facebook. Otherwise, all 100 were perfectly logical. To us, this seemed like 

very good face validity for both methods. No optimal combination had phrases involving such 

things as tasting flowers, smelling beaches, or climbing pastries. While this is a satisfying 

outcome, we wanted a more quantitative assessment of validity. 

To test the success of the four different approaches (2 data collection methods x 2 models), 

we imagined a situation in which the researcher wants to design the best total phrase (product 

concept) that goes together with each of the six levels of Attribute 4: 

 Hills 

 Beaches 

 Forests 

 Pastries 

 Flowers 

 Wines 

Using each approach we exhaustively searched across all 46,656 product combinations (takes 

about 10 seconds using Sawtooth Software Advanced Simulation Module) to find the best 

concepts containing each level of attribute 4. There was no agreement among the four 

approaches regarding which product concepts were the most ideal to accompany these six levels 

of attribute 4. So, we took the “optimal” concepts found by each of the four approaches and 

specified them as composite items (phrases) within a MaxDiff design to field among an 

additional and new wave of about 50 respondents. So that respondents didn’t always face such a 

hard MaxDiff task (since all these are probably quite good concepts), we added six purely 

random items to the design, for a total of 30 items in the MaxDiff experiment. Each respondent 

completed 20 MaxDiff tasks, where each task showed 3 items at a time. 

For example: 

 

                                                           
5 For search spaces larger than about 50MM potential outcomes, a heuristic search could be useful instead of an exhaustive search. But, 

exhaustive could work quite well for up to at least 50MM potential product combinations. 
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The table below shows the MaxDiff aggregate logit scores (rescaled to probability scaling) 

for the 30 items. 

Results of MaxDiff Validity Test (n=53) 

Concepts Identified via Synergistic CBC, Aggregate Logit with all Significant 2-way Interactions: 
 The young couple enjoyed the picturesque hills of Colorado and dreamed of their next adventure. 4.2 

The tourists enjoyed the beautiful beaches of Hawaii and posted the experience on Facebook. 6.3 
The tourists gazed upon the majestic forests of Oregon and posted the experience on Facebook. 5.0 
The teenagers tasted the award-winning pastries of France with their parents. 3.3 
The young couple gazed upon the beautiful flowers of Hawaii in the summertime. 3.5 
The young couple enjoyed the delicious wines of California and dreamed of their next adventure. 5.0 

Geometric Mean: 
A 

4.44 
Concepts Identified via Synergistic CBC, Counting Analysis Approach: 

 The teenagers enjoyed the picturesque hills of France in the evening. 2.3 
The elderly couple enjoyed the picturesque beaches of Hawaii and took lots of pictures. 6.2 
The children gazed upon the majestic forests of Oregon and took lots of pictures. 3.1 
The young couple tasted the award-winning pastries of France and posted the experience on Facebook. 5.0 
The teenagers gazed upon the beautiful flowers of Florida in the summertime. 3.5 
The tourists enjoyed the delicious wines of Oregon in the summertime. 3.3 

Geometric Mean: 3.68 
Concepts Identified via Standard CBC, Aggregate Logit with all Significant 2-way Interactions: 

 The young couple enjoyed the beautiful hills of Colorado and posted the experience on Facebook. 5.2 
The elderly couple strolled the beautiful beaches of Florida and took lots of pictures. 5.3 
The young lovers enjoyed the beautiful forests of Colorado and dreamed of their next adventure. 3.4 
The elderly couple tasted the satisfying pastries of France and took lots of pictures. 2.0 
The elderly couple enjoyed the beautiful flowers of Hawaii and took lots of pictures. 5.7 
The elderly couple tasted the delicious wines of California and took lots of pictures. 3.1 

Geometric Mean: 3.85 
Concepts Identified via Standard CBC, HB with Top Two Significant 2-way Interactions: 

 The young couple strolled the beautiful hills of California and took lots of pictures. 4.7 
The young couple strolled the beautiful beaches of California and took lots of pictures. 6.1 
The young couple gazed upon the beautiful forests of California and took lots of pictures. 3.9 
The young couple enjoyed the satisfying pastries of California and took lots of pictures. 1.2 
The young couple gazed upon the beautiful flowers of California and took lots of pictures. 3.7 
The young couple tasted the delicious wines of California and took lots of pictures. 3.4 

Geometric Mean: 3.45 
Randomly Generated Concepts: 

 The children enjoyed the delicious hills of Florida and took lots of pictures. 0.3 
The tourists smelled the picturesque beaches of Colorado in the summertime. 0.2 
The children strolled the satisfying forests of Florida with their parents. 0.6 
The young couple strolled the delicious pastries of California and dreamed of their next adventure. 0.2 
The young couple climbed the award-winning flowers of Florida with their parents. 0.1 
The young couple strolled the award-winning wines of Florida and dreamed of their next adventure. 0.4 

Geometric mean: 0.24 

Of the four approaches, the SBC approach with aggregate logit modeling found the most 

optimal phrase, though it only barely edged out a couple items found by other approaches. On 

average
6
, the SBC approach did better (4.44 vs. 3.85; p=0.014)

7
 than the traditional CBC 

approach (though we must not lose sight of the fact that SBC had an advantage in that it 

collected more data per respondent due to the multi-select format). 

                                                           
6 Since the scores are on a probability scale, taking the geometric average is more appropriate than taking the arithmetic mean and punishes an 

approach more for obtaining a particularly low probability score on any one item. 
7
 Separately, we used HB to compute the scores so we could perform a Bayesian test of significance (by counting the alpha draws). This test 

showed with 98.6% confidence (p=0.014) that the SBC Logit approach led to the identification of near-optimal items (product concepts) that 
were preferred to the items found by the CBC Logit approach. 



 

162 

For both types of data collection (SBC and CBC) the aggregate logit with all significant 2-

way interaction effects tended to work better than the HB approach—though we limited the HB 

approach to using only the top 2 interaction effects for fear of overfitting. We should note that 

respondents were probably much more homogeneous regarding their evaluation of this attribute 

list than respondents might be for typical market research product categories, which was an 

advantage for the aggregate logit approaches. For the SBC data, the logit model worked better 

than the counting-based simulator. As a pilot test, this is only an initial proof of concept using a 

relatively small sample size. 

CONCLUSIONS 

We embarked on this research believing that traditional CBC would not do a very good job 

identifying the combinations of words that made up ideal phrases where there were so many 

high-order interaction effects. Though we cannot know for certain what the optimal product 

concepts actually were, it appears to us that traditional CBC with the aggregate logit approach 

with all significant 2-way interactions specified worked reasonably well for this smallish-scope 

pilot study. But the SBC approach did even better (p=0.014). With larger sample sizes, collapsing 

attributes, and recoding low-frequency combinations into catch-all categories, 3-way or 

potentially even higher-order interactions could be included as well. When so many interactions 

are in play, HB individual-level estimation probably has less to offer due to the real possibility of 

overfitting. A latent class approach could be a good compromise. 

The SBC approach makes some key departures from the standard CBC approach to tackle the 

problem of highly synergistic products: 

 Encouraging some attributes with relatively many levels (say, 10 to 30 levels) to 

investigate a very large array of potentially beneficial product features (though the 

researcher should still do everything possible to be judicious and limit the attribute levels 

in the study based on prior information; each additional level added to the design costs 

something). 

 Welcoming as many prohibitions between attributes that the researcher for certain can 

rule out a priori. Because the emphasis of the analysis is on modeling interactive 

combinations of attributes, this can significantly reduce the design space (attributes 

involving interactions must be collapsed into single factors prior to running MNL). 

 Abandoning level-balanced, orthogonal plans in favor of an adaptive bandit procedure 

that aggressively oversamples combinations of attributes that are synergistic and 

important. 

 The use of a multi-check CBC questionnaire format to collect more data and 

accommodate variety-seeking for products satisfying multiple occasions. Even though 

our pilot study was not designed to be able to isolate and test the accuracy of the multi-

check versus a discrete choice format, our feeling is that the multi-check format should 

perform better in these kinds of design applications. 

 During the MNL modeling, encouraging as many 2-way interaction terms (and 

potentially 3-way interaction terms) that are statistically significant. Even though the 

number of parameters to estimate have increased geometrically compared to standard 

main-effects CBC, the relatively few parameters that matter most in explaining 
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respondents’ highest multi-feature preferences are vastly oversampled compared to the 

non-significant ones. This means that even though the average number of observations 

relative to parameters estimated is much lower for these models than traditional CBC, the 

concentration of observations on the relatively few parameters that actually make up the 

near-optimal products is many, many times greater than with standard CBC. 

 Due the number of parameters included in these MNL models (often in the 100s due to 

the interaction effects), emphasizing the use of aggregate logit or latent class instead of 

HB. 

SBC creates an experimental design that aggressively oversamples the most synergistic and 

preferred combinations of features. On the flip side, this means that SBC would be a bad 

approach when the goal is to identify and discriminate among the worst combinations of 

features. When the subject of the study involves highly interactive collections of product 

features, our belief is that the adaptive bandit design approach coupled with the emphasis on 

specifying very large models covering potentially 100s of interaction parameters should lead to 

more precise identification of near-optimal concepts than traditional CBC. A presentation at the 

2015 Sawtooth Software Conference regarding Bandit MaxDiff suggests this outcome (Fairchild, 

Orme, and Schwartz, “Bandit Adaptive MaxDiff Designs for Huge Number of Items,” 2015 

Sawtooth Software Conference). How much better and whether it is worth the effort of doing the 

bandit design strategy for CBC remains to be proven with a larger study (though, this pilot test is 

encouraging). 

FUTURE RESEARCH 

Our reviewer, Joel Huber, suggested that rather than select the one most important interaction 

effect and use it as the filter by which a new product is drawn, we could draw new couplets 

(triplets, etc.) from all possible two-way (three-way, etc.) interactions probabilistically, with 

likelihood proportional to (1-p)f, where p is the p-value from the interaction effect Chi-square 

test and f is the relative frequency within the selected two-way (three-way, etc.) table. Further 

work needs to be done regarding how to compute the Chi-Square statistic when prohibitions 

between attributes are involved. And, of course, validation using a larger sample is called for as 

the work presented here involved a limited pilot study. 

 

 

 Bryan Orme 
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APPENDIX A: THE SBC DESIGN ALGORITHM 

Step 0: Interview an initial 30 to 60 respondents using the CBC-looking questionnaire 

described above with a traditional (non-adaptive) random design (different version for each 

respondent). It is best if the design used for these initial respondents has excellent one-way and 

two-way frequency balance across the attributes (such as produced by Sawtooth Software’s 

“Balanced Overlap” algorithm). 

Step 1: Using all respondents’ choice data collected to this point, tabulate raw frequency 

counts for all 2-way (between two attribute) contingency tables, representing how many times 

each 2-way attribute combination was chosen. After adding the constant 5 to each raw count (as 

a naïve prior and for robust Chi-square computation in the case of sparse data), identify the 2-

way counts table that has the most significant interaction
8
 effect according to the Chi-square test 

(the smallest p-value). (If the raw count for the most preferred level combination within this 2-

way counts table is greater than about 100, then proceed to step 3.) 

Step 2: Draw (randomly) a two-attribute level combination from the most significant 

interaction with likelihood proportional to raw counts (let’s say it’s attribute 2 level 1, attribute 4 

level 5). If there are more than 2 attributes in the study, use the drawn two-attribute combination 

as a filter (only count tasks where A2L1 & A4L5 are chosen) and across all respondent data 

collected to this point (satisfying the filter) count the frequencies for all other attributes taken 

independently (after adding a constant of 5 to each level count to avoid any counts of zero
9
). 

Make a draw for all remaining attributes with probability proportional to these filtered raw 

counts, thus completing the designed concept. Repeat Step 2 to draw as many concepts for this 

respondent as needed to design all tasks (reject any concept that is either prohibited or identical 

to a previously chosen concept within the same task). Field the tasks and collect data for this 

respondent. Go back to step 1 for the next respondent or go to step 6 if done with all data 

collection. 

Step 3 (same approach as Step 1, but using 3-way counts to identify the most significant 

interaction): Using all respondents’ choice data collected to this point, tabulate raw frequency 

counts for all 3-way (between three attribute) contingency tables, representing how many times 

each 3-way attribute combination was chosen. After adding the constant 5 to each count (for 

robust Chi-square computation), identify the 3-way counts table that has the most significant 

interaction effect according to the Chi-square test (the smallest p-value). If the raw count for the 

most preferred level combination within this 3-way counts table is greater than about 100, then 

proceed to step 5. 

Step 4 (same approach as step 2, but leveraging 3-way counts): Draw (randomly) a three-

attribute level combination from the most significant interaction with likelihood proportional to 

raw counts (let’s say it’s attribute 2 level 1, attribute 3 level 3, and attribute 4 level 5). If there are 

more than 3 attributes in the study, use the drawn three-attribute combination as a filter (only 

count tasks where A2L1, A3L3, & A4L5 are chosen) and across all respondent data collected to 

this point count the frequencies for all other attributes taken independently (after adding a 

constant of 5 to each level count to avoid any counts of zero). Make a draw for all remaining 

                                                           
8 To compute interaction significance via Chi-square, compute the expected frequencies based on the main effects and compare to the actual 

observed frequencies. 
9 Adding a constant of 5 makes sure that every possible product concept has a non-zero chance of being selected at each stage of the adaptive 

design process. 
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attributes with probability proportional to these filtered raw counts, thus completing the designed 

concept. Repeat Step 4 to draw as many concepts for this respondent as needed to design all 

tasks (reject any concept that is either prohibited or identical to a previously chosen concept 

within the same task). Field the tasks and collect data for this respondent. Go back to step 3 for 

the next respondent or go to step 6 if done with all data collection. 

Step 5: Repeat same pattern as above for the four-attribute interaction table, etc. until done 

with all data collection. 

Notes 

1. For the analysis phase, SBC could be made to handle quite extensive prohibitions 

between attributes taken two at a time. Two attributes involving extensive interactions 

could be collapsed into a single attribute (factor). Well-chosen prohibitions may help 

matters during the analysis since they reduce the design space and focus the respondent 

on relevant concepts. As for the design phase, the Chi-square interaction statistic might 

be computed after imputing data for missing (prohibited) cells. We could use rejection 

sampling to discard any prohibited combinations that we might draw for inclusion in the 

design. 

2. SBC designs could accommodate a priori defined segments. For example, if you believed 

that males and females had strong differences in preference and wanted to design optimal 

products for males vs. females within the same questionnaire, you would simply include 

a filter on the counts in each of the design steps based on male/female. Because the data 

would be now split in two, the initial sample size prior to graduating to the adaptive 

design would need to be doubled. Total sample size would also need to be twice as large 

(if requiring equal precision for segment-based product optimization across two evenly 

sized segments). 

3. Counting analysis and drawing new products proportional to prior choice frequencies is 

so rapid that each respondent should have very little wait time for each task to be 

generated. The initial identification of the most significant interaction effect should be 

done just once per respondent and retained for generating all subsequent tasks for that 

respondent. 

4. Although SBC designs deviate significantly from level balance and orthogonality, the 

design supports standard logit, HB, or latent class estimation. To make this possible, 

when designing each choice task, a few (such as 20%) of the product concepts should be 

drawn purely randomly (not according to prior preferences). This provides adequate 

design efficiency for running MNL (aggregate or disaggregate) on the data. Drawing a 

few purely random concepts per task is also a way to reduce the likelihood that biased 

early respondents could hinder the ability of the solution to converge upon globally 

optimal product concepts. 
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ABSTRACT 

Optimal product design is challenged by the presence of attributes with many levels that are 

thought to interact with each other. Product and package colors, tag lines, styles and visuals are 

examples of attributes with a “flat” space of attribute-levels that is difficult to parameterize. 

Compounding this problem is the interest to identify interactive effects among attribute-levels, 

such as certain color combinations and messaging strategies that are thought to increase sales. 

This paper introduces a general framework for identifying these high-dimensional interactions in 

the context of a sequential experiment. 

INTRODUCTION 

Optimal product and package design relies on identifying interactions among attributes and 

their levels that drive sales. At the heart of any effort to uncover interactions are three things: 1) a 

sequential framework for learning about interactive effects; 2) a model of the data that is 

sufficiently informative about the presence of interactive effects so they are not overlooked, i.e., 

that reduce errors of omission; and 3) a flexible method of shutting-down, or eliminating effects 

that are small or insignificant so that errors of commission are also not present. 

In this paper we propose use of a sequential experiment that facilitates learning about 

interactive effects and using this information to select the next-best set of product profiles to test 

in an analysis. This allows us to learn about important attributes and potential interactive effects 

from scratch, where the data drives the results and not prior knowledge of the researcher. The use 

of sequential experiments to cover high-dimensional space of possible effects is used in fields 

ranging from medical testing (e.g., Bartroff, Lai, Shih 2013) to engineering optimization (e.g., 

Jones, Schonlau, Welch 1998). 

An informative model is the second necessary ingredient to obtaining a viable procedure for 

product design. Over the course of the last 25 years, researchers in conjoint analysis and demand 

modeling have been incorporating heterogeneous effects with the use of hierarchical Bayes 

(Rossi, Allenby, McCullough 2005) methods. These models, however, are often estimated with 

sparse data and do not include interactive effects. Heterogeneous effects, therefore, work against 

the discovery of interactions because these models are heavily parameterized. In this paper we 

rely on an aggregate model of demand in which the effects of heterogeneous coefficients are 

minimized. 

Third, we avoid the identification of false-positive interactive effects using Bayesian variable 

selection (George and McCullough 1993) methods. In our analysis we find that Bayesian variable 

selection out-performs other methods and minimizes the detection of false-positives. 
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We develop our model within the context of a package design problem faced by a leading 

consumer-goods manufacturer. Through simulation, we find that five rounds of a sequential 

experiment are expected to be sufficient for interaction detection. We then design a study and 

apply our model to data in which respondents identify the best package design from a set of 

alternatives. The best package design from our sequential experiment is then compared to 

alternative designs that were deemed best from alternative methodologies in a second study. The 

results from this best-of-class comparison favors our proposed method in comparison to other 

methods used by the manufacturer. 

The next section introduces our proposed design criterion that favors design points, or 

concepts for inclusion in the study having the greatest likelihood of improving expected sales 

beyond the current best design. This criterion is expressed as the upper tail of the expected 

predictive distribution, given information about what is currently known about the model 

parameters, or part-worths. As the experiment proceeds, new data are collected and used to form 

revised estimates of the model parameters, which are then used to form revised estimates of the 

predictive distribution of alternative design points. The sequential nature of the experiment 

effectively searches over potential product designs that have the greatest chance of improving 

sales and avoids testing combinations of features expected to have low sales. Thus, our design 

criterion is different from traditional design criteria that seeks to optimally estimate all model 

parameters. 

MODEL DEVELOPMENT 

We begin the discussion of our methodology by first describing the model used to analyze the 

data. We show that the aggregate model can be easily linearized and the effects of heterogeneous 

effects across respondents are ignorable for evaluating which design consumers prefer most. We 

then describe our design criterion. Details of our method are described in Joo et al. (2018). 

The goal of our analysis is to find the product design that maximizes sales to the firm. We do 

this using a model of aggregate shares from an experiment where respondents are asked to 

indicate the best design from a series of alternatives. We employ an aggregate share model for 

analysis: 

    
             

                      

 and     
 

                      

 , 

where Sjq is the share of product profile j in question q, and S0q is the share of a common outside 

option in question q, which can be the current design on the market, a vanilla design profile, or no 

choice. Jq includes all product profiles j' tested in question q. The utility of product profile j in 

question q, u(Xj;), is determined by a linear combination of the design attributes and the vector 

of part-worths. Taking the log-odds of Sjq and S0q results in a linearized version of the logit model 

           =                , 

where jq is a mean-zero, normal error term specific to product profile j in question q. We note 

that Xj includes main-effect and interaction terms that can be very high dimensional. Consider, 

for example, the dimensionality of the design space for the color of a bottle cap and the color of 

lettering on the bottle. The dimensionality of the design space for just 10 colors for each is at 

least 300 when considering the two-way interactions alone. This illustrates the need to work with 

an aggregate model of demand, and the difficulty in exploring interactive effects with individual-



169 

level demand models where the number of data points is typically constrained to be less than 20 

observations. 

An advantage of working with an aggregate-level linear model is that the effects of 

heterogeneous coefficients can be ignored when the goal is to estimate the average utility of the 

product profiles. The average utility is appropriate in product and package design contexts when 

respondent-level customization of the product is not being considered (Theil 1965). Thus, the 

average effect of the attribute-levels is directly estimable from the linearized model, and can be 

used to predict the aggregate market-level response to the product or package design. 

The second element of our method is the design criterion that iterates towards the best design 

points, or product configurations, to include in the experiment. We assume that, at any point in 

time in the sequential experiment, there exists a product configuration thought to be the best 

given the information currently available from the data. Given this prior information about the 

part-worths, it is possible to obtain the predictive distribution for any new product configuration. 

Our proposed design criterion is the probability that the new configuration is better than the 

existing best, which is represented as the area to the right of the vertical bar in Figure 1. The 

designs that are most promising, measured as having the greatest probability mass to the right of 

the best-performing design observed in the current round, are the designs to include in the next 

round of the experiment. 

Figure 1. Proposed Criteria 

 

Our proposed criterion differs from traditional experiment design criteria, such as D-

optimality (Box, Hunter, Hunter 1978) which seeks to minimize the variance of all model 

parameters. Our design criterion favors product configurations with a high likelihood of 

improving upon the best configuration already tested. Thus, it identifies design points that 

simultaneously increases “learning” and “earning” (Schonlau et al. 1997, 1998). 

The third element of our proposed method is the use of Bayesian variable selection (George 

and McCulloch 1993) to identify non-zero effects in the model. We find that Bayesian methods 

are good at minimizing errors of commission (Type II errors). Bayesian variable selection works 

by specifying a “mixture” prior distribution on the model parameters that give appreciable 

probability mass to the regression coefficient (i) equal to zero or having no effect in the model. 

Observed market performance of 

the existing best profile

The expectation that product profile j 

outperforms the existing best profile

Predicted market performance of profile j - u(Xj;b)
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Figure 2. Mixture Prior for Variable Selection 

 

Thus, there is some probability P(i=0) that the i is very close to zero, and probability 

(P(i=1)=1-P(i=0)) that i is described by a prior distribution with much larger variance. 

Bayesian variable selection produces an estimate of P(i=0) for each regression coefficient, 

allowing for a sharper assessment of which regression coefficients are significantly different from 

zero and which are not. 

SIMULATION STUDY 

We investigate the performance of our proposed method encompassing 1) the aggregate share 

model, 2) the design criterion and 3) Bayesian variable selection in a sequential experiment 

setting where one of four product concepts is chosen in twenty-five choice tasks for each wave of 

the experiment. The choice tasks also have a common product configuration, which we refer to as 

the “outside option” so that the aggregate share model is linearized consistently across the choice 

tasks. A researcher can use either a “vanilla” design profile or the current product design on the 

market as a common outside option. One hundred simulated respondents indicate their most 

preferred configuration, and these choices are aggregated to form the shares used in estimation. 

Thus, each round of the experiment is capable of evaluating 25 x 4 = 100 product configurations, 

and we examined the performance of the method over five waves of the sequential experiment. 

Each product profile is a combination of four attributes, and these attributes have design 

candidates of 5, 8, 11, and 12 levels each. The number of attributes is set to be similar to the 

collaborating firm’s R&D project. The true part-worth preference parameters are designed in a 

way that the true best design concept involves two-way interactions. The dummy coding of all 

design attributes leads to 32 main effects and 369 two-way interaction effects. The product design 

problem includes 5,279 candidate product profiles. Therefore, the simulation tests the 

performance of the proposed framework where the number of product profiles tests (500) is 

similar to the number of parameters (401). 

We compare our method to the polyhedral method for adaptive choice-based conjoint analysis 

proposed by Toubia et al. (2004). The polyhedral method is one of the earliest developments in 

machine-learning based question-selection methods in conjoint analysis, and is shown to be very 

gi =0: variable i is NOT selected

gi =1: variable i is selected

0
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efficient in reducing uncertainty in part-worth parameter estimation relative to traditional conjoint 

analysis methods. The polyhedral method iteratively selects a respondent-level choice set after a 

respondent completes each choice task. It aims to minimize errors around all parameters, not 

selectively around more positive ones. 

Table 1 compares the performance of the proposed framework to the polyhedral method for 

highly preferred design profiles. Reported is the correlation between the true and predicted 

utilities for the top 1% of the profiles. The results of the simulation study indicate that the 

proposed design criterion is effective at identifying the most preferred product concepts. 

Table 1. Correlations Between True and Predicted Utilities Out of Top 1% of Profiles 

Profiles Proposed criteria Polyhedral method 

Top 100 (0.2%) 0.638 0.263 

Top 200 (0.4%) 0.635 0.460 

Top 300 (0.6%) 0.688 0.575 

Top 400 (0.8%) 0.697 0.650 

Top 500 (1.0%) 0.668 0.702 

EMPIRICAL APPLICATION 

The proposed framework is applied to a package design project for a consumer packaged 

good of a leading consumer products manufacturer. The manufacturer’s goal is to develop the 

optimal design in the presence of high-dimensional and sparse parameter space, avoiding a poor 

combination of the best levels of main effects. The expected improvement criterion is 

implemented to search for the most promising design concepts with highest potential, using the 

parameter estimates by the Bayesian variable selection method. The study is conducted online 

with high-resolution images of hypothetical product packages. 

The product package consists of four design attributes including visual image of the product, 

claim statement of key features, name of materials used in the product, and sub-brand name, as 

described in Table 2. The design element of the main brand name is fixed, so that is not included 

in the design experiment. The manufacturer selects the candidate attribute levels using domain 

knowledge including 12 product images, 11 claim statements, 6 materials, and 12 sub-brand 

names. One level from each attribute is considered to be as baseline with part-worth preferences 

of zero for identification purpose. The baseline attributes construct the common outside option in 

the experiment. 

Table 2. Description of Attributes 

Attribute codes Numbers of levels Description Space allotted 

Att.1 12 Visual illustration of the product High 

Att.2 11 Claim statement of the key strength Low 

Att.3 6 Name of material Medium 

Att.4 12 Sub-brand name Medium 

Figure 3 illustrates the design elements of the product package. Attribute 1 (visual 

illustration) is the largest design element of the package in addition to the common main brand, 

so it is highly visible to respondents. Attribute 2 (claim statement) is at the bottom of the package 

with a small font, but includes information important to respondents. Attribute 3 (material) is 

placed right above the claim statement with a larger font. Attribute 4 (sub-brand name) is placed 

right below the common brand name with a similar sized font as Attribute 3. The design 
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attributes’ visibility may correlate with the size, but it does not necessarily reflect the importance 

of information. 

Figure 3. Location of Design Attributes in the Package 

 

The number of rounds in the sequential experiment is predetermined as five, considering the 

size of data required for accurate parameter estimation and the manufacturer’s typical budget 

limitation for R&D projects. About 450 respondents per round participated from the U.S. and the 

U.K. as in Table 4. All participants confirmed that they are active users of the focal product 

category through screening questions. 

Table 4. Summary of Sample Sizes in Each Round of Experiment 

 Round 1 Round 2 Round 3 Round 4 Round 5 

U.S. 228 223 237 217 233 

U.K. 224 227 214 233 218 

Total 452 450 451 450 451 

Respondents receive three hypothetical design concepts and one common outside option in 

each question. They are requested to select their favorite design concepts out of four alternatives, 

as described in Figure 4. The displaying order of the four design concepts is randomized for each 

respondent to avoid any location effect. Respondents can enlarge the pictures of each of the given 

package design concepts to the full screen mode for evaluation. 

Common brand name 

Subbrand name (Att.4) 

Material name (Att.3) 

Claim statement (Att.2) 

Visual illustration 

(Att.1) 
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Figure 4. Screen Layout for the Conjoint Experiment 

 

Each respondent provided answers to 23 choice tasks in each round. They are randomly split 

into five groups receiving the different product profiles for evaluation. The number of alternatives 

tested in one round is 345 (=23 x 3 x 5). The product profiles to be tested in the first round are 

selected by classical criteria. The part-worth preference parameters are estimated at the end of 

data collection in each round (t) using the Bayesian variable selection method, and the design 

profiles to be tested in the next round (t+1) are determined by the proposed expected 

improvement criterion conditional on the parameter estimates. The same procedure is iterated 

until the end of the fifth round. 

Figure 5 presents the summary of posterior estimates for main effect parameters using the 

data from all five rounds of experiment. Attribute 1 (visual illustration) is the most important 

design attribute in terms of the variation across levels, while attribute 4 (sub-brand name) does 

not affect preferences. The visual element is the largest part in the package design, so it may 

attract the highest level of attention from respondents. 

Please select the [brand name] package below that you 

would be Most Likely to purchase. 

Package design 

alternative 1 

Package design 

alternative 2 

Package design 

alternative 3 

Package design 

common outside 

option 
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Figure 5. Posterior Estimates for Main-Effect Part-Worth Parameters 

 

DISCUSSION 

The empirical results indicate that the optimal design is affected by the presence of interactive 

effects among the attributes. Two natural questions that arise are 1) whether the proposed 

criterion leads to the evaluation of design concepts with more appropriate interactions, and 2) 

whether the optimal design by the proposed framework is actually preferred to designs suggested 

by other methods. 

The following discussion first examines the effects of selection criteria on the frequencies of 

appropriate interactions evaluated in the experiment. Then, it presents a validation task to 

evaluate the performance of the proposed framework relative to other popular methods in 

practice. For validation, the collaborating firm implemented three more R&D experiments using 

competing methods, and we conducted another separate survey to evaluate three best profiles 

suggested by the competing methods against the one by our proposed framework. 

Figure 6 presents the observed relative frequencies of key interaction effects appearing in the 

product profiles that are evaluated in the five rounds of experiment. The interaction effects listed 

are those that appeared in the most preferred design concept. The dotted line indicates the 

expected frequency of evaluation, if candidates are randomly selected without applying proposed 

adaptive selection criteria. If the key interaction effects are more frequently selected to evaluate 

in the earlier rounds, it is highly likely to find the best design concept without too many rounds of 

iterations. 
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Figure 6. Relative Observed Frequency of Important Interaction Effects 

 

The relative frequency plot illustrates that the proposed criterion allocates the limited number 

of questions in a more efficient way to search for the potentially best combinations of design 

concepts. The respondents are directly exposed to the combinations with appropriate interaction 

effects. This confirms that the important interactive effects between attributes are less likely to be 

omitted in the prediction of optimal design, as respondents make head-to-head comparisons 

among highly preferred combinations. 

The empirical application reported above was conducted as part of a large-scale R&D project 

by the manufacturer, which consists of four separate product design experiments including our 

proposed framework. The manufacturer has relied for a long time on methodologies offered by 

commercial vendors, Nielson’s optimizer with evolutionary genetic algorithm and Sawtooth 

Software’s choice based conjoint (CBC) experiment. They also adopted and developed a 

machine-learning based query-selection method, called optimal Bayesian recommendation set 

(Viappiani and Boutilier 2010). Therefore, the R&D project produced four different product 

profiles recommended by each method—the proposed one, genetic algorithm, standard CBC, and 

Bayesian recommendation set. 

An additional validation survey was conducted to directly compare the proposed optimal 

profile with the other three profiles created by the competing methods. A new set of individuals 

was selected and responded to one choice task of their favorite design among the four profiles 

and a no-choice option. 

The three other design experiments were conducted for exactly the same product package 

described above. They were implemented under supervision of the collaborating firm with 

software providers, and we have limited information on details of implementation except for the 

final outcome. Therefore, we briefly describe the three benchmark methods at a conceptual level. 

Nielson’s genetic algorithm. Nielson’s optimizer adaptively searches for the best product 

designs at the individual level using interactive genetic algorithm based on Malek (2001). The 

genetic algorithm is a heuristic approach to mimic nature’s evolutionary process, where superior 
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ones eventually survive (Balakrishnan and Jacob 1996). The questionnaire starts with a random 

initial set of product profiles. Subsequent sets of questions present superior offspring of product 

profiles in the previous round, i.e., combination of preferred attribute levels. The algorithm 

allows mutation in general for exploration purposes. Empirical studies have shown that the 

outcome of genetic algorithm is often close to optimal and outperformed other existing heuristic 

methods (Balakrishnan and Jacob 1996), as multiple iterations of evolution improve the fitness of 

the outcome. 

Sawtooth Software CBC. The choice-based conjoint (CBC) method uses a standard 

hierarchical Bayes conjoint model provided by Sawtooth Software. They offer 30 different blocks 

of 20 predetermined choice-tasks each, using a “Balanced Overlap” experimental design. 

Respondents first build their own designs using a graphical configurator, then are randomly 

assigned to one questionnaire block out of 30 sets. The responses out of 20 questions per 

individual are analyzed by hierarchical Bayesian method (main effects only, without using the 

configurator information), so the part-worth preference parameters are estimated at the individual 

level accounting for heterogeneity. 

Bayesian recommendation set. A machine-learning algorithm searching for optimal 

recommendation sets (Viappiani and Boutilier 2010) is adopted by the researchers of the 

manufacturer. Viappiani and Boutilier (2010) show that the myopically optimal choice set in an 

adaptive experiment is equivalent to the optimal recommendation set of the same size, i.e., a set 

of product profiles that maximizes the respondent’s expected utility. In the sequential process, it 

presents a set of product profiles to test in the next round that maximizes their sum of expected 

utilities using part-worth preference parameter estimates in the previous round. The part-worth 

parameters are estimated by hierarchical Bayesian method accounting for heterogeneity of 

individual respondents. 

The four separate experiments including the proposed method and three benchmark methods 

described above result in four different optimal design profiles for the identical product package. 

All four methods predicted four different best profiles with internal validity according to 

preference estimates from each model, but separate results are not able to present external 

validity. Therefore, we conduct a separate validation survey to compare four different design 

profiles out of different experimental methods. 

Participants include 523 individuals from the U.S. (n=266) and the U.K. (n=257) and are 

active users of the focal product category. All respondents receive one question of choosing their 

favorite design concept out of four product profiles including the proposed one and no choice 

option. The orders of four design concepts are randomized to avoid location effects. 

Table 5 presents the shares of the four design concepts generated by different methods in the 

manufacturer’s R&D project. The optimal design created by the proposed framework is the most 

preferred design concept out of the four product profiles, each of which is predicted as the best 

design by different methods. The proposed design lifts the observed share by 8% relative to the 

design by genetic algorithm, and by 14% and 52% relative to the standard choice based conjoint 

and the machine learning method, respectively. We note that all three benchmark methods fully 

controlled respondents’ heterogeneity, and especially genetic algorithm is provided at a very high 

cost to the manufacturer. Though we are not able to offer the market share prediction based on 

this result, the observed improvement is potentially significant considering that the 

manufacturer’s revenue per brand is over $1 billion on average. 
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Table 5. Validation Experiment 

 
Choice frequency Proportion 

Relative share lift by 

the proposed design 

Proposed method 140 26.8%  

Genetic algorithm 130 24.9% 8% 

Standard CBC 123 23.5% 14% 

Optimal recommendation set 92 17.6% 52% 

No-choice 38 7.3%  

Total 523 100.0%  

The validation results show that the proposed framework identifies the optimal product 

profile by prioritizing appropriate combinations of attributes in the sequential test. The standard 

choice-based conjoint analysis relies on a classical experimental design, which frequently 

produces a main-effect design without interactions. Genetic algorithm (Malek 2001) and optimal 

Bayesian recommendation set (Viappiani and Boutilier 2010) are designed to overcome such 

problems, but they are sensitive to the initial seed with limited exploration and rely on heuristic 

comparison in a subset of product profiles. The results confirm that the share model used in our 

proposed framework is suitable for identifying market-share maximizing design concepts. 

CONCLUSION 

This paper proposes a new approach to optimal product design in high dimensions using 

sequential experiments. Product profiles are prioritized for inclusion if they can improve on the 

outcome of the current best design. The expected improvement criterion is operationalized by an 

integration of upper tail in the posterior distribution of aggregate market share. A stochastic 

search variable selection method reduces the dimensionality of the model by selecting relevant 

variables. We demonstrate that the proposed framework identifies the best design in a large-scale 

R&D project conducted by a major packaged goods company. 

Our modeling framework can be applied to many high-dimensional design settings, such as 

identifying brand logos, optimal advertising campaigns, etc. It can also be applied to other R&D 

projects with horizontal variation in the attribute levels. The proposed framework is especially 

effective when the design attributes contain a large number of levels, and the evaluation of all 

potential candidates is infeasible. 

 

    

 Mingyu Joo Michael L. Thompson Greg M. Allenby  
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ABSTRACT 

Non-Negative Matrix Factorization (NMF) is a relatively new technique that allows for the 

simultaneous segmentation of individuals and “factoring” of variables. This paper will introduce 

NMF and compare its performance relative to standard segmentation approaches (K-means 

Clustering, Latent Class Analysis, Hierarchical Clustering) using both simulated data and data 

from an actual study. The results from our analysis show that NMF performs very well, especially 

in the case of highly correlated datasets. 

INTRODUCTION 

When conducting a segmentation analysis utilizing survey data (e.g., via needs or attitudes) 

researchers often find that many of the basis variables are correlated to varying degrees. In cases 

of high to very high correlations this can produce a potentially biased solution since the 

correlated variables may unduly influence the solution. This is true for traditional techniques such 

as K-means Clustering as well as more advanced approaches such as Latent Class Analysis 

(LCA). 

There are several different approaches for dealing with datasets containing multicollinearity 

such as grouping together items, either as factor scores via Principal Components Analysis or as 

composite variables (either simple averages or weighted averages), or by removing somewhat 

redundant items altogether, retaining only the most representative items. However, these are not 

necessarily statistically optimal solutions and in some cases can be somewhat arbitrary 

approaches. 

Another fairly frequently encountered issue in segmentation is the analysis of sparse data as 

well as binary data. In the case of sparse data, when individuals are asked to indicate which 

activities they have engaged in, products they have purchased, sources consulted, etc. we may 

have only a relatively few number of selections per item, particularly when there are a fairly large 

number of items. In our experience we have found that K-means Clustering with Euclidean 

distances in particular is not well suited to the analysis of data that are sparse and/or binary. 

In this paper, we will introduce a relatively new analytic approach, Non-Negative Matrix 

Factorization (NMF) that addresses these common issues and provides much greater insights into 

the data. 

An NMF analysis simultaneously takes into account the relationship between the 

segmentation basis variables while also forming the segments. That is, items are grouped together 

in “factors” or latent variables, at the same time that individual respondents are grouped together 

in segments. 
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Below, we explore how NMF compares to traditional segmentation approaches such as K-

means Clustering, LCA, and Hierarchical Clustering, as well as ensembles, based on simulated 

data with known properties (e.g., little/moderate/high multicollinearity, little/moderate/high 

sparseness). Hit or concordance rates (actual segment classification vs. recovered) will be 

compared across the techniques. 

In addition, we demonstrate the use of NMF vs. other approaches utilizing data from an actual 

client study to show the enhanced interpretability of NMF. The R code that we utilized is 

available, allowing others to replicate the simulated results, at 

http://www.sawtoothsoftware.com/download/Patterson_Guthart_Frazier_2018.zip. 

POTENTIAL SEGMENTATION ISSUES 

A typical segmentation analysis uses various inputs such as scaled attitudes, scaled needs, 

behaviors, or utilities derived from MaxDiff. 

Often we find it can be helpful to process the data to introduce greater discrimination. For 

example, we might recode items in the top 10 as binary (“1” vs. “0”) or code Top-2-box scores as 

binary. However, when including behavioral data (e.g., activities conducted, products purchased, 

etc.) this can lead to sparse data that contains many “0”s and few “1”s (where the presence of a 

behavior is coded as a “1”). This also holds true when transforming data into binary scores, 

although the analyst has much more control in that case (e.g., rather than top 10, the analyst 

might code top 20 in order to increase the frequencies of “1”s and thereby make the data less 

sparse). In any case, running a segmentation analysis of binary data can be problematic, 

particularly with techniques such as K-means Clustering, which works best with scaled data. 

Another issue frequently encountered when using scaled values is correlated items 

(particularly when there is only one set of highly correlated items). When items are 

moderately/highly correlated, those variables may exert more influence on the solution. 

“High correlation among clustering variables can be problematic 
because it may overweight one or more underlying constructs”—
Ketchen and Shook (1996) 

POSSIBLE SOLUTIONS 

Some commonly used solutions to the aforementioned potential segmentation issues include: 

using factor scores, using composite variables (that combine variables), or using only one 

variable from each correlated set. Another potential solution for dealing with both sparse data and 

correlated attributes is Non-Negative Matrix Factorization—also referred to as NMF (Lee and 

Seung, 1999). 

NMF analysis simultaneously takes into account the relationship between the segmentation 

basis variables while also forming the segments. That is, items are grouped together in “factors” 

or latent variables, while respondents are simultaneously grouped together in segments. NMF can 

use any non-negative data type, including binary data such as associations, dichotomized ratings, 

activities, etc. 

The principle behind the approach is to factor a given data matrix (traditionally called “V”) 

into two lower dimensional matrices (W and H) such that none of the three matrices contains any 

negative items (hence the term non-negative): 
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The resulting matrices contain the “loadings” of Respondents on Segments (Matrix W) along 

with the loadings of Variables on Segments (Matrix H). In this way, we are able to 

simultaneously group individuals into segments (based on the highest loading) along with 

variables into “factors” providing much greater insights into the structure of the data. Various 

algorithms (often Gradient Descent) exist to identify the Matrices W and H that minimize |V - 

WH|
2 

(i.e., the factoring is not exact). 

Non-Negative Matrix Factorization is one approach to Matrix Decomposition (others include 

Singular Value Decomposition and Principal Components Analysis) and has been used to study 

such areas as: facial and image recognition, recommender systems, text mining, acoustic signal 

processing, financial and stock trading data, and retweeting behavior. It is relatively new in 

application to market research segmentation. 

SIMULATED DATA 

In our simulation research we compare NMF with various segmentation algorithms. To do 

this, we looked at six relatively common types of datasets, each with known properties and 

known segments. We generated 100 random versions of each type of dataset, with 1,000 

respondents in each. We analyze the datasets via four algorithms: Non-Negative Matrix 

Factorization, Latent Class Mixture Model, K-means Clustering, and Hierarchical Clustering. 

Then we compare the recovered segments to the known segments—the concordance or “hit” rate. 

The six types of datasets differ in terms of their level of sparseness and in the correlations 

among related items. Sparseness is defined as the probability that a variable is coded as “1” vs. 

“0.” For the correlations, groups of items were designated as belonging together (similar to a 

factor) and then correlations among these common items were established. The correlations 

below show the average correlation among these “related” items. 

Dataset Type Description Level of 

Sparseness 

Correlations Among 

Similar Items 

1 Very sparse, no corrs 5% ~0.00 

2 Moderate sparse, low corrs 33% 0.28 

3 Moderate sparse, moderate corrs 33% 0.51 

4 Moderate sparse, high corrs 33% 0.80 

5 Low sparse, moderate corrs 50% 0.53 

6 Low sparse, high corrs 50% 0.80 
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A small number of records from two example datasets are shown below: 

Dataset 1—Very Sparse (~5% of Values Are “1”), Virtually No Correlations Among Items 

 

Dataset 6—Low Sparse (50% of Values Are “1”), High Correlations 

(~0.8 Among Related Items) 

 

SIMULATED DATA RESULTS 

The charts below show how well each method recovered the underlying true segments in each 

type of dataset. The percentages are the percent of respondents correctly placed. 
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Low Correlation 

Dataset 1 Dataset 2 

Very Sparse, No Correlation Moderate Sparseness, Low Correlation 

  

Moderate Correlation 

Dataset 3 Dataset 5 

Moderate Sparseness, Moderate Correlation Low Sparse, Moderate Correlation 

  

High Correlation 

Dataset 4 Dataset 6 

Moderate Sparseness, High Correlation Low Sparseness, High Correlation 

  

Among the four approaches that were examined, NMF is the overall top-performing method 

we tested. The only time it was not beat is in the case with very sparse data, where hierarchical 

clustering beat it by 3 percentage points (NMF: 50% vs. Hierarchical: 53%). NMF significantly 

outperforms the other methods in the highly correlated datasets—having over twice as good a hit 

rate compared to all other tested methods. As suspected, K-means Clustering performs the worst 

across all simulated datasets. 

All results were analyzed via MANOVAs and ANOVAs and all were found to be highly 

statistically significant. 
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CASE STUDY 

In addition to looking at simulated data, we also looked at an actual case study from the water 

filtration industry. Here the objective was to unbundle the market and understand the different 

consumer segments. A total of about 2,800 general-population consumers were surveyed online. 

In the survey, respondents completed two MaxDiff exercises. The first had 28 items about the 

category (e.g., makes my water safe, improves taste) and the second had 32 items about the 

product (e.g., it’s effective, it’s affordable). These two MaxDiff exercises were used as the basis 

variables in the segmentation. 

For the analysis, we examined both the raw MaxDiff utilities and recoded, binary MaxDiff 

data (since as mentioned before we often find that this works well). For the recoding, we took the 

top 10 items from each exercise and coded those as a 1, and the rest as a 0. In this example the 

data could be classified as moderately sparse since we had 20 items out of 60 coded as 1 which is 

equivalent to 33% sparseness. 

Example Output 

The heat map below shows the Matrix W, which represents respondent loadings on segments. 

A respondent is assigned to a segment based on their highest loading. The Basis components at 

the top represent the segments, and the respondents are represented in the rows. The darker the 

color, the higher the respondent loads on that segment. In our experience running NMF, these 

clear groupings are typical. 

 

A nice advantage of NMF is that the standard output gives additional insight about how the 

attributes group together. Below is Matrix H, which shows the loadings of variables on the 

segments. 
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The interpretation is that the associated items group together, similar to factor analysis. Large 

loadings of an item on a segment indicate that the segment is strongly defined by that attribute. 

 Basic 

Value 

Shopper 

Turnkey 

Investor 

Family 

Guardian 

Informed 

Performance 

Seeker 

Brand 

Validator 

Is affordable 1161 138 267 16 0 

Does not require frequent maintenance 1040 99 205 0 0 

Offers a warranty or guarantee 950 187 167 134 0 

Removes contaminants 943 122 129 615 0 

Maintenance is not too expensive 902 156 150 0 13 

Is the most effective solution 880 89 78 628 0 

Makes my water taste great 840 93 0 506 761 

Makes my water safe to drink 769 58 374 518 743 

Removes odor/smell from my water 726 44 0 258 699 

Helps me protect myself/family 682 0 515 509 672 

Gives me peace of mind and confidence 637 0 327 536 605 

Reassures me that I’ve done all I can 601 0 359 534 563 

Good flow rate of water coming out 561 135 173 0 126 

Encourages me to drink more water 464 0 0 296 592 

Extends the life of my appliances 168 550 0 0 12 

Saves on energy 66 525 0 0 0 

Saves me money 296 504 0 0 126 

Is better for my skin and hair 289 414 0 0 263 

Promotes healthy child development 0 62 1040 0 0 

Helps me promote healthy habits for children 0 0 1034 118 0 

Makes me feel like I’m doing the best 250 0 855 400 273 

Helps me live a healthier lifestyle 395 0 485 602 440 

Makes me feel like a responsible parent 0 106 444 0 0 

Is certified by a third party 0 179 0 1025 0 

Receives positive ratings and reviews 69 146 12 649 136 

Is recommended/endorsed by professionals 0 170 0 609 48 

Offers the latest, most innovative technology 0 168 65 500 97 

Has technology that is better for environment 0 180 207 418 120 

Is a brand I’ve had a good experience with 0 115 115 0 474 

Makes my water look clearer 333 162 0 0 445 

Is a brand that I’m familiar with 0 116 81 0 411 
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SUMMARY OF SEGMENTS 

We ended up extracting five segments of roughly equal size. The segments were intuitive and 

actionable given the client’s objectives. 

 Basic Value Shopper (20%)—Important to be affordable and have low/cheap maintenance 

 Turnkey Investor (22%)—Important to increase home value, save money, reduce work 

 Family Guardian (20%)—Child development and family are important 

 Informed Performance Seekers (17%)—Important to have recommended system with 

positive ratings and innovative technology 

 Brand Validators (21%)—Important to be good brand and appealing design 

NMF VS. OTHER TECHNIQUES 

We compared NMF to other approaches using both the binary recoded MaxDiff utilities and 

the original utilities. We analyzed cluster quality using a metric called a silhouette value, which 

looks at within-segment homogeneity versus between-segment heterogeneity. 

Silhouette values can range from -1 to 1 where the higher the value in the positive direction 

the better the quality of the solution. A “0” would indicate a respondent is just as similar to 

members of other clusters as they are to members within their cluster. A “1” would mean 

essentially everyone within the cluster is identical, and the clusters are completely different from 

one another (we know this is never really the case). Here we use silhouette values to compare the 

relative quality of the solutions. 

   
                   

                         
  

Case Study Silhouette Values: 

 

The solutions are similar in terms of cluster quality, with the exception of the Latent Class 

solution using original MaxDiff scores (which has no differentiation amongst the segments). 
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We also looked at the overlap, or concordance, of the segments derived via the various 

solutions to the segments that were extracted via NMF using binary data. For the most part there 

is a large overlap among the various solutions (64%–76% concordance rates), again with the 

exception of the Latent Class solution that uses the MaxDiff utilities (22% concordance rate). We 

also looked at the results via Hierarchical clustering and regardless of coding we consistently 

ended up with a single, large segment, so no additional analyses were run using the Hierarchical 

approach. 

CONCLUSION 

Non-negative Matrix Factorization has proven to be a very valuable segmentation technique 

across a number of disciplines and we believe that it offers distinct advantages in market 

research. A really nice benefit of NMF is not only do we see how the respondents group together 

but we also simultaneously see how the basis variables group. We have shown that in our 

simulated datasets, NMF performs just as well and often times better than the other segmentation 

techniques we looked at (K-means Clustering, Hierarchical Clustering, and Latent Class Mixture 

Model). In the case of our highly correlated datasets, NMF significantly outperforms the other 

methods. Like any other method, NMF comes with its limitations. For one, we are limited to 

using it only on non-negative datasets. R and Python are the only software packages we know 

that can currently do NMF. Nevertheless, we think NMF is an excellent technique to add to our 

segmentation toolkit. 

 

    

 Michael Patterson Jackie Guthart Curtis Frazier 
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VARIABLE SELECTION FOR MBC CROSS-PRICE EFFECTS 

KATRIN DIPPOLD-TAUSENDPFUND 

CHRISTIAN NEUERBURG 
GFK 

ABSTRACT 

In Menu-Based Choice experiments, cross-price effects need to be selected carefully in order 

not to overfit the models or have simulation results distorted by “noisy” parameters. We 

investigate different approaches that support the selection of cross-price effects and compare 

their performance based on synthetic datasets under varying data conditions. We find that 

selection approaches that result in sparse models, e.g., variable selection with lasso, do very well 

under different data settings, especially with respect to our newly developed KPI that measures 

the quality of the resulting pricing decision. But also the relationship Chi² test, that is statistically 

less advanced and already implemented in the MBC software, performs very well if the p-value 

cut is selected carefully. We emphasize that complex choice menus require a strict variable 

selection. 

MOTIVATION 

Menu-Based Choice (MBC) allows to explore tasks where the choice can be described as a 

“pick-any”/“multi-check” situation comparable to the choice from a menu at a restaurant, where 

different menu areas are available (e.g., burgers and side orders) that consist of various priced 

options. Although MBC has become an established conjoint tool, the complexity of MBC models 

still makes high demands on the efficiency of estimation techniques and on an analyst’s 

modeling skills. The choice within a menu area is typically formulated as a multinomial logit 

(MNL) model. Different menu areas are in many cases linked via cross-price effects (“Serial 

Cross Effects”) to account for any effects between menu areas (Orme, 2010). These cross-price 

effects are defined in Sethuraman et al. (1999) as to “measure the effects of a brand’s price 

promotion (temporary price reduction) on a competitive brand’s market share.” The effects can 

either be substitutional or complementary in nature. 

In this serial cross-effects setting, the number of potential cross-price effects that capture the 

interdependencies among offerings on a menu snowballs with the complexity of the tasks, i.e., 

the number of attributes (menu areas) and priced options (modular alternatives) in the design. 

This is because every priced option in a menu area can be potentially linked to every option in 

any other menu area. For a visual representation of this effect, please see Figure 1 (Neuerburg, 

2013, p. 101). This visualization assumes that a none option is available in every menu area that 

does neither experience nor exert cross-price effects. This complexity prohibits estimating all 

possible cross effects in real-world scenarios. In addition, practical experience shows that “often 

75% or more of potential cross effects will turn out to be non-significant” (Orme, 2012, p.33). 
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Figure 1: Effect of Choice Complexity on Potential Model Complexity

 

Leaving aside technical restrictions, estimation of a fully specified model is in most cases not 

desirable because of potential overfitting and a high level of noise that will affect simulation. 

Additionally, a simulation on a potentially misspecified model might also cause missed sales if 

price optimization was based on a wrong model. 

Hypotheses on the existence of specific cross-price effects should ideally guide the selection 

of effects—but often these are not straightforward to derive, or clients want to follow a more 

data-driven approach. Thus, there is a strong need for efficient variable selection approaches 

prior to HB model estimation. 

As a consequence, the problem of model pruning is approached with variable selection. 

Selection of cross-price effects with a Chi² test is already implemented in Sawtooth Software’s 

MBC tool. Additionally, we suggest three other approaches that can be fine-tuned to the needs of 

MBC choice modeling. 

The primary objective of this research is to investigate systematically the performance of 

variable selection approaches applicable to data from MBC experiments. We also want to see 

how important model pruning is for the quality of models and simulations. We compare four 

different selection approaches and test them under varying data conditions. As a result, it can be 

derived if and under which conditions the tools available in Sawtooth Software’s MBC software 

fail and have to be supplemented or substituted with a more sophisticated variable selection 

technique. 

VARIABLE SELECTION APPROACHES 

Variable selection comes into play prior to the HB estimation
1
 of the MNL model so that only 

a pruned model specification enters the HB run. We test four different variable selection 

                                                           
1 All findings are based on HB estimation, other estimation techniques, e.g., latent class or aggregate logit, are out of scope. We only use HB 

means not the draws themselves. 
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methods, three of them coming in two specifications each. The choice of methods was guided by 

the idea to come up with a selection toolbox that is quickly implemented for daily use and easily 

automatized for large-scale problems. All estimations were executed in R. 

The first approach is the relationship Chi² test that is already employed in the Sawtooth 

MBC software and therefore can be considered the current industry standard. For every option in 

the menu and every potential cross-price effect, a crosstab is constructed from the data; the 

corresponding p value is calculated. As the MBC manual (Orme, 2012) suggests different p-

value cuts, we explore—with values of 0.05 and 0.2—the extremes of the continuum to gain 

insights into how sensitive the selection performance reacts to the set cut values. 

A very generic selection alternative is the estimation of an aggregate logit model. For this 

purpose, we decompose the described MNL models into binomial logit models with the choice of 

one priced option in a menu area as the binary dependent variable. Alternative-specific constant, 

own price effect and all possible cross-price effects enter the model as independent variables. 

The p-values of the cross-price effects are compared to a p-value cut to determine whether the 

effects are to be included into the model. Again, two different cuts are tested: 0.05 resulting in 

sparse models and 0.2 resulting in complex models. 

The third variable selection method draws on ideas of Tibshirani (1996): a Lasso (least 

absolute shrinkage and selection operator) variable selection is performed with the R glmnet 

package (Hastie & Qian, 2014). Given a binomial logit model for every priced option in every 

menu area, glmnet allows to force the alternative-specific constant and own price effect into the 

model but selects which cross-price effect should be added into the model. The binomial logit 

models are fit via penalized maximum likelihood, which sets a selection of the model parameters 

to zero. The underlying idea of the penalty is that the sum of the absolute value of the model 

parameters may not exceed a given value. Strength of the overall penalty is fine-tuned with a 

parameter λ, which drives the model sparsity. The higher λ is, the sparser the resulting model we 

have. We test two specifications of λ building upon the λ values that glmnet generates as default: 

 λmin, which is the λ value for the model with the smallest mean cross-validated error 

 λ1se, which gives an even sparser model within one standard error of the λmin model 

We will use λ1se resulting in an extremely sparse selection and the average of λmin and λ1se 

(λ2) resulting in a more generous selection as our tuning parameters. 

The fourth selection approach to complement our selection toolbox is the R glmulti package 

(Calcagno & de Mazancourt, 2010). It is flexible and convenient to use, being a wrapper for glm. 

After several initial tests on various data sets, we found the genetic algorithm by a factor of 

approx. 15–20 slower than the short-cut alternative without delivering a superior parameter 

selection. Therefore, we applied the implemented short-cut method, an efficient Branch-&-

Bound algorithm as last selection alternative. Identical to the Lasso estimation, binomial logit 

models were defined with the alternative-specific constant and own price effects forced into the 

model. The selection itself followed a branch-and-bound logic implemented in the leaps package. 

As a side note, we refrain from variable selection with the likelihood ratio test. Building a 

model from scratch only referring to log likelihood ratios would be very time-consuming. 

Moreover, the outcome would potentially be affected by the order in which the cross effects were 

tested. 
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SYNTHETIC DATA SETS 

We make use of synthetic MBC data to evaluate the performance of the different selection 

techniques under varying data settings. Most importantly, synthetic data allow us to know which 

cross-price effects really exist and which do not exist. So we can easily judge the quality of the 

selection for each technique comparing the selected cross-price effects to the real set of cross-

price effects. The creation of the simulated data sets is largely based on the approach described in 

Neuerburg (2013). With regard to the cross-price effects we make the following simplifying 

assumptions: 

 We randomly switch on two cross-price effects for each option within a certain menu 

area. A consequence is that the number of true cross-price effects per MNL model 

increases with menu complexity. 

 In a second step, we randomly decide about substitutional or complementary 

relationships, i.e., a positive or a negative sign of the effect. 

 Third, we make sure for each option that the own-price effect is potentially always 

stronger than the cross effects. We hypothesize that own price is—besides the alternative-

specific constant—the main driver of choice. 

The data conditions are varied in terms of complexity of the modeled menus, sample size, 

number of tasks and heterogeneity of the respondents. Complexity of the choice menu comes in 

three levels: 10 menu areas with 2 options each (1 priced option and 1 none), 15 menu areas with 

3 options each (2 priced options and 1 none) and 10 menu areas with 6 options each (5 priced 

options and 1 none). The price levels for the different options in a menu overlap to a certain 

amount, but increase from option to option (see Table 1). This is, for example, the price 

definition for the most complex choice menu. The first line only would be the price definition for 

the least complex choice scenario. Please note that in our case, all price parameters have a linear 

formulation. 

Table 1. Price Levels for Menu Areas 

 Price Level 1 Price Level 2 Price Level 3 Price Level 4 Price Level 5 

Option 1 5 8 10 12 15 

Option 2 10 16 20 24 30 

Option 3 15 24 30 36 45 

Option 4 20 32 40 48 60 

Option 5 25 40 50 60 75 

We test four different sample sizes: 100, 250, 500 and 1000. We present the results for either 

5 tasks per respondent or 10 tasks per respondent. Finally, the cross-price structure can be either 

homogeneous or heterogeneous. In the first case, cross-price effects are identical for all 

respondents (same effects, same sign). In the second case, a respondent can belong to one of 

three segments with a specific cross-price structure. Segment sizes are 45%, 35% and 20%. This 

leaves us with 3*4*2*2=48 different data settings. A summary of the data settings can be found 

in Table 2. 
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Table 2. Dimensions of Synthetic Data 

Data Dimension and its levels    

Sample Size 100 250 500 1000 

Number of Tasks 5 tasks  10 tasks  

Heterogeneity Homogeneous CP effects Heterogeneous CP effects 

Complexity 10 areas with 2 items 15 areas with 3 items 10 areas with 6 items 

SELECTION KPIS 

The performance of the different variable selection techniques is evaluated based on all 

synthetic datasets. This allows us to compare the identified cross-price effects directly to the 

synthetic “true” cross-price effects. Four outcomes of the comparison are possible (Table 3): 

Table 3. Development of KPIs 

 
Cross-price effect … 

SYNTHETIC TRUTH 

… existing … not existing 

MODEL-DRIVEN 
SELECTION  

… selected TRUE POSITIVE FALSE POSITIVE 

… not selected FALSE NEGATIVE TRUE NEGATIVE 

  SENSITIVITY SPECIFICITY 

Based on this comparison, these two measures are chosen as key performance indicators for 

the goodness of the selection: 

            
              

                              
 

            
              

                              
 

Our first KPI sensitivity focuses on whether existing effects are indeed discovered and is 

therefore the share of all the existing effects selected as existing. The second KPI specificity 

attaches importance to de-selecting non-existing effects from the model and is formulated as the 

portion of all the non-existing effects estimated as non-existing. As both KPIs are shares, they 

range between 0% and 100%. In addition, the number of selected cross effects is reported as an 

indicator of model sparsity or complexity (see Table 4): 
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Table 4. Performance of Selection Techniques on KPIs 

  # CPs Sensitivity Specificity 

Chi²-Test (p-value = 0.2)  43% 90% 

Chi²-Test (p-value = 0.05)  28% 98% 

Aggregate Logit (p-value = 0.20)  56% 86% 

Aggregate Logit (p-value = 0.05)  40% 97% 

LASSO glmnet (lambda = l1.se)  3% 100% 

LASSO/glmnet (l2 = average of lmin and l1.se)  35% 98% 

Branch&Bound/glmulti  52% 90% 

Key 

 Below the real number of CP effects 

 Close to the real number of CP effects 

  

  

 Above the real number of CP effects 

Looking at the number of cross-price effects per menu area, we find that only the strictest 

Lasso specification with λ1se selects fewer than the real number of effects. The Chi² test with a 

p-value cut of .05 and the more generous Lasso formulation with λ2 come closest to the real 

number of cross-price effects. All other methods select more than the real number of cross-price 

effects into the model, aggregate logit with a p-value cut of .2 resulting in by far the most effects. 

The results for sensitivity and specificity are in line with what we see for the number of 

cross-price effects. For sensitivity, we have a clear winner: aggregate logit with a p-value cut of 

.2, which we already have seen delivers the most complex models, results in the highest 

sensitivity value followed by the branch & bound algorithm. The strict Lasso specification that 

conveys the sparsest models nearly neglecting all cross-price effects clearly performs worst and 

does not show any sensitivity. The specificity results are the sensitivity results vice-versa. The 

strict Lasso selection nearly without cross-price effects reaches the highest specificity value 

possible. By far the worst specificity value follows from the aggregate logit model de-selecting 

effects only with a .2 threshold. 

These results indicate a trade-off between sensitivity and specificity. We do not have a 

selection approach that can perform very well for both KPIs. But if we have to trade-off 

sensitivity against specificity, how do we know what is more important for a “good” variable 

selection approach? Is it sensitivity, which means finding as many existing effects as possible but 

accepting at the same time to estimate many non-existing effects as well? This will lead to very 
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complex models, which take a long time to estimate, may be counter-intuitive in the 

interpretation and are—most importantly—eventually noisy in the simulation? Or should we 

stress simplicity of the models and favor specificity? That would mean that we might possibly 

neglect existing effects but come up with a sparse, less noisy model in the end. 

Our selection KPIs do not help us to answer this question. As a kind of “reality check,” we 

develop a new KPI that measures the quality of the managerial decisions that are based upon our 

suggested models. In this case, the managerial decision to be made from the MBC models is the 

pricing of the choice menu. 

TAPPED SALES POTENTIAL KPI 

We develop a KPI that compares the sales that arise from the prices optimized for the 

selection models to the maximum achievable sales that arise from the prices optimized for the 

true market response. In other words, the new KPI measures what portion of the sales can be 

tapped—in relation to the potential maximum—by offering the choice menu at the prices that 

were suggested by the models defined with the different variable selection approaches. This KPI 

is calculated for every selection approach and every data setting. 

Figure 2. KPI Development 

 

The development of the KPI follows these steps (flow in Figure 2): 

 Variable selection is performed for a synthetic data set following a specific selection 

algorithm. The specified models are estimated with a hierarchical Bayes routine. The 

prices are then optimized with respect to a sales maximum of a menu while setting the 

min and max prices as lower and upper bounds (see right triangle in chart). 

 Secondly, the prices are set to maximize sales for the synthetic/known models. The result 

is a sales figure, called “maximum sales.” It will be the benchmark that the sales based on 

the estimated models will be compared against (see left triangle, left-hand side). 

 Actually occurring sales for the prices from the estimated models are determined by 

plugging the prices optimized for the estimated sales function to the synthetic/known 

sales function, as this is the true market response. This will deliver a result, we call 

“realized sales” (see left triangle, right-hand side). 



 

196 

 The new “Tapped Sales Potential” KPI is then “realized sales” divided by the “maximum 

sales” (see left triangle, bottom). 

This percentage will then tell us how good the models derived from our different selection 

methods are in coming close to our synthetic reality. Finally, we will be able to judge whether 

sparse models with high specificity or complex models with high sensitivity do a better job. 

Furthermore, the KPI is calculated for a baseline model, the sparsest model possible that 

completely omits any cross-price effects. 

RESULTS 

The percentage values shown in Table 5 are the “tapped sales potential” KPI, i.e., how much 

of the maximum sales can be tapped with the models of the specific selection method. Values in 

line 2 are shown as mean across all 48 data scenarios (i.e., 3 complexity levels, 2 heterogeneity 

levels, 4 different sample sizes, 2 different task numbers). In the lines below, the minimum and 

maximum values that were achieved by the method in a specific data scenario are given. The 

respective winner is marked in bold. What is striking at first glance, is that the mean values differ 

but the range is quite narrow. Averaging over all data scenarios, we see that the sparsest models 

perform best, i.e., the strict lasso, the Chi² test and the baseline model. Methods that result in 

more complex models, e.g., branch & bound and aggregate logit with cut-off at .2, are clearly the 

losers. 

Table 5. Tapped Sales Potential KPI by Methodology 

 Baseline Chi² 

(0.20) 

Chi² 

(0.05) 

AggLog 

(0.20) 

AggLog 

(0.05) 

Lasso 

(λ1se) 
Lasso 

(λ2) 
B&B 

Average 

(48 scen) 

93% 93% 93% 89% 91% 93% 92% 89% 

Minimum 

(48 scen) 

85% 80% 82% 78% 81% 83% 82% 77% 

Maximum 

(48 scen) 

97% 98% 98% 96% 96% 97% 97% 96% 

The real differences, however, become apparent, if looking at the minimum and maximum 

values occurring across the 48 different data scenarios. Not only the ranges differ from selection 

approach to selection approach but also the data setting itself seems to have an impact on the 

performance of a selection technique. 

In order to investigate these effects further, we look into specific data scenarios ( 

 
Baseline Chi² 

(0.20) 

Chi² 

(0.05) 

AggLog 

(0.20) 

AggLog 

(0.05) 

Lasso 

(λ1se) 
Lasso 

(λ2) 
B&B 

Low 

complexity 

Hom 88% 95% 95% 96% 95% 91% 95% 96% 

Het 87% 90% 88% 90% 91% 87% 89% 89% 

High 

complexity 

Hom 95% 96% 96% 90% 93% 95% 97% 93% 

Het 97% 97% 97% 88% 95% 97% 95% 93% 

). First, we fix sample size to 500 and number of tasks per respondent to 10. These settings 

should avoid results becoming distorted by too little sample or too few answers per respondent. 

An exploration of all results showed choice complexity and heterogeneity of cross-price effects 

to be the main drivers of the “tapped sales potential” KPI. Therefore, these data dimensions are 

investigated in detail. The complexity of the choice menu is varied from low (10 menu areas with 

2 options) to high (10 menu areas with 6 options). Additionally, we differentiate the level of 

heterogeneity in the cross-price structure (homogeneous vs. heterogeneous). 
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Table 6. KPI by Scenario and Methodology 

 Baseline Chi² 

(0.20) 

Chi² 

(0.05) 

AggLog 

(0.20) 

AggLog 

(0.05) 

Lasso 

(λ1se) 
Lasso 

(λ2) 
B&B 

Low 

complexity 

Hom 88% 95% 95% 96% 95% 91% 95% 96% 

Het 87% 90% 88% 90% 91% 87% 89% 89% 

High 

complexity 

Hom 95% 96% 96% 90% 93% 95% 97% 93% 

Het 97% 97% 97% 88% 95% 97% 95% 93% 

Scenario 1. In the low complexity scenario with homogeneous cross-price structure, the 

“high sensitivity” methods returning more complex models, e.g., branch & bound or aggregate 

logit with p-value cut at .2, perform best. The baseline-model, which is the winner when 

averaging across all data scenarios, performs worst. The KPI values range is very broad (88%–

96%). We reason that in this simple data setting neglecting cross-price effects diminishes the 

quality of the pricing extremely. 

Scenario 2. The second scenario is identical to scenario 1 with the cross-price effects 

structure now being specified for three sub-samples of respondents. All methods suffer from the 

increase in heterogeneity. Especially, branch & bound is no longer the top approach; aggregate 

logit and Chi² test with a more generous p-value cut do best. Compared to scenario 1, the range 

of KPI values becomes smaller (87%–91%). 

Scenario 3. Switching to a scenario with high choice complexity but homogeneous cross-

price structure, Lasso with λ2 and Chi² do best. We also see that the baseline model without 

cross-price effects does quite well. The clearly worst performance comes from branch & bound 

and aggregate logit, especially with the loose p-value cut of .2. 

Scenario 4. Here the methods resulting in sparse models, i.e., the strict lasso and especially 

both Chi² tests do very well. They seem to be the methods that make the most of the complicated 

underlying data structure. Especially the results of Chi² tests are not biased by the heterogeneity 

of the cross-price effects. The very good performance of the baseline model indicates that—in 

case of question—it might be better not to estimate any cross-price effects than to include wrong 

ones into the model, i.e., a clear point for model specificity. Whether omitting cross-price effects 

is practical in reality, where revealing cross-price effects is exactly what the users of simulators 

want to see, can be doubted. Interestingly, we do not see the same pattern as in the low 

complexity scenario, when the increase in heterogeneity automatically leads to a decrease in the 

KPI. Comparing performance of the selection approaches from scenario 3 to scenario 4, we 

rather see quite similar magnitudes. 

CONCLUSIONS 

Looking over all 48 data scenarios, methods that deliver sparse models, e.g., Lasso with a 

strict lambda penalty or Chi² test with a strict p value cut (0.05), perform best with regard to the 

“tapped sales potential” KPI. This finding gains importance as the choice menu increases in 

complexity. Therefore, for the HB models we tested, we conclude that we should give specificity 

a higher weight than sensitivity (favoring more parsimonious models to avoid overfitting) if 

choosing a selection approach. 

Looking at specific scenarios, we have seen that all methods have data settings where they 

perform strongly or poorly. It is not easy to promote one method as a kind of “one fits all.” We 

definitely see that complex choice menus demand a very strict variable selection. That is why the 
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researcher should adapt his choice of selection approach to the complexity level of the choice 

task. 

Model pruning clearly improves the quality of process and results. We see that sparse 

models, sometimes even the null model, perform very well with respect to our “tapped sales 

potential” KPI. Besides this, sparse models are easier to estimate, to interpret, and less noisy in 

the simulation. 

We do not necessarily see a clear need for more sophisticated variable selection techniques. 

The Chi² test performs well to very well, especially compared to methods that are statistically far 

more advanced and far more challenging in the implementation. Besides, the Chi² test works 

under a multitude of data scenarios. This is of high importance, as many data dimensions, e.g., 

heterogeneity of the sample, might not be under the researcher’s control or not even be directly 

observable. We conclude that the Chi² test is definitely a safe choice for selecting cross-price 

effects when the p-value cut is set carefully. 

LIMITATIONS AND FUTURE RESEARCH 

Limitations 

In our research, we rely on synthetic data. Therefore, we cannot exclude that we might see 

different interactions of data dimensions and selection techniques when working with data from 

real respondents, for instance with respect to the number of tasks (“fatigue effect”). Besides, our 

results rely heavily on the assumptions we made for the cross-price effects structure, especially 

how sparse we assume it to be. For a data setting with a less sparse cross-price effect pattern, 

selection techniques that favor sensitivity might bring advantages. Finally, our findings are 

limited to HB estimation of the utilities. Other estimation techniques than HB might lead us to 

different conclusions. For instance, estimating the MBC models with aggregate logit might pose 

less strict demands on variable selection. We also work only with HB point estimates and do not 

make use of the broader information contained in the HB draws. We assume, however, that this 

disadvantages all tested methodologies in the same way, so we should not see a different ranking 

of methods if using draws instead of point estimates. 

Future Research 

A possible direction is to investigate other variable selection techniques. First, genetic 

algorithms are still worthwhile to explore more deeply. Other genetic algorithms than the glmulti 

package might be tested, or the glmulti genetic algorithm might work well for other data settings. 

Second, Bayesian variable selection that is already successfully applied in Market Basket 

Analysis, a closely related stream of research, might boost the quality of selection (Dippold & 

Hruschka, 2013). Finally, the most fundamental alteration in research would be to determine 

interdependencies in choices directly without the detour over prices: the modelling structure 

might be changed from serial effects models for each menu area to a joint model for all menu 

areas. In this way, interdependencies could be derived from the choice information directly. 

Especially the auto-logistic model comes with a solid methodological reasoning, e.g., Kamakura 

& Kwak (2015) or Kosyakova et al. (2017).  
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1. INTRODUCTION 

Ensemble-based approaches currently dominate the world of competitive out-of-sample 

prediction. From Kaggle to the Netflix Prize, the predictive power inherent in using many 

models overshadows prediction reliant on the performance of a single model. The primary reason 

ensembles predict so well is that they serve as a hedge against model misspecification. Since we 

have uncertainty about the correct model for any given context, running many models and 

producing a consensus is a simple yet powerful way to improve predictions. 

In the world of conjoint, most studies are conducted using a single model. When the aim of a 

conjoint study is solely inference and not prediction, a single-model approach is arguably best. 

The academic literature for conjoint is filled with models designed to improve inference, 

especially when respondents behave in ways that are “pathological” to the standard model. 

However, there are three reasons to argue for an ensemble-based approach to conjoint analysis. 

First, the end goal of many conjoint studies is prediction in the form of accurate market 

simulations. Second, we still have uncertainty about the correct model for any given conjoint 

study. Third, there is no single model that accounts for all the respondent behaviors that result in 

the “data pathologies” that have been addressed separately in the literature. 

The remainder of the paper will be organized as follows. In Section 2, we walk through 

ensemble approaches to prediction. In Section 3, we detail our ensemble approach to conjoint 

analysis. In Section 4, we provide results from simulation studies and an empirical application. 

In Section 5, we conclude. 

2. ENSEMBLE APPROACHES TO PREDICTION 

Before walking through ensemble approaches to prediction, it’s helpful to review the 

terminology commonly used in this space. The single-model approach to prediction is illustrated 

in Figure 1. The steps are to, first, specify the data used to train (i.e., estimate) the model; second, 

train the model; third, simulate outcomes using parameter estimates and test data (e.g., holdout 

tasks or holdout respondents); and fourth, use these simulated outcomes along with the test data 

to compute a prediction (e.g., hit rates). 
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Figure 1. A single-model approach to prediction. 

 

The single-model approach to prediction is the standard for conjoint studies. One notable 

exception is Kevin Lattery’s Sawtooth Software Conference 2015 presentation and paper, “A 

Machine Learning Approach to Conjoint.” In that paper, Lattery implemented an ensemble 

approach to prediction for conjoint analysis, which is illustrated in Figure 2. Here we can see that 

many models are fit and many predictions are calculated, each model using its own randomly 

selected test data. Finally, a consensus prediction is formed via aggregating the separate 

predictions (e.g., averaging predictions or taking the modal prediction). 

Figure 2. An ensemble approach to prediction. 

 

Lattery finds substantial improvements in prediction as the number of models in the 

ensemble increases. However, the ensemble isn’t theoretically grounded. Furthermore, the 

approach to prediction is fairly non-standard. A more general ensemble approach to prediction is 

illustrated in Figure 3. The additional step is to create a random subset of the data to serve as the 

training data for each of the models in the ensemble. Having separate training and test data for 

each of the models in the ensemble is the standard approach to ensembles. 
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Figure 3. An alternative ensemble approach to prediction. 

 

Even with a non-standard ensemble approach to prediction and no theoretical justification for 

the ensemble, Lattery still found improvement in out-of-sample prediction. As stated previously, 

ensemble approaches to prediction are powerful because they serve as a hedge against model 

misspecification. This is often justified by ensembles striking an optimal balance on the 

bias/variance frontier. For example, in Figure 4 we can see two hypothetical targets. On the left 

we have low variance, high bias performance that represents using a single albeit misspecified 

model for prediction. On the right we have a high variance, low bias performance that represents 

the ensemble approach to prediction. The ideal is to have low bias and minimal variance. Our 

aim is to approach this ideal by using an ensemble that is theoretically justified. 

Figure 4. Bias variance trade-off in ensembles. 
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3. ACCOMMODATING DATA PATHOLOGIES 

Our ensemble-based approach to prediction, like Lattery’s, is non-standard. However, our 

approach differs in that we build an ensemble that is theoretically justified. In particular, we 

introduce randomization in our ensemble that is “clever” insofar as the randomization accounts 

for a potential data pathology. As noted above, much work has been done to build models that 

separately account for respondents producing data that is pathological to the standard model (i.e., 

can’t be accounted for by the standard model and thus impedes prediction). Our use of an 

ensemble and clever randomization allows us to accommodate multiple data pathologies. 

The standard model is a lower-level random utility model with an upper-level model over 

preferences. Consumers are able to assess the “utility” of each alternative in a choice set and pick 

the alternative that provides the greatest level of utility. Utility itself is made up of two 

components: A deterministic component and a random (to the researcher) component, where the 

deterministic component is expressed as a (linear, compensatory) function of the design of the 

alternative and the random component is assumed to come from an independent and identically 

distributed Gumbel distribution. Finally, while we estimate preferences at the individual level, 

we assume that the preferences of all individuals are drawn from a common multivariate normal 

distribution. 

Development in the academic conjoint literature has focused on addressing specific data 

pathologies separately (e.g., attribute non-attendance, screening rules, poor respondent quality, 

non-IIA choice behavior, respondent fatigue, and alternative decision rules). These models fit the 

data better and provide marginal improvements in prediction. Although prospectively useful, 

especially in terms of inference, these models are rarely used in practice for three reasons. First, 

they are theoretically and computationally complex (i.e., difficult to understand and time-

consuming to estimate and simulate). Second, we don’t have high-quality commercial software 

that can be used to fit these models. Third, each model deals with a single data pathology. The 

challenge of model misspecification persists wherein, a priori, it is hard to know which 

pathology will prove problematic (i.e., which model should be fit). This problem is further 

complicated if, as might be expected, multiple pathologies are present in a single dataset. 

In our ensemble-based approach to prediction, we don’t have to fit complicated models, but 

we do need to compute a lot of predictions! The trade-off is between model complexity and 

computational intensity. Figure 5 illustrates our approach. Note that this is non-standard, in that 

we have both a single training dataset and a single model. The randomization we introduce is at 

the level of the randomly selected test data. We will accommodate two data pathologies, attribute 

non-attendance and screening behavior, separately and jointly. 
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Figure 5. Our ensemble approach. 

 

Pathology 1: Attribute Non-Attendance 

Attribute non-attendance is when respondents ignore subsets of attributes when making 

decisions (i.e., part-worths are 0 for all levels of the attribute). To accommodate this data 

pathology, we randomly set the part-worths for all levels of an attribute to 0 across test datasets. 

To be clear, we implement the following: 

1. Estimate an HB MNL on training data 

2. Loop over respondent-level part-worth estimates 

o randomly select an attribute 

o with a given probability, set all part-worth estimates for that attribute to 0 

3. Predict first choices (e.g., max utility) for each choice set in the test data 

4. Repeat steps 2 and 3 many times 

5. Generate a consensus (e.g., most commonly selected) prediction 

Pathology 2: Screening Behavior 

Screening behavior is when respondents use certain attribute levels to screen out alternatives 

from consideration (i.e., part-worths are approximately negative infinity for all levels being 

screened on). To accommodate this data pathology, we randomly set the part-worths for levels to 

approximately negative infinity across test datasets. To be clear, we implement the following: 

1. Estimate an HB MNL on training data 

2. Loop over respondent-level part-worth estimates 

o randomly select an attribute level 

o with a given probability, set the part-worth estimate for that level to 

approximately negative infinity 

3. Predict first choices (e.g., max utility) for each choice set in the test data 

4. Repeat steps 2 and 3 many times 

5. Generate a consensus (e.g., most commonly selected) prediction 
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1. Estimate an HB MNL on training data 

2. Loop over respondent-level part-worth estimates 

o randomly select an attribute level 

o with a given probability, set the part-worth estimate for that level to 

approximately negative infinity 

o randomly select an attribute 

o with a given probability, set all part-worth estimates for that attribute to 0 

3. Predict first choices (e.g., max utility) for each choice set in the test data 

4. Repeat steps 2 and 3 many times 

5. Generate a consensus (e.g., most commonly selected) prediction 

4. SIMULATION STUDIES AND EMPIRICAL APPLICATION 

Four simulation studies demonstrate the potential of our ensemble approach to prediction. 

Figure 6 shows that when neither of the two data pathologies are present in the simulated data, 

the lower-level model (i.e., the standard model) and our ensemble approach predict about the 

same. Figure 7 shows that when attribute non-attendance is present but screening is not, our 

ensemble approach slightly out predicts the standard model. This is repeated with Figure 8 when 

screening is present but attribute non-attendance is not. However, Figure 9 clearly demonstrates 

the benefit of the approach as we see a large jump in predictive ability for our ensemble approach 

when both of the data pathologies are present in the simulated data. 

Figure 6. Simulated Data: No Attribute Non-Attendance + No Screening. 
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Figure 7. Simulated Data: Attribute Non-Attendance without Screening. 

 

Figure 8. Simulated Data: Screening without Attribute Non-Attendance. 
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Figure 9. Simulated Data: Attribute Non-Attendance + Screening. 

 

Figure 10 shows that the improvement in prediction increases as more test datasets following 

the theoretical justification outlined above are added to the ensemble. 

Figure 10. Predictive fit as a function of ensemble size. 

 

Finally, Figure 11 shows that the improvement in prediction for our ensemble approach over 

the standard model is clearly present for real data. Interpolating from our simulation 

experiments, this is most likely attributed to both of the data pathologies being present in the 

data, a condition that isn’t accounted for by the more attribute non-attendance and screening 

models separately. 
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Figure 11. Performance on actual data. 

 

5. CONCLUSION 

When the goal for a conjoint study is out-of-sample prediction, there is great potential in an 

ensemble approach. The benefit of our ensemble approach is its construction is theoretically 

justified, simple to implement, and performs especially well when multiple data pathologies are 

present in a dataset. 

There are a variety of next steps to consider. Our stylized, non-standard approach where 

clever randomization is induced only for the test data should be expanded to allow for 

randomization of training data and the training of many models. This will necessitate faster or 

more efficient computation. Given the benefit we’ve seen with accommodating only two data 

pathologies, more pathologies need to be considered and accounted for. Finally, introducing 

smarter ensembles and better prediction aggregation can only improve the approach, especially if 

the method of aggregation allows us to retain the benefits of inference and not simply produce 

improved predictions. 
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TOOLS FOR DEALING WITH CORRELATED ALTERNATIVES 

KEVIN LATTERY 

JEROEN HARDON 
SKIM GROUP 

1.0 BACKGROUND: THE RED-BUS/BLUE-BUS PROBLEM 

Most practitioners are familiar with the so-called “Red-Bus/Blue-Bus Problem.” The 

underlying property leading to this problem is termed “Independence from Irrelevant 

Alternatives” (IIA). The basic idea of IIA is that the ratio of any two products’ shares should be 

independent of all other products. This sounds like a good thing, and at first, IIA was regarded as 

a beneficial property. 

However, if we look at another way, we see that an improved product gains share from all 

other products in proportion to their original shares. When a product loses share, it loses to others 

in proportion to their original shares. Stated that way, it is easy to see that IIA implies an 

unrealistically simple model in terms of sourcing. In the real world, products compete unequally 

with one another and when an existing product is improved, it usually gains most from a subset 

(nest) of products with which it competes most directly. 

After the introduction of hierarchical Bayes we could estimate respondent-level betas. This 

moves IIA to the respondent level, but significantly reduces IIA at the overall level. In many 

cases, this may be sufficient for sourcing. In some cases however respondent-level IIA is still too 

strong of an assumption. Here are some examples we have observed when respondent-level IIA 

still leads to problems: 

 Adding 30 versions of the same product in your simulator and it can (and most likely 

will) dominate the market. 

 Related to the above, when doing a portfolio optimization, adding similar products will 

result in overly inflated market share. 

 When we have strong category differences and we expect there is little to no sourcing 

between them. 

 When we test lots of SKUs in a category. 

In this paper we are comparing different methods that could potentially (partly) solve the 

“Red-Bus/Blue-Bus Problem.” We tested the following methods: 

1. Standard HB 

2. Post hoc Maximum Nest 

3. Error Components Logit 

4. Nested logit Aggregate Lambda 

5. Nested logit Lambda 0.35 

6. Nested logit Lambda 0.05 

Methods 1, 2 and 3 were estimated using Sawtooth Software CBC/HB. Methods 4, 5 and 6 

are estimated using custom HB in R. 
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2.0 POST HOC MAXIMUM NEST 

As the name of the method indicates this method is applied post hoc. The utilities are 

estimated without the nest information, which will be applied in the share calculation. 

The first step we need to take is to determine which products belong together in nests. See 

section 6 for an example of how to do this. In the example below we have a simulator with 6 

products and a None. Products 1, 2 and 3 belong to nest 1, products 4, 5 and 6 belong to nest 2 

and the none is a nest on its own. 

The second step is to compute the exponentiated utility for each product e^U. But now 

instead of proportioning all products like we do in a standard multinomial logistic, we compute 

the maximum exponentiated utility within each nest. This will always be a positive value since it 

is the exponentiated utility. 

 

In the third step we will calculate what we will call nest shares. These nest shares are simply 

determined by the ratio of the maximum exponentiated utilities. So in our example the share of 

Nest 1 is 2.72/(2.72 + 2.72 + 2.03). 

 

Step four is to calculate the share of preference within each nest. This is done treating each 

nest separately. For each nest we compute the relative share using the standard MNL rule of e^U 

divided by the sum all those within the nest. These shares within the nest will sum to 100%. 

 

Finally, we multiply the shares within a nest by the nest share. This is shown on the last line 

above. The shares within each nest will sum to the nest share we computed. And the shares in the 

table below we compare the results from Post Hoc maximum nest share with regular share of 

preference. 
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Nest 2 has three relatively strong products. Using regular share of preference the total for 

those three products is 50.91%. While using the maximum nest method it is only 36.4% because 

the share for that nest is based on its best item. 

When we start simulating market changes more changes will appear. In the example below 

we increased the preference for product “A1” (by, for example, lowering its price or adding a 

feature). The product utility for product “A1” went up from -4 to -0.5. 

 

As product “A1” does not exceed the maximum within Nest 1 the nest shares are not 

changing, meaning we are not sourcing from Nest 2 or the none but just within Nest 1. 

 

If we look at the regular share of preference calculation based on IIA we see that product 

“A1” sources from all other products. 
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3.0 ERROR COMPONENTS LOGIT 

The error components logit adds variables to induce patterns of correlation across 

alternatives. We do this by coding additional binary (0/1) variables for each nest. We need to 

have a reference category, so if we have 3 nests, we have 2 additional variables. Using the 

previous examples with SKUs 1, 2, 3 in Nest 1, SKUs 4, 5, 6 in Nest 2, and None as a reference 

Nest 3 would look like this: 

 

The additional nesting variables inform the upper level covariance matrix of an HB model, 

and therefore should help create more correlation among alternatives in a nest. The utility for an 

alternative above would be Usku + Uprice + Unest. 

More details about Error Components Logit can be found in Train (2009), pages 139–141. 

One key point is that Train recommends the additional nesting parameters be fixed coefficients. 

This means they would be the same for all respondents, rather than respondent specific. 

However, our objective in this paper was to test another method that could be easily estimated 

with Sawtooth Software tools. Since Sawtooth Software does not allow us to specify fixed 

parameters, we specified the parameters as random. 

We had hoped to find some improvement over standard HB by estimating all the parameters 

(include the nests) as random. Unfortunately, our results for ECL show that it did not change 

sourcing much at all from standard HB. We believe this is because we estimated the nesting 

parameters at the respondent level. So we call our results ECL*, with the intent of the * to 

indicate we did not follow Train’s recommendation to fix the nesting parameters. 

We agree with Train that estimating the nesting parameters as fixed global parameters is most 

likely the best way to apply ECL. And we adopt this approach in the next section for nested logit, 

where we estimate global fixed parameters for the nests.  
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4.0 BASICS OF NESTED LOGIT 

Nested logit involves adding a tree like structure to the alternatives. A simple example of 

such a tree is the following: 

 

One way to think about the tree structure above is as a sequence of decisions. The first 

decision is whether to take a plane (if traveling far) or slower (but more immediate) ground 

transport. Then within slow ground transport we consider public vs. private. The diagram also 

shows two parameters. These parameters represent the degree of similarity between the items 

in the nest. So 1 represents the degree of similarity between train and bus. 

We typically define the parameters in the interval (0,1]. When =1, there is no correlation 

between the alternatives. If all the parameters in a nest structure are 1, then the nested structure 

is equivalent to the standard MNL. So mathematically nested logit extends MNL, with additional 

parameters to model the correlation between alternatives grouped together in a nest or bundle. 

As moves from 1 toward 0, the alternatives are more similar to each other. As we approach 0, 

we get the red bus and blue bus which are perfectly correlated. One practical limitation is that as 

 moves toward 0, numerical overflow can happen. This also depends upon the size of the 

utilities. For this reason we typically estimate 1/ and constrain 1/ in [1,10] or [1,5]. The latter 

keeps  which we have found to be aggressive enough for all practical purposes. 

There are a few variations of nested logit, but we use the most common version known as 

“Utility Maximization Nested Logit with Normalized Top Level.” The mathematics of nested 

logit works by estimating a utility for each nest and computing conditional probabilities. 

Lattery (2016) describes the mathematical details of nested logit more fully. 

5.0 ESTIMATING NESTED LOGIT WITH HIERARCHICAL BAYES 

Nested logit extends the multinomial logit (MNL) model. To estimate nested logit, one must 

change the likelihood function from MNL to nested logit MNL. This is not something that can be 

done with Sawtooth Software, which hard codes the MNL likelihood function in the software. 

One approach to estimating nested logit is to use other estimation methods for nested logit like 

Empirical Bayes or Latent Class. Lattery (2015) shows that ensembles of Latent Classes can 

outperform HB estimation. Since nested logit is easy to implement with latent class, Lattery 

(2016) recommends applying nested logit by using ensembles of Latent Classes. 
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In this paper we wanted to directly compare post hoc buckets after standard HB estimation 

versus a nested logit estimation within HB. So we wanted to use HB estimation for both 

methods. We used custom code written in R that gives us full flexibility to modify likelihood 

functions and priors. It is analogous to what one would find with hierarchical Bayesian programs 

like WinBUGS, JAGS or Stan. 

In addition to changing the likelihood function, we also need to specify how we should 

estimate the λ parameters. It is a complete disaster (in theory and practice) to simply include the 

λ parameters as additional respondent level utilities in the same upper level covariance with the 

other parameters. Lattery (2016) shows how including the λ parameters significantly lowered 

holdout log-likelihood from -5164.2 to -5828.2. In that case HB predicted holdouts significantly 

worse than a single Latent Class solution without nesting. 

As mentioned above, we estimate 1/λ in the interval [1,5]. Our recommendation is that the 

1/λ parameters be estimated at the global (not respondent) level. We also recommend that each 

1/λ have its own normal prior that remains fixed during estimation. Our current default is for the 

base level of nests to use 1/λ ~ N(µ = 3, σ = 1). The µ values allows relatively aggressive 

sourcing within the nest. At upper levels of the nest we may use µ values closer to 1, often 

choosing the aggregate level lambdas. Obviously µ and σ can be adjusted if desired, based on 

expert knowledge of expected sourcing. A better theoretical approach would treat µ and σ as 

random variables, and have another level of priors for µ and σ. But at the time of this writing this 

additional level of priors is still work in progress. 

It is common for many marketing research firms to provide clients with Excel-based 

simulators for HB results. Excel is a convenient tool, but given the slowness of Excel we 

typically use point estimates for simulations, rather than draws from the posterior. Using point 

estimates in Excel is a practical limitation, especially when we have many parameters and large 

samples as we do in nested logit studies. In some cases using point estimates computed from the 

means of the posterior works very well. But with nested logit parameters, mean point estimates 

do a poor job of approximating the posterior. This is due to the significant impact that these 

parameters have on each draw, as they are exponents in the utility function. 

The primary purpose of this paper is to compare the post hoc “bucket simulations” with 

comparable point-estimate predictions from full hierarchical Bayes models. Given our desire to 

use point estimates from full HB estimation, we decided to assume fixed λ values. We estimate 

the lambdas that come from an aggregate nested logit model and use those as our λ values for 

HB. And we also test a set of fixed lambda values: setting each λ at .35. Based on our experience 

a value of .35 tends to be aggressive, without being too aggressive and gives sourcing results 

comparable to the buckets approach described earlier in the paper. This makes the comparison of 

post hoc buckets vs. estimating nested logit more comparable. Using fixed λ parameters means 

we are using the same number of parameters as the post hoc buckets. It also removes any 

positive impact we have by modeling λ values. 

6.0 DETERMINING WHICH ALTERNATIVES TO GROUP INTO BUCKETS OR NESTS 

Any kind of nesting or buckets requires one to choose a specific structure for the alternatives. 

One can specify any structure they like. A marketing expert in a specific category may have a 

good idea what products tend to be more similar to others and define a structure based entirely 

on expert knowledge. Lattery (2016) describes one method for empirically deriving the nesting 
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structure. That method computes a “cross-purchase overlap” matrix for each pair of alternatives. 

It then treats those as pairwise distances and applies hierarchical clustering (Ward’s method). 

Those initial suggestions can be tested using aggregate nested logit to derive a final structure. 

Since then we have also developed another method for empirically deriving nested structures. 

We first estimate a standard (no nesting) HB model to generate respondent level utilities (point 

estimates). For each alternative that we intend to put in a nesting structure, we compute the 

respondent-level utility for that alternative. Treating each respondent as a row and the utility of 

each alternative as a column, we compute the correlation matrix of the alternatives. We have 

found in several studies that this correlation matrix is very consistent with the structure we would 

have derived from the hierarchical clustering in Lattery (2016). 

In this paper, we present two case studies. In both of these studies, we derived the nesting 

structure using hierarchical clustering as suggestions, then tested structures using aggregate-level 

nested logit. For comparison, we computed the correlation matrix of the standard HB utilities. 

The correlations between the respondent level utilities are shown below for Study 1. The color 

coding indicates the first level nests we derived, with the boxes indicating the second level. 

Study 1 

 

As shown above, the items within a nest are highly correlated. This is also true for Study 2. 

So in our case standard HB utilities without nesting are already picking up much of the 

correlation across alternatives. This is why respondent-level HB is so much better than aggregate 

models for sourcing. Correlation among utilities is also very important from a practical 

standpoint of applying the post hoc buckets. Post hoc buckets create a difference between what 

we are simulating (buckets) and what we are estimating (no buckets). The more closely post 

hoc simulation buckets align with the estimation correlation matrix, the more consistent 

simulations will be with estimations. If one is applying post hoc buckets it is important to check 

the correlation matrix of your standard HB utilities. If the correlation structure differs greatly 

from post hoc buckets, consider changing your buckets or dropping them. 
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7.0 CASE STUDY 1 

Our first case study involves 29 SKUs in the paper towels category. Each screen was a virtual 

shelf showing 22 of the 29 SKUs at varying price levels. This was a volumetric study in that 

each respondent could choose as many products as they wanted on each screen (or none). For 

this paper, we recoded these volumes into an allocation. 1157 respondents completed the survey, 

with each respondent evaluating 16 shelves. 

We empirically structured the 29 SKUs into 8 nests or buckets. We also had a second level of 

buckets that grouped nests {1,2}, {3,4,5}, {6}, and {7,8}. The nested logit and post hoc buckets 

both changed the sourcing in ways that we wanted. For example, we can start with a base case 

like this: 

Brand SKU Price Nest 

Brand 1a 1 Large Roll, Full Size Sheets $1.09 1 

Brand 1b 2 Bulk Rolls, Full Size Sheets $3.99 2 

Brand 1a 1 Large Roll, Select A Size Sheets $3.29 2 

Brand 1c 1 Giant Roll, Full Size Sheets $2.49 2 

Brand 1a 12 Large Rolls, Select A Size Sheets $14.99 3 

Brand 1a 6 Large Rolls, Full Size Sheets, Prints $11.99 4 

Brand 1a 6 Large Rolls, Select A Size Sheets $11.99 4 

Brand 1a 6 Giant Rolls, Full Size Sheets $10.49 4 

Brand 1a 3 Mega Rolls, Select A Size Sheets $7.49 5 

Brand 1a 4 Large Rolls, Full Size Sheets $6.49 5 

Brand 2 6 Mega Rolls, Choose-A-Sheet $6.99 7 

Brand 3 8 Large Rolls, Full Size Sheets, Prints $9.49 7 

Brand 1b 4 Large Rolls, Full Size Sheets $4.49 8 

Brand 1b 6 Giant Rolls, Select A Size Sheets $6.99 8 

Brand 1b 8 Large Rolls, Full Size Sheets $8.99 8 

None 
   

When we introduce a new item in Nest 7 for example, we should see more sourcing within 

Nest 7. The following table shows how the base case shares changed (multiplicatively) when 

doing this:  
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Nest 

Standard 

HB 

Post hoc 

Max Nest ECL* 

Nested Logit 

Aggregate λ 
Nested Logit 

λ = 0.35 
Nested Logit 

 λ = 0.05 

1 0.99 1.00 0.98 0.99 0.99 1.00 

2 0.97 0.99 0.98 0.97 0.98 0.99 

2 0.99 1.00 0.99 0.99 1.00 1.00 

2 0.97 1.00 0.97 0.98 0.99 1.00 

3 0.98 1.00 0.98 0.98 0.99 1.00 

4 0.97 1.00 0.97 0.98 0.99 1.00 

4 0.97 1.00 0.97 0.98 0.99 1.00 

4 0.96 0.99 0.96 0.97 0.98 0.99 

5 0.97 0.99 0.97 0.98 0.99 0.99 

5 0.96 0.99 0.96 0.97 0.98 0.99 

7 0.95 0.85 0.95 0.89 0.84 0.84 

7 0.84 0.62 0.80 0.71 0.60 0.52 

8 0.95 0.99 0.95 0.96 0.97 0.99 

8 0.94 0.98 0.94 0.95 0.97 0.99 

8 0.92 0.98 0.91 0.93 0.95 0.98 

None 0.97 0.99 0.97 0.97 0.98 0.99 

All the methods show relatively little sourcing outside Nest 7. Respondent-level utilities 

really do help, especially when the utility correlations are consistent with the buckets. Even with 

the standard HB most of the sourcing comes from the items in Nest 7, which become 95% and 

84% of their initial share. The Post Hoc buckets draw much more from within Nest 7. The nested 

logit’s sourcing will depend upon the λ values. Smaller λ values like .05 make the sourcing 

within Nest 7 stronger. As shown above, λ values of about .35 show similar sourcing to the Post 

Hoc nest. The aggregate λ values were higher than .35, which is why they show less aggressive 

sourcing than the post hoc or λ = .35. 

One advantage of the nested logit is that one can vary the degree of sourcing by setting 

different λ values. This provides a way of tuning sourcing that is not possible with post hoc 

buckets. Even though we have shown a λ of .05 in the table above, we typically do not 

recommend λ < .2, as there is little to be gained with smaller values and they can cause 

numerical overflow in the computations. 

We did not find much improvement using ECL* versus standard HB. But as mentioned 

earlier, that may be because we did not estimate the nesting parameters as global fixed 

parameters. Our objective in using ECL* was to modify the ECL approach to have a method that 

could be estimated via Sawtooth Software, with some additional coding. Our conclusion is that 

ECL* does not work. ECL may work, but that requires custom coding and we prefer the 

flexibility of nested logit. 

To evaluate the fit of the models, we have 2 different types of holdout tasks. First, we have a 

random holdout task, where we removed one task for each respondent. The experimental design 

was a Sawtooth-type design with hundreds of versions. So we have 1157 (1 per respondent) 



 

220 

different holdout tasks at the respondent level. Second, we have a fixed holdout task. This task is 

almost the same across respondents, in that the SKUs were the same but the prices varied. 

 

At the combined fit level, none of the nesting methods have a big improvement over their 

non-nesting counterparts. Only two of the methods show a decline: the Post Hoc and the very 

aggressive λ = .05. The λ = .05 is simply too aggressive, and even though we ran estimation 

through this model, the utilities are not able to estimate a consistent model. The best λ depends 

upon the data. One should not just pick any λ. 

The post hoc shows only slight declines. This is true for both the random holdout and the 

fixed shelf. This is less decline than we expected given that we are estimating one model, and 

then simulating a different model. Bear in mind that the correlation matrix of the estimation 

model is very consistent with the nests. So applying the post hoc nests was a kind of consistent 

exaggeration of the base model. 

For the fixed shelf we also compared aggregate shares across the 1157 respondents. 

Comparing observed shares versus simulated shares we see the following R
2
 and mean absolute 

error (MAE): 

 

The table above shows that the nested logit predicted aggregate shares much better. But the 

post hoc nests made aggregate share predictions worse than standard HB. Again this is only one 

holdout task, and more tasks would give a better picture of how typical a loss in MAE is for post 

hoc buckets. But regardless of how many empirical tests we run, the reality is that the post hoc 

nests will always be theoretically questionable because they use one method for estimation and 

another method for simulation. 
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8.0 CASE STUDY 2 

Our second case study involves 23 SKUs in the oral care category. Each screen was a virtual 

shelf showing 14–15 of the 23 SKUs at varying price levels. This was also a volumetric study in 

that each respondent could choose as many products as they wanted on each screen (or none). 

For this paper, we recoded these volumes into an allocation. 1026 respondents completed the 

survey, with each respondent evaluating 10 shelves. 

In addition, this survey used a “reverse dual none.” Respondents were shown the virtual shelf 

and first asked whether they would buy any of the products. Then they were asked which they 

would buy (counterfactually if they said they would not). Respondents who said they would buy 

were coded as a single task, with the virtual shelf and none. Respondents who said they would 

not buy were coded as two tasks: 

1. 1st task as above, with the None option selected 

2. 2nd task removes the None option and choice is items selected. 

We empirically structured the 23 SKUs into 8 nests. We also had a second level of buckets 

that grouped nests {1,2}, {3}, {4,5,6,7,8}. The nested logit and post hoc buckets both changed 

the sourcing in ways that we wanted. Like the previous study, the correlation matrix of the 

standard HB utilities was very consistent with the buckets: 

 

To evaluate the fit of the models, we used leave-one-out holdouts. We removed one holdout 

task per respondent, estimated the models and predicted the holdout. We repeated with a 2
nd

 

holdout, and then a 3
rd

. The experimental design was a Sawtooth-type design with hundreds of 

versions. So we have 1026 x 3 = 3078 unique holdout tasks at the respondent level. 
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In each of the 3 rounds of holdout tasks, the post hoc nest had slightly poorer fit than the 

standard HB model. The decrease in performance is small enough that one might choose the post 

hoc buckets anyway since they give better-looking sourcing. However, the big news in these 

results is that the nested logit with λ = .35 significantly improved fit in each of the 3 cases. 

9.0 CONCLUSIONS 

With respect to sourcing, respondent-level standard HB is a significant improvement over 

aggregate logit. While sourcing remains IIA at the respondent level, the correlations in utilities 

across respondents induce correlation among the alternatives. The method of post hoc nests is a 

simple approach to accentuate this nesting. But it means our simulations are a different model 

from our estimation. 

The degree to which this theoretical problem between estimation and simulation converts to 

practical problems will depend upon your specific data and how consistent the correlation matrix 

of standard HB utilities is with your nesting structure. If one is applying post hoc buckets it is 

important to check the correlation matrix of your standard HB utilities. If the correlation 

structure differs greatly from post hoc buckets, consider changing your buckets or dropping 

them. In our two case studies the post hoc nests were very consistent with the utility correlations. 

Applying post hoc buckets only slightly lowered the holdout fit. 

Applying nested logit to the estimation process requires much more technical expertise. It 

cannot be done with standard software including Sawtooth Software. We used a custom program 

in R. This allowed us to change the likelihood function. Nested logit has the additional advantage 

that one can empirically tune each of the λ parameters, while post hoc buckets have no such 

parameter. To make fairer comparisons, we use simple λ parameters, setting each nest to have λ 

of .35. This performed very well in our two case studies. It improved the respondent-level fit 

significantly in study 2, and the aggregate fit in study 1. Of course, there is room for 

improvement by modeling the λ parameters, rather than setting them at .35. We discussed how 

this can be done in the nested logit section. 

We do not recommend post hoc nests for every study. First, one should run a standard HB 

estimation, and check the sourcing. If the standard HB sourcing is not enough, then compute the 

correlation matrix of the respondent utilities. If the post hoc buckets are defined consistently with 

those correlations, it is likely the resulting simulations are also relatively consistent with the 
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model estimated. And the simplicity of applying post hoc buckets vs. the complexity of other 

methods makes it an alternative worth considering when standard HB sourcing is not enough. 

 

   

 Kevin Lattery Jeroen Hardon 
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MOTIVATION FOR THIS PAPER 

In fast moving consumer goods, market simulations based on Conjoint Analysis/DCM have 

some model limitations which are well known among researchers and end users. The main 

limitation is the lack of real market circumstances such as awareness, distribution and out of 

stock effects because choice models are not able to capture such effects due to the synthetic 

interview situation. 

In order to adjust choice models to these market circumstances and therefore better interpret 

the results, researchers often apply revealed preference data (past data from sources such as sales 

data, scanner or household panels) to the choice data. Usually this revealed preference data 

represents the average of a certain period of time (e.g., last year, until now) in a certain 

distribution channel. However, if we look into the detailed data points within any given time 

period, we can see that volume sold, or market shares of single SKUs can vary dramatically over 

time: 

Figure 1. Time series for single product over the period of 157 weeks. 

 

 

Looking at the above times series represented in Figure 1, one could wonder if conjoint 

results are really free of context effects. Is the derived share of choice really not related to the 

point in time a study was conducted, i.e., at moments of intense advertising, social media 

reaction or holiday season? 

Hypothesis: The point in time when the survey was conducted might have a significant 

influence on the model results, i.e., shares of choice or price elasticities. 

The above hypothesis does not address “simple context effects” like different weather 

conditions that might influence the choice behavior. Many papers show that conjoint models are 

relatively stable against such effects. It is rather the general market situation in a certain time 

period in which the conjoint interviews were conducted. 

In order to understand the possible influence on model results, it seems quite desirable to 

apply revealed preference data (past data from sources such as sales data, scanner or household 

panels) in order to improve survey-based models. For “Price Only Discrete Choice” models it 

might be furthermore useful to include observed market reactions (e.g., past effects of price 
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increase or promotions) from revealed preference data, in order to better simulate and predict 

pricing scenarios in the future. 

The erratic increase of data (within the last 10 years the amount of data increased by factor of 

1,000 and latest developments such as IOT [internet of things] or smart cities will ensure that this 

trend will continue), larger and scalable computation power and improved forecast models 

provide new opportunities to combine survey-based models with revealed preference data. 

RPSP MODELS (REVEALED PREFERENCE/STATED PREFERENCE MODELS) 

Depending on the objectives of predictive analytics, RPSP models may consist of up to three 

data sources: 

 

The interview data from the conjoint/DCM exercise are defined as the stated preference data 

(SP) and represent the basis for simulating “what-if scenarios” in the marketplace. The revealed 

preference data (RP) are the past market actions recorded in scanner panels, sales and other data 

collected in the market reality. The stated preference data allow to simulate situations which 

never have been seen in the real world so far e.g., introduction of new products or pricing 

strategies which haven’t been tested in the real market. Revealed preference data are perfect 

representations of the market’s past and report all actions which could be observed in the real 

world. On that basis, past price changes or introduction of products could be modeled. The third 

source which could be included in analysis are social media data. With this data we get insights 

in the reaction of consumers on past actions. For example, how price changes were recognized 

and perceived or how customers communicate about promotional campaigns or discounts. 

INDICATION FOR RPSP MODELS 

SP Models are widely used in market research and have a great academic background. We all 

believe (and a large number of validation studies showed) that Conjoint/DCM provides reliable 

information about preferences and elasticities in the simulation model. Price-only discrete choice 

models mimic the marketplace pretty well and are close to decisions respondents make every day 

when buying products. No other methodology allows to simulate and compare the effect of 

several new products which are currently not available in the marketplace and allows to simulate 

the effect of price changes that were never seen in the real market. But due to the lack of 

awareness and distribution information the results could be different from market data. RP data 

are closer to market reality, but do not allow simulating the future. Therefore, the desire of 

combining the two information sources into one large model is quite logical. 
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However, in order to combine the SP model with RP data, we need a basic understanding 

about similarities and differences between revealed and stated preference! 

Why do we expect that stated and revealed preferences show different results? 

Beside volume, distribution, and out of stock effects there further might be a difference in the 

way consumers make their choices: 

 Sales and Store Data (RP): 

o High complexity of “choice task” (real decision) and many alternatives (e.g., 

large and sometimes incomplete shelves, shop assistants at the counter, second 

placements at check out) 

o Varying context (e.g., different retail channels or store types) 

o Time pressure, distractions (e.g., shopping trip during lunch break, stop at a 

drive-in) 

o Budget constraints (e.g., end of the month) 

o Cross-category-decision (e.g., What should I cook today?) 

 Price-only Discrete Choice (SP): 

o Clear description of attributes and levels (creating 100% awareness) 

o Lower motivation to answer the exercise carefully (e.g., panel burnout) 

o ICT (Individual Choice Task Threshold: lower attention after too many choice 

tasks) 

Before planning an RPSP model in a specific marketplace one should therefore try to answer 

the following questions: 

1. Would we expect that stated and revealed preferences show different results? 

If we assume that both data sources deliver the same results, we better stay with RP-data. 

2. Could we identify if stated and revealed preferences show different effects? 

Before combining RP-data we should look into our SP-data and identify the effects we 

can model with this data. Usually, many of the effects we see in our SP-data could also be 

seen in the RP-data. Only if we identify some effects in the RP-data that could not be 

modeled in our SP-Model we should think about combining them. One should always 

keep in mind, that a combined model has a much larger complexity and therefore needs 

to be a significant added value from including the additional RP effects. 

3. Is the available RP data source sufficient to separate and explore preferences from 

context effects and constraints (e.g., availability, out of stock)? 

Most RP-data show effects which could not be modelled by SP-data. Unfortunately, these 

effects can also not be isolated in the RP data. A peak in the RP-data may be caused by a 

combination of circumstances which occurred at the same point of time. Such overlay of, 

e.g., price changes, advertising campaigns, press coverage or others could make the RP-

data quite useless for forecasting purposes. RP-data which can really be decomposed to 

see single effects are rather rare. 

If the answers to these questions are not positive, one should proceed with the SP-Model 

only, thus avoiding the complexity of adding the two data sources. 

If the underlying decision process is different for SP and RP data and it matters for our 

predictions, then one should consider combining the two data sources. 
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SOURCE OF RP-DATA 

Time series data (sales, scanner data, panels etc.) provide different levels of depth and 

insights on a single product (SKU) level: 

 Retail scanner data or sales data might only show volumes (units or value) of the clients’ 

product at different moments of time and at different prices. 

 Time series from a company with its own distribution channel (e.g., fast-food chain) can 

record market shares of all offered SKUs including information about the price and other 

factors such as outlet type or region. 

For those products with price changes during the recorded period, price- and cross-price-

elasticities based on the RP-data can be derived. 

COMPONENTS OF RP-DATA 

A useful abstraction for selecting forecasting methods is to separate a time series into 

systematic and non-systematic components. Systematic components of the time series show 

consistency and/or recurrence and can therefore be described and modeled. Non-Systematic 

components of the time series are the ones that cannot be directly modeled or explained. 

A given time series usually is thought to consist of three systematic components: level, trend 

and seasonality. In addition, there is one non-systematic component called “noise.” 

Level is the average value in the series. That could be best described as the baseline without 

any time-dependent change over the period of the data. 

Trend describes increasing or decreasing values over time. 

Seasonality describes cyclic effects that can be iterative and observed during the 

measurement period. For example different buying behavior during the summer season which 

occurs every year. This component could be isolated from the baseline (Level) and an overall 

increase or decrease over the complete period (Trend) and represents short-term cycles within the 

time-series. 

Noise is the non-systematic component in each time series, also called the random variation. 

This component is the share which could not be described by the actual model used to 

decompose the components. 

SEPARATION OF RP-DATA COMPONENTS 

In time series analysis we usually try to identify the systematic components by separating the 

level, general trend, seasonality and the noise from the observed data on SKU level. 
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Figure 2. Decomposition of a time series for single SKU over past 157 weeks. 

 

One of the most common models for seasonal decomposition of time series is the LOESS 

model described by Robert Cleveland, William Cleveland, Jean McRae and Irma Terpenning in 

the early 90s. For our RP-data in this paper we applied this model for decomposing level, trend, 

seasonality and noise and to apply the components to our SP-data. 

NOISE (RANDOM COMPONENT) IN RP-DATA 

The random component is a very important part of the decomposition. It shows the amount of 

unexplained information in the data. The lower the random component in the model, the better 

the decomposition. The random component can therefore be used to compare and benchmark 

different decomposition models in order to find the best fit (lowering the random component). 

The goal of each decomposition is to retrieve a small random component so that the systematic 

components explain most of the data. Furthermore, one can calculate the confidence intervals 

from the size of the random component in order to understand how well trend and seasonality fit. 

STATED PREFERENCE DATA 

             

Stated preference data is usually derived through a conjoint or discrete choice model and the 

part-worth utilities estimated from this experiment. Based on either point estimates, draws or an 

upper-level model, market scenarios can be modeled, and consumers’ reactions simulated (e.g., 

to changes in pricing of individual SKUs). Most models in everyday work are using pseudo-

individual estimates based on hierarchical Bayes regression. 

Observed Data 

Noise 

Trend 

Seasonality 
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The results of the what-if scenarios simulated based on part-worth models are the basis for 

combining SP- and RP-Data. Therefore, it is crucial to derive valid SP-models as well as reliable 

and meaningful what-if scenarios. Only if the simulated scenarios are comparable to the real 

market situation one can take out advantage of combined models. 

LEVEL OF AGGREGATION IN SP-DATA 

Choice experiments such as Conjoint/DCM allow to derive cross-price elasticities and 

preference information for a large number of possible scenarios on a nearly individual level. In 

contrast, most of our RP-sources have only aggregate-level data. And usually even if we have 

individual information in our RP-data we seldom have the same individuals in our SP-data. 

Therefore, in order to compare the SP-data with aggregated RP-data we need some kind of 

aggregation of the SP-data (for instance Channel, Store, Customer Segment). However, we know 

from previous studies that “the ignorance of heterogeneity in the aggregate model leads to biased 

forecasts” (Feuerstein, Natter, Kehl 1999). When merging the RP- and SP-models together one 

should therefore take great care about a proper aggregation level. The closer we can bring our 

two data sources and the closer we are to the individual level, the better the two models could fit 

and correct the SP-data in a meaningful way. The results of the study from Feuerstein, Kehl and 

Natter (1999) showed, “that scanning data are useful to improve external validity of CBC models 

by introducing dynamics of the static conjoint models . . . .” The real advantage of RPSP-models 

is the dynamic from the RP data that enhance the static SP data with this component. 

COMBINING TIME SERIES 

General Trend 

From our choice model we can derive the shares of choice for an actual market scenario. For 

each SKU within this scenario we can then use the respective decomposed RP-sales data (level, 

trend, seasonality). The level is used to calibrate the share of choice from the base case (actual 

market simulation) to sales units. The decomposed general trend from the SKUs’ sales data is 

used to modify the units for the forecasting period (e.g., 12 weeks). This results in (12) different 

scenarios which show the influence of the trend in the forecasting period. 

Figure 3. Volume + Trend = Volume Sales 

corrected for the 12 weeks forecasting period 37/17–48/17; 

Cheeseburger @ Price 1.10€/Share of Choice 12.35% 

 

Result of this correction is a forecast for the development of the unit sales for the 12 weeks 

forecasting period. 
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Seasonal Component 

Applying the seasonal component of the sales data allows further correction of the 

forecasting period with the seasonality effect. The approach is very simple, because one only 

needs to apply the extracted time series component on top of the trend corrected unit sales. 

Figure 4. Volume + Trend + Seasonality = Volume Sales 

corrected for the 12 weeks forecasting period 37/17–48/17; 

Cheeseburger @ Price 1.10€/Share of Choice 12.35% 

 

After this correction the result is a dynamic simulation model for the 12-week forecasting 

period. We don’t assume any longer that the static results from the choice model are sufficient in 

order to forecast the market because the integrated dynamics from the RP-data results in a much 

more realistic time course. 

Special Effects 

The challenge is not to use all information. Some seasonal effects are decomposed on 

periodic events in the past, which have only an effect for exactly the same event in the future! 

Figure 5. Seasonal-effect for sales of Sandwiches in a Drive-In Restaurant 

at a highway over the 157 weeks’ time period. 

 

This doesn’t cause problems if the event is repeated in every period and its occurrence can be 

predicted, like our example of Good Friday, where consumers buy fewer sandwiches with meat 

on this day of the year. But if we see periodical effects like traffic jams that cause higher sales at 

fast food restaurants close to highways, we never would know, if such an event occurs during our 

forecasting period and if, when. 

HANDLING A HUGE AMOUNT OF INFORMATION 

Typically, one ends up with a very large number of time-series, at least with one series for 

each product/SKU. However, in addition there are often also different sales channels, store types, 
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geographical areas and locations. As a result, there are multiple different trend and seasonality 

components. 

Imagine the fast food industry: A drive-in close to a highway has a completely different 

profile (holiday season, traffic jams, . . .) than a restaurant at a downtown area or an outlet in a 

shopping mall. The reduction of this complexity to an amount of information which could be 

handled is the challenge researchers face when integrating time-series models by deciding which 

systematic components should be included or not. Some periodic effects might be systematic or 

only random due to the usually short reference period used in market research. Usually one 

suggests having 40 to 50 cycles for analyzing seasonal effect. In market research we are happy if 

we have two to three years (e.g., 2 to 3 replicates) to run our models. 

Figure 6. Sales figures for 97 different items over the 157 weeks time period. 

 

Forecast on Sales: In Statistic Markets RP Data Fits Well 

In most of our simulations we have no information about cannibalization, cross-selling or 

even how many customers we would lose completely when changing the current market 

environment. Time series could help to analyze past events and project them to the future, e.g., if 

there was a price change two years ago, one may predict from past customer reactions what will 

happen in the future. 

Figure 8. Sales figures for single SKU over the 157 weeks time period. 

Identifying the two past price increases. 

 

But there is no chance to forecast effects of future price changes if we did not observe 

comparable actions in the past. Also, if we introduce new products, we have no valid mean to 
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derive forecasts from the RP-data. Here we need the results from SP-models, which are based on 

survey data and therefore allow to simulate scenarios with new products, multiple price changes 

or even cannibalization between products. 

FORECAST ON SALES/REVENUE/PROFIT 

In the following example from a company with its own distribution channel, sales data 

including market shares of all offered SKUs, information about the price and other factors such 

as outlet type or region is available. This allows a forecast based on DCM simulation taking the 

decomposed RP data (market, trends and seasonal effects) for each single SKU into account in 

order to predict revenue and profit: 

Figure 9. Sales in units based on DCM simulation (blue) and corrected for 

trend (orange) and seasonal effects (grey) (12 weeks period forecast) and multiplied 

by price 1.10€ = Revenue and subtract the cost of 0.52€ = Profit. 

 

The static DCM shows the constant amount of sales throughout the whole period. Correcting 

with RP data we include dynamic into the forecast, evaluating the simulated performance under 

the assumption that trend and seasonality will be the same as in the past. 

RPSP SIMULATIONS 

Simulations of different market scenarios demonstrate the power of the RPSP approach. 

Figure 10. SP and RPSP Sales and Profit under different pricing for Chickenburger 

and Cheeseburger (12 weeks period forecast). 

 

Figure 10 shows the influence of two price changes for cheeseburger and two price changes 

for chickenburger during our simulated time period of 12 weeks. As price changes did not occur 

at the same time in the past, the cross elasticities for a simultaneous price change could not be 

estimated from the RP-data. This is the real strength of the RPSP-model. 
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GENERAL EVALUATION OF RPSP MODELS 

 SP models have their strength in simulating dynamic markets. 

 RP models are usually preferred in static markets. 

 The strength of RPSP models is to combine accurate information from the past with the 

power of dynamic simulations. 

But, 

 RPSP models are not suitable for “new to the world products,” due to the obvious lack of 

RP-data for these SKUs. In addition, there is often only limited data available for recently 

introduced products, so seasonal effects cannot be measured. 

 RPSP-models usually do not gain much insights if we miss data on SKU and channel 

level. Aggregate sales data seldom improve the model when we only have them on an 

aggregated market level. 

 Price only discrete choice models based on HB Draws can already drive super-computers 

to their edge of capacity. The combination of DCMs and RPSP models further multiply 

complexity if we include our RP-information in the upper level of the hierarchical Bayes 

estimation. The data challenge is resulting in an unsolvable optimization problem should 

we try to simulate multiple changes in multiple SKUs during our forecasting period. 

RPSP models therefore still need project specific adaptations in order to make them 

feasible. 

Summary: Benefits of RPSP Models 

The application of Time Series Corrections (RP) on our Share of Choice Simulations (SP) 

has a big impact, especially if we derive revenue or profit predictions: 

Figure 12. Comparison for the different simulations (12 weeks period forecast). 

 

Compared to the simulation based on the DCM only (share of choice)—the corrections for 

trend and seasonality (RP) lead to an improved prediction of revenue and profit. This shows the 

relevance of such corrections for business decisions. The application of RPSP models showed 

also a significant impact of the point in time on dynamic market simulations such as simulation 

of price reactions: 
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Figure 13. Comparison of Relative Change in Units and EoP over 12 weeks 

after correction for trend and seasonality. 

 

If there are no data or resources for RPSP models, one should nevertheless consider the 

possible impact of the point in time the study was conducted. As we saw in this paper the point in 

time can have a significant impact on the predictions if we ignore time series information. 

 

  

 Peter Kurz Stefan Binner 
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THE PERILS OF IGNORING UNCERTAINTY IN 

MARKET SIMULATIONS AND PRODUCT LINE OPTIMIZATION 

SCOTT FERGUSON 
NORTH CAROLINA STATE UNIVERSITY 

ABSTRACT 

Quantitative market research models facilitate the creation of market simulators and the 

formulation of product line optimization solutions. Results from market simulators provide 

insight into how a population might respond to new product offerings, guiding decisions about 

product configuration and price. When physical product lines are created, the results from these 

simulations can also inform production and resource allocation decisions. The work presented in 

this paper highlights consequences of ignoring uncertainty associated with market-driven product 

line optimization problems, with a specific focus on parameter uncertainty. A two-objective 

optimization problem is introduced that maximizes revenue from the product line under a 

nominal model while also maximizing the worst case revenue from an uncertainty set of models. 

Here, the nominal model represents the mean of the posterior distribution of a hierarchical Bayes 

mixed logit model while the uncertainty set is represented by 800 draws from the posterior 

distribution. A third objective is also introduced that minimizes the variation of First Choice 

Share within the product line. The importance of this objective is demonstrated by illustrating the 

variation in share captured by each product when considering the models in the uncertainty set. 

This variation is discussed in the context of production and resource allocation decisions. 

INTRODUCTION 

Consider a manufacturer who is interested in creating a line of products for a heterogeneous 

market. The decision (design) variables for such a problem are product content (configuration) 

and product price. Configuration and pricing decisions can be informed by a market simulator 

that becomes the engine driving the product line optimization problem. Strategies for 

formulating and solving product line optimization problems have been presented at previous 

Sawtooth Software conferences [1–4], and even more references can be found in the literature 

[5–8]. These works have also shown that product line optimization problems are challenging for 

even modern optimization algorithms because they have large design spaces (billions or more 

possible combinations) and gradient-based optimization techniques cannot be used because of 

mixed-integer problem formulations. 

The business objective for product line optimization problems is often revenue maximization, 

but the value of using objectives related to share of preference, profit, and commonality has also 

been demonstrated [4]. Once a solution has been found, decisions are made about product 

configuration, price, and production quantities. These outcomes are significant; manufacturers 

must order parts, design and construct assembly lines, and negotiate for shelf space. As noted by 

Bertsimas and Misic, product production decisions are both infrequent and require a commitment 

of manufacturer resources in a way that “cannot be easily reversed or corrected” [9]. 

There are many sources of uncertainty that, if not considered when solving the optimization 

problem, can translate to product line solutions with disastrous market performance. As 
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discussed in [9], at least two forms of uncertainty can be associated with the choice model: 

structural and parameter. Structural uncertainty can be thought of as demand model 

misspecification [10–12]. Parameter uncertainty is related to the model parameter estimates—

including, but not limited to, part-worth values and segment probabilities. Additionally, 

uncertainty exists when considering competitor product configurations and prices, and the 

manufacturer’s own product attributes and component costs. In this paper, the focus is on the 

uncertainty in parameter estimates. 

Optimization studies utilizing a single set of part-worth coefficient point estimates per 

respondent (such as the mean of the lower-level posterior distribution in a hierarchical Bayes 

mixed logit model) benefit from reduced computational cost. However, they neglect how the 

reported objective function is impacted by parameter uncertainty. Recognizing the potential 

hazards of using a single set of point estimates when simulating market behavior, especially if 

used to inform resource allocation decisions, researchers have proposed simulation strategies 

using draws from the posterior distribution, randomized first choice [13], interval variables, and 

moment estimation. 

Building on these efforts, a robust revenue optimization approach has been introduced by 

Bertsimas and Misic that maximizes the worst case revenue of the product line under uncertainty. 

The work in this paper expands on their approach by reformulating the optimization problem as 

one with multiple objectives. The first objective maximizes overall revenue given a “nominal” 

model, while the second objective maximizes worst case revenue from an uncertainty set (of 

models). Realizing that the solution will also drive product inventory and manufacturing 

decisions, this paper introduces a third objective that considers the variation in choice amongst 

the products within the product line. 

The approach presented in this paper is important because it highlights the value forfeited 

when uncertainty is ignored in product line optimization problems. By reformulating the 

optimization problem with multiple objectives, a decision-maker can develop a richer 

understanding of the tradeoffs (and risk) associated with different product line solutions. This 

work also demonstrates the inherent value of quantitative market research models and market 

simulators throughout the many stages of the design process. 

DESCRIPTION OF RELEVANT LITERATURE 

The papers listed in Table 1 provide a representation of how uncertainty has been addressed 

in recent product design literature. As stated in the previous section, these methods use draws 

from a posterior distribution, interval variables, or moment estimation. 

Camm et al. [14] and Wang et al. [7] use samples from the posterior distribution and 

introduce post-optimality robustness tests that assess the negative impact of part-worth 

uncertainty. In [14], individual draws are used so that the deterministic optimization problem can 

be repeatedly solved. The optimal product configuration was also found using part-worth 

coefficient point estimates. Resultant solutions were then compared, and the product 

configuration that maximized first choice share (FCS) when using point estimates aligned with 

only 23.5% of the random draw solutions. Wang et al. [7] implemented a sample average 

approximation method using stochastic discrete optimization [15]. Parameter uncertainty was 

modeled by pulling multiple draws from a respondent’s posterior distribution. Each draw was 

then treated as a separate respondent, and the product line was optimized. Results from this study 
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showed that as the sampling of the posterior distribution increased, the number of optimal 

products reduced. 

Wang and Curry [16], Luo et al. [17], and Besharati et al. [18] defined part-worths using 

interval variables and investigated the best and worst cases of product utility. Wang and Curry 

[16] studied robustness in the share-of-choice problem by assuming that individual preferences 

were bounded, independent, and symmetric. Also, the covariance matrix for individual level part-

worths was assumed to have a diagonal form, preventing correlation among product features. 

Luo et al. [17] and Besharati et al. [18] used segment-level part-worth confidence intervals and 

calculated the lower and upper bounds of product utility. Both studies only considered the design 

of a single product (rather than a line) but considered multiple design objectives; namely, 

maximizing the share of preference using the nominal model, minimizing variation in share of 

preference, and minimizing the worst case performance. Resende et al. [19] advanced these 

studies by considering a profit objective and estimated the first and second moments of the 

objective function by applying the delta method [20]. A closed-form solution was then 

introduced using a Taylor series expansion when considering a multinomial logit model at a pre-

specified risk level. 

Table 1. Recent literature considering parameter uncertainty 

when using market research models in product (line) optimization. 

Reference  
Method to treat uncertainty in 

discrete choice methods 
 Design problem  

Design 
variables 

 Design objective 

Camm et al. 
[14] 

 
Samples from posterior 

distribution 
 A single product   

Discrete 
product 

attributes 
 Maximize FCS 

Wang and 
Curry [16] 

 
Manual definition of  
part-worth intervals 

 A single product   
Discrete 
product 

attributes 
 Maximize FCS 

Luo et al. [17]  
Interval estimates of  

part-worths using 95% confidence 
levels 

 A single product   
Discrete 
product 

attributes 
 

Maximize nominal SOP, 
Minimize SOP variance, 

Minimize worst-case performance 

Besharati et al. 
[18] 

 
Interval estimates of  

part-worths using 95% confidence 
levels 

 A single product   
Discrete 
product 

attributes 
 

Maximize nominal SOP, 
Minimize SOP variance, 

Maximize engineering design 
performance 

Resende et al. 
[19] 

 
Moment estimation of market 

share based on continuous 
probability function of part-worths 

 A single product  
Continuous 

product 
attributes 

 
Maximize profit at specified 

downside risk tolerance 

Wang et al. [7]  
Samples from posterior 

distribution 
 Product line  

Discrete 
product 

attributes 
 Maximize FCS 

Bertsimas and 
Misic [9] 

 
Samples from posterior 

distribution  
 Product line  

Discrete 
product 

attributes 
 

Maximize worst-case expected 
revenue 

FCS: First Choice Share       SOP: Share of Preference 
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The recent publication by Bertsimas and Misic [9] most directly motivates the work in this 

paper. Product line robustness is explored by formulating an optimization problem that 

maximizes worst-case expected revenue over an uncertainty set, as shown in Equation 1. 

                          (1) 

In this equation,   is revenue,   is a product line comprised of   products, and   is a set of 

choice models that account for parametric and structural uncertainty. Parametric uncertainty is 

considered for both the hierarchical Bayes mixed logit and latent class multinomial logit models. 

Structural uncertainty is represented in the latent class model by varying the number of 

segments. 

The worst-case expected revenue for a product line is given by Equation 2, where    

represents the choice model associated with the lowest expected per-customer revenue. 

Simulation results found that product line solutions that did not account for uncertainty 

experienced worst case losses as high as 23%. Conversely, a robust solution, using the 

formulations in Equations 1 and 2 could outperform a nominal solution (where it is assumed that 

the choice model is known precisely when the product line is optimized) by up to 14%. 

                       (2) 

It is also discussed in [9] that the optimization problem given by Equation 1 may be overly 

conservative; that is, the perceived impact of uncertainty is dependent on how closely the 

uncertainty set   describes the consumer population. A constrained optimization problem 

formulation is presented that maximizes revenue using a nominal choice model while 

constraining worst-case revenue to a predefined amount, as in Equation 3. 

   
               

        

 (3) 

                      

This formulation requires accommodating a constraint violation in the fitness function 

(making the optimization more challenging) and an “educated” approximation of the threshold 

for worst-case revenue,  . While a weighted-sum objective is also discussed that trades the 

performance of nominal and worst-case solutions, weighted-sum formulations have noted 

limitations [21]. 

Rather than pursue a weighted sum strategy, this paper introduces a multiobjective problem 

formulation that provides computational savings (in that the Pareto efficient frontier is found in a 

single optimization run) while allowing the tradeoff between nominal and worst-case revenue to 

be explored. Additionally, the problem formulations listed in Equations 1–3 model the impact of 

parameter (and/or structural) choice model uncertainty for the entire line. Changes in revenue 

represent consumers moving from a product offered by the firm to one that is offered by a 

competitor (or vice versa). 

These works do not consider the ramifications of a choice model that reflects attributes of a 

product that will be physically manufactured, distributed, and sold. While revenue of the product 

line is still a driving business objective, the distribution of sales within the product line will 

dictate the allocation of resources to inventory and manufacturing. It would be expected that 

uncertainty in the choice model would cause variation in choice amongst the products within the 

line. A firm looking for a robust product design strategy would also want to minimize the 
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variation in individual product share. Therefore, as part of this work a third objective is 

introduced that minimizes the variation in choice amongst the products within the product line. 

Exploring solution performance variation when using samples of the posterior 

distribution. 

Previous work presented at the Sawtooth Software conference discussed the advantages of 

using a multiobjective optimization formulation for product line design problems. Often, 

however, the simulations driving the optimization use the mean of the posterior distribution from 

a hierarchical Bayes mixed logit model. This raises a concern when thinking about uncertainty in 

product line design problems—while the mean of the posterior distribution provides a Pareto 

efficient frontier, as shown in Figure 1, how large is the “scatter” around each Pareto point when 

plotting a subset of the draws used to arrive at the posterior mean? 

This exploration began by using a multiobjective genetic algorithm (MOGA) to solve a 

product line design problem with two objectives. Part-worth estimates for 205 respondents were 

found using Sawtooth Software’s CBC/HB module [22]. 800 draws of the lower-level posterior 

distribution were saved (e.g., 800 draws per respondent) and then used in a market simulator. The 

modeled objectives were maximizing the average of first choice share (in percent) and the 

average of profit per respondent obtained by the line (in dollars). It was confirmed that the 

average of the part-worths across the 800 draws matched the reported mean of the posterior 

distribution. A first choice rule was used, and the design problem consisted of 5 products, each 

with 7 configuration variables. The price for each product was set as continuous variables 

bounded between a lower and upper bound, resulting in a mixed-integer problem formulation of 

2 objectives and 40 total design variables. 

Figure 1. Pareto frontier obtained when using the average of 800 draws per respondent of a 

HB-ML model. A first choice rule was used to model respondent choice. 
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The genetic search converged within 300 generations, and 422 non-dominated solutions were 

identified. Product configurations and prices were recorded for each solution. From these 422 

solutions there were 78 unique product line configuration combinations. The remaining solutions 

were non-unique in that they were priced differently from another product line with a similar 

content configuration. Four of these solutions were then chosen for further analysis. Two of the 

solutions were chosen near the extremities of the identified Pareto frontier. The configuration and 

prices associated with these solutions are shown in Tables 1 and 2. The other two were selected 

near the “knee” of the Pareto frontier. 

Multiple product configurations are needed because customer preferences are heterogeneous 

and competition exists from the outside good and competitor products that were included in the 

market simulator. When maximizing a share objective, as shown in Table 1, an optimization 

algorithm will often drive product prices to their lower bound (for this problem, $52). Because a 

first choice rule is used, the optimal price for all products does not need to be at this value. 

Rather, they need to be at a price that does not trigger the change in binary outcome (chosen/not-

chosen). 

Table 1. Product configuration and pricing when maximizing the objective of 

average First Choice Share. 

Product Att1 Att2 Att3 Att4 Att5 Att6 Att7 Price 
Avg. First Choice Share 

captured by each product 

P1 8 8 3 6 8 6 3 $52 28.75% 

P2 8 5 3 4 4 3 4 $52 36.55% 

P3 8 8 3 4 6 8 4 $180.50 19.66% 

P4 8 5 3 4 6 3 3 $209.03 7.33% 

P5 5 8 3 6 8 1 3 $499.07 5.07% 

Maximizing the average profit per respondent requires increasing the average price of the 

product line. As shown in Table 2, the low-end products found in Table 1 have been replaced 

with products priced around $200. These products will capture a majority of the share within the 

line, but the solution trades a reduction in market share for increased profit. 

Table 2. Product configuration and pricing when maximizing the objective of 

average profit per respondent. 

Product Att1 Att2 Att3 Att4 Att5 Att6 Att7 Price 
Avg. First Choice Share 

captured by each product 

P1 8 5 3 4 2 3 4 $202.03 22.38% 

P2 8 5 3 4 2 3 3 $203.13 21.29% 

P3 8 8 3 4 5 8 4 $434.10 13.59% 

P4 8 8 3 6 8 6 3 $458.87 8.73% 

P5 5 8 3 6 8 1 4 $512.88 9.78% 

For the four solutions identified, the performance (average First Choice Share, average profit 

per respondent) of all 800 draws is shown in Figure 2. A 95% confidence interval ellipse is also 

shown for each solution. Immediate observations from this figure include that the confidence 

ellipse for the maximum share solution (red) has a smaller major axis than the maximum profit 

solution (green). The smaller major axis for the maximum share solution is likely due to the 

lower price of the first two products. These products do not make money, rather they provide a 

buffer against part-worth variations—they capture a large amount of share and the small 
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variations associated with the draws do not change this outcome. Conversely, the minor axis for 

the maximum share solution is larger than the maximum profit solution. 

Figure 2. A plot demonstrating the scatter of performance values associated with the 800 

draws per respondent from four product line solutions. 

 

The solutions near the knee of the Pareto frontier were chosen because they highlight another 

challenge presented by uncertainty analysis. Dominance between two designs is no longer 

determined using a single set of performance values {F1,F2, . . . ,Fn}. Rather, an overlap of 

confidence intervals opens the possibility for strict dominance to not be maintained. While there 

has been work on multiobjective optimization algorithms capable of handling uncertainty [23], 

further studies are needed so that the ramifications for market-driven product design can be 

better understood. 

Creating a multiobjective problem formulation for robust product line design. 

Parameter uncertainty was shown to have an effect when considering problem formulations 

driven by two different business objectives; variations of maximizing share and maximizing 

profit. As previously discussed, Bertsimas and Misic proposed a problem formulation for robust 

problem line optimization that maximizes the worst case expected revenue given an uncertainty 

set (Equations 1 and 2). They also discuss how this problem statement could be reformulated to 

maximize revenue around a nominal choice model subject to maintaining a revenue that is no 

lower than some predefined amount (Equation 3). Yet, it is challenging to define this amount a 

priori, and constraints increase the difficulty of creating an effective fitness function. 

Such challenges can be overcome by reformulating the constraint-based problem described in 

Equation 3 as a multiobjective optimization problem. This formulation is constructed around a 
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nominal model (  . For the purpose of this exploration, the mean of the posterior distribution 

was used as the nominal model because it corresponds to the part-worth values used in previous 

market simulator implementations. The uncertainty set ( ) consisted of the mean of the 

posterior distribution and the 800 draws (a subset of the total draws) saved from estimating the 

posterior distribution. The lower bound on product price was also redefined. Price was set at 

125% of product cost, plus a constant value that was consistent across all products offered by the 

manufacturer. The objectives for the optimization were defined as maximizing the revenue per 

respondent (in dollars) and maximizing the worst case revenue across the uncertainty set, per 

respondent (in dollars). It should be noted that this is different than the formulation proposed by 

Bertsimas and Misic who use worst case expected revenue. This formulation for objective F2 is 

heavily weighted toward the worst case scenario, and the full formulation is given by Equation 4. 

Nominal model = Mean of the posterior distribution 

 

Uncertainty set = 800 draws (per respondent) from the, and the mean of the, 

                             posterior distribution 

 

Product price = 1.25*Product cost + $52 

Number of products = 5 (with 7 configuration variables each) 

 

Use a multiobjective genetic algorithm (MOGA) to solve: 

     Maximize: F1 = Revenue per respondent using the nominal model (in $) 

     Maximize: F2 = Worst case revenue from uncertainty set, per respondent (in $) 

(4) 

The problem statement given by Equation 4 was optimized using a multiobjective genetic 

algorithm. Because product price was now a function of configuration cost, the number of unique 

solutions decreased. As shown in Figure 3, 8 unique product line configurations were identified 

as Pareto optimal points. Solutions in the upper right corner of the graph are preferred, as they 

maximize both revenue in the nominal model and the worst case revenue from the uncertainty 

set. Numerical results for these 8 solutions are presented in Table 3. In this table the maximum 

revenue per respondent is presented when using the mean of the posterior distribution (the 

nominal model). The worst case revenue, mean revenue, and the largest revenue, recorded from 

the 800 draws of the posterior distribution are also presented for each solution. 
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Figure 3. Pareto frontier when maximizing revenue per respondent under the nominal 

model and maximizing worst case revenue from the uncertainty set. 

 

Table 3. Revenue values for the eight Pareto frontier solutions determined using the 

nominal model and the uncertainty set. 

Solution 

Maximum revenue per 

respondent calculated from 

mean of posterior distribution 

Revenue per respondent calculated from 

samples of the posterior distribution 

Minimum 

(worst case) 
Mean Maximum 

A $193.13 $162.81 $183.30 $208.17 

B $193.14 $159.78 $185.49 $211.19 

C $193.32 $159.52 $185.08 $211.30 

D $198.24 $159.49 $186.50 $211.44 

E $198.41 $154.99 $179.41 $203.64 

F $199.71 $152.29 $180.59 $207.41 

G $200.17 $150.27 $181.98 $208.79 

H $201.32 $147.96 $180.75 $211.15 

The samples from the posterior distribution can also be used to create a probability density 

solution. Two of these distributions are shown in Figure 4. By moving from left to right in Figure 

3, the worst case revenue decreases. Figure 4 illustrates that in the presence of parameter 
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uncertainty a solution designed around the criterion of maximizing worst case revenue has 

opportunities to outperform a solution purely designed for maximum revenue. This creates a 

scenario where a decision-maker must define the level of risk they are willing to adopt. Existing 

engineering design tools for concept selection provide insight into how such decisions can be 

made using utility theory and hypothetical alternatives [24]. 

Figure 4. Probability density plot for solutions that maximize revenue (solid) and 

maximize worst case revenue (dashed). 

 

At the suggestion of Bryan Orme, the revenue over the 800 draws were examined. The 

concern was that an outlier would make a worst-case revenue objective too aggressive. While 

all revenue values were found to be within 3.5 standard deviations of the mean, the lack of 

outliers does not eliminate the significance of this concern. A more effective strategy for this 

objective may involve defining a worst-case revenue percentile the decision-maker is willing to 

accept. For the eight solutions found in this study, changing from worst case revenue to revenue 

at the 1st or 5th percentiles can cause solutions to become dominated. Here, Solution B would 

dominate Solution A, removing A as a Pareto point and preventing it from ever being chosen. 

The worst case revenue, and the revenue at the 1st and 5th percentiles, for each solution are 

shown in Table 4. 

Table 4. Revenue values for the eight Pareto solutions when considering 

worst case revenue, 1st percentile revenue, and 5th percentile revenue. 

Solution Worst case revenue 1
st
 percentile revenue 5

th
 percentile revenue 

A $162.81 $163.96 $168.32 

B $159.78 $165.25 $170.04 

C $159.52 $165.26 $169.83 

D $159.49 $164.60 $171.10 

E $154.99 $155.84 $164.65 

F $152.29 $159.27 $165.73 

G $150.27 $159.00 $164.80 

H $147.96 $154.43 $163.06 

Concerns about the effect of parameter uncertainty on business objectives aligned with 

revenue motivated further analysis. If the uncertainty set could be used as a means of 
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determining worst-case revenue, then the uncertainty set could also be used to explore variations 

of first choice share within a product line. Uncertainty analysis conducted this way provides a 

product line perspective that has not been discussed in the literature, and is discussed in the next 

section. 

Exploring the effect of parameter uncertainty from a product share perspective. 

Additional motivation for exploring the effect of parameter uncertainty from a product share 

perspective is shown in Figure 5. Consider a scenario where the manufacturer has decided to 

offer three products. These products compete in a market against three competitor products and 

an outside good. Now, consider a single respondent making a choice in this market. Their 

selection is modeled using a first choice decision rule. For a given draw from the posterior 

distribution (let us call it Draw A), results from the market simulator indicate that the respondent 

selects the first of the three products offered by the manufacturer. Since a first choice rule is 

being used, choice is fully assigned to a single product. 

The uncertainty set discussed in the previous section was comprised of a set of draws from 

the posterior distribution. If another draw is considered (we will call this one Draw B), the results 

from the market simulator indicate that the same respondent has now chosen the second of the 

firm’s three offerings. From the share perspective of a product line, nothing has changed; the 

effect of uncertainty would be unobservable. Yet, from a product manufacturing and component 

inventory perspective, the change in respondent choice is significant. While the first choice share 

for this respondent at the product line level remains consistent at 100%, the deviation of share 

within the product line is also 100% (going from the first offering to the second offering). 

Figure 5. Representative example demonstrating how parameter uncertainty 

can be unobservable at the product line level, while having significant impact 

at the product share level. 

 

This led to a question that motivated the second half of this work—how big of an issue is 

parameter uncertainty when making resource and production allocation decisions? As an initial 

exploration, the variability in product share was examined for Solution A from Figure 3. 

Observations for First Choice Share within the product line were taken over the 800 draws from 

the posterior distribution. A summary of these observations are reported in Table 5. Reported 

values include the First Choice Share of each product in the line from the nominal model (the 

mean of the posterior distribution) and the mean, standard deviation, minimum, and maximum 

values of first choice share distribution from the 800 draws. 

The significance of parameter uncertainty when making configuration and pricing decisions 

is demonstrated by the misalignment of within line share distribution between the nominal model 

and the uncertainty set. First, there is a difference in the mean values of First Choice Share 

between the nominal model and the uncertainty set. Perhaps more important is the range between 

minimum and maximum percent distribution of First Choice Share. The density plot for Product 
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1’s First Choice Share is shown for the uncertainty set in Figure 6. In the next section, a problem 

formulation strategy designed to reduce the width of this distribution is introduced. 

Table 5. Comparison of First Choice Share for products within a product line solution. 

Results for both the nominal model and the uncertainty set are reported. 

Product within the 

line 

Percent distribution of within line First Choice Share (in %) 

Model: Mean of 

the posterior 

distribution 

Model: Uncertainty set 

  Min Max 

Product 1 13.01 16.90 4.54 5.34 31.03 

Product 2 9.59 12.25 3.45 2.92 21.43 

Product 3 12.33 15.04 4.23 5.17 27.52 

Product 4 43.15 34.77 4.97 20.97 45.65 

Product 5 21.92 21.04 4.59 9.72 32.79 

 

Figure 6. Density plot of First Choice Share distribution for Product 1 

using the uncertainty set. 

 

Building variation in product share from model uncertainty into the problem 

formulation. 

We build on the results presented in the previous section by further exploring how 

Respondent #1’s product selection changes over the 800 draws from the posterior distribution. A 

bar chart showing choice rule outcomes is shown in Figure 7. Using the nominal model of the 

mean of the posterior distribution, the choice rule results in a selection of Product 1 from the 

firm. For approximately 300 of the 800 draws, this choice rule result is also obtained. Less than 
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100 of the draws divert share from the firm to the competitor products or the outside good. 

Rather, over half of the draws from the posterior distribution maintain firm-level share while 

diverting product share, with most of the share going to Products 4 and 5. 

Figure 7. First choice rule results for Respondent #1 using the uncertainty set. 

Under the nominal model this respondent’s first choice was Product 1. 

 

These results support the argument that a robust product line solution should be one that 

captures maximum market share with minimal variability, while also minimizing the variation in 

product share. A first thought was to develop a metric that quantified choice consistency so that it 

could be incorporated into a multiobjective problem formulation. This metric, as shown in 

Equation 5, calculates the average number of choice inconsistencies per respondent. Here, N is 

the number of respondents who chose one of the firm’s products using the first choice rule and 

the mean of the posterior distribution. R is the number of draws (for this problem 800). 

As shown in Figure 8, the mean of the posterior distribution is used as the “truth” for each 

respondent. The results of the first choice rule using these point-estimates are then compared 

against the market simulator results for all 800 draws. For cases where the choice rule outcome 

between the nominal model and one of the draws of the uncertainty set align, the indicator 

function is 0. When the outcome of the choice rule between the nominal and uncertainty model 

are different, the indicator function is 1. 

                
 

 
     

         
 
   

 
    (5) 

The introduction of Equation 5 allows for the formulation of a three-objective optimization 

problem. This problem, shown in Equation 6, builds on the previous formulation with the 

additional goal of minimizing the average number of choice inconsistencies per respondent. 318 

unique solutions were found using this optimization problem. As might be expected, the design 

solutions found to be most robust from choice inconsistencies performed poorly on revenue 

objectives. A two-dimensional scatterplot is shown in Figure 9 that illustrates the tradeoff 

between revenue per respondent and average choice inconsistencies per respondent. Solutions 

that reduce choice inconsistencies lead to product line solutions that generate minimal revenue. 
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Figure 8. Representation of choice consistency failure when considering multiple draws. 

The first choice decision under the nominal model is used as the reference. 

 

Nominal model = Mean of the posterior distribution 

 

Uncertainty set = 800 draws (per respondent) from the, and the mean of the, 

                             posterior distribution 

 

Product price = 1.25*Product cost + $52 

Number of products = 5 (with 7 configuration variables each) 

 

Use a multiobjective genetic algorithm (MOGA) to solve: 

     Maximize: F1 = Revenue per respondent (in $) 

     Maximize: F2 = Worst case revenue from uncertainty set, per respondent (in $) 

Minimize: F3 = Variation in choice when considering the uncertainty set 

(6) 

 

Figure 9. Scatterplot of the optimal designs generated for the 

three-objective problem formulation. As average choice inconsistencies 

decrease, so too does the revenue generated by the line. 
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Reformulating the optimization problem for market-level behavior. 

The solutions shown in Figure 9 are based on the concept that choice inconsistencies should 

be minimized for each respondent. Yet, this formulation may not reflect the actual goal. The 

thought of reformulating the third objective was inspired by Chris Chapman’s paper at the 2013 

Sawtooth Software conference [25]. In this paper, Chris discussed how the results of a market 

simulator were not intended to focus on the behavior of an individual respondent, but the overall 

response of the market as a whole. 

This led to a realization: choice inconsistencies at the respondent level could cancel each 

other out, but this was not accounted for in Equation 5. Rather, this outcome was being penalized 

twice. The choice inconsistency formulation shown in Equation 5 was then replaced with a 

variation in First Choice Share (FCS) calculation shown in Equation 7. Here, n represents the 

number of products being developed by the manufacturer. The first choice share is calculated for 

each product using the nominal model. The difference between the FCS from the nominal model 

and the mean FCS obtained from the uncertainty set is then determined. This result is squared 

and multiplied by a weighting factor wi. Weighting factors are bounded between 0 and 1, and the 

sum of the weighting factors must equal 1. While the weighting factors for most problems may 

be equal, the weight in FCS deviation can be increased for a particular product when it has 

configuration parameters specific to it. For example, a single product in the line may use a 

unique engine type, or a particular material, that could not be used on other products in the line if 

manufacturing numbers are adjusted. Equation 7 is then used in the reformulated three-objective 

optimization problem shown in Equation 8. 

                                            
 

 

   

 

      

       

(7) 

 

Nominal model = Mean of the posterior distribution 

 

Uncertainty set = 800 draws (per respondent) from the, and the mean of the, 

                             posterior distribution 

 

Product price = 1.25*Product cost + $52 

Number of products = 5 (with 7 configuration variables each) 

 

Use a multiobjective genetic algorithm (MOGA) to solve: 

     Maximize: F1 = Revenue per respondent (in $) 

     Maximize: F2 = Worst case revenue from uncertainty set, per respondent (in $) 

Minimize: F3 = Variation in First Choice Share distribution (in %) 

(8) 

Solving this optimization problem allows for the simultaneous consideration of business and 

manufacturing tradeoffs in the presence of parameter uncertainty. As shown in Figure 10, a 

decision-maker can identify that the product line solution with the maximum worst case revenue 

also has one of the highest variations in first choice share distribution. Multi-attribute decision 

making tools can be used when selecting a final solution from this set of non-dominated product 
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lines. A solution has been identified in Figure 10 that reduces the variation in first choice share 

distributions to under 4% for the product line that lies near the efficient frontier for the tradeoff 

between average revenue per respondent (from the nominal model) and the average worst case 

revenue per respondent (from the uncertainty set). 

Figure 10. Scatterplot of the reformulated three-objective problem. 

Here, the colorbar represents the variation in First Choice Share distribution 

of products within the line. 

 

The configurations for this product line are shown in Table 6. Some commonality is observed 

in this solution—all products use configuration level 3 for the third attribute, only levels 5 and 8 

are used for the second attribute, etc. Commonality reduces the concern associated with variation 

in first choice share caused by parameter uncertainty. However, for the sixth product attribute, 

four different configuration levels compose the product line solution. As part of future work, the 

weighting term in Equation 7 could be scaled as a function of the number of unique components 

used in a particular product. This would enforce greater consistency for those components that 

must be purchased for only a single product. Developing a greater understanding of how 

variation in first choice share distribution impacts inventory and supply chain decisions could 

reduce negative business outcomes caused by parameter uncertainty.  
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Table 6. Product line configuration profile for the solution identified in Figure 10. 

Product Att1 Att2 Att3 Att4 Att5 Att6 Att7 

P1 4 8 3 6 7 1 4 

P2 5 5 3 4 2 3 4 

P3 8 5 3 6 5 4 3 

P4 8 8 3 3 2 3 4 

P5 8 8 3 4 5 8 3 

CONCLUSIONS AND FUTURE WORK 

Market simulators created from estimates of customer preference are powerful tools for 

exploring market response to new product offerings. When heterogeneity is represented using a 

hierarchical Bayes mixed logit model, the most basic market simulators will use part-worth 

values for each respondent associated with the mean of the lower-level posterior distribution. 

This choice is made because it reduces computational complexity, allowing for faster simulations 

and reduced cost when optimizing a product line. However, a failure to account for uncertainty 

can undermine these computational advantages and result in product configuration and pricing 

decisions that forfeit value. 

The simulations presented in this paper demonstrate the importance of accounting for 

uncertainty when conducting market simulations. Parameter uncertainty was addressed by 

considering 800 draws saved from the lower-level posterior distribution of a hierarchical Bayes 

mixed logit model. For a multiobjective optimization problem of share versus profit, four 

locations of the Pareto frontier were explored. As more weight is placed on the profit objective, 

the major axis of the confidence ellipse grew (meaning more scatter in the predicted share of the 

product line over the 800 draws). Conversely, the minor axis of the confidence ellipse shrank, 

leading to less scatter on the profit objective. Comments have been made at previous Sawtooth 

Software conferences about the possibility of an overstated variance for uncertainty when 

simulating from draws obtained from the lower-level posterior distribution. Simulating from the 

upper-level model may provide a more accurate uncertainty representation, though lower-level 

models have been shown to reflect respondent heterogeneity for product line problems. 

Exploring how information from both the upper- and lower-level models can be used is an 

opportunity for future work. 

Attention then turned to an optimization problem that maximized the revenue generated by a 

product line. Here, the mean of the posterior distribution was used as the basis for a nominal 

model. This mean value from the lower-level HB model and the 800 draws from the posterior 

distribution were combined to create an uncertainty set of models. A multiobjective optimization 

problem was formulated that maximized revenue under the nominal model while simultaneously 

maximizing worst case revenue from the uncertainty set. By looking at worst case revenue from 

an entire set of models, an effective “lower bound” for revenue could be determined for each 

product line solution. 

There are interesting challenges raised by this problem formulation. The problem formulation 

given by Equation 4 considers a worst case scenario. Outliers may drive the optimization result, 

and the decision to define a percentile threshold may be more effective. As the paper’s discussant 

at the conference, Mark Beltramo noted that maximizing worst-case revenue amounts to 

maximizing revenue from a small quantile of the distribution, corresponding to a decision-maker 
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that is extremely risk averse. Because optimizing the nominal model provided a biased estimate 

for maximum revenue compared to the average revenue over the uncertainty set, he continued by 

proposing a problem formulation where the first objective maximized average revenue per 

respondent over the uncertainty set (expected return), while the second objective maximized 

average revenue per respondent minus the kth quantile over the draws (risk). Since robust 

product line design is similar in concept to balancing risk and return in a stock portfolio [26], he 

suggested that the 5th percentile may be considered for k to align with common practice in 

finance. Finally, the composition of the uncertainty set could be further explored. All draws that 

were saved from the posterior distribution are considered to have equal value, though it may be 

true that some are closer to resembling true market behavior. 

A significant contribution of this paper is the introduction of a third objective that aligns with 

the resource and production allocation decisions discussed by Bertsimas and Misic. The 

introduction of a third objective began with a measure of choice inconsistency within a product 

line that was measured at the respondent level. However, individual respondent choice may not 

be the appropriate concern. This third objective was reformulated to minimize the variation in 

First Choice Share for each product in the line. The two measures used were the within-line First 

Choice Share from the nominal model and the average within-line First Choice Share from the 

uncertainty set. By adding a third objective, solutions can be found that balance revenue 

uncertainty at the product line level while providing insight into the extent that the choice of 

individual products varies. This information is significant because it can be used to identify how 

parameter uncertainty within the market simulator might impact component ordering and 

production decisions that need to be made by a manufacturer. The discussant noted that expected 

holding costs increase with variance of demand, and a formulation of the third objective that 

minimized a weighted sum of the variances of the individual product choice shares could be 

used. Such considerations have been unexplored using market simulators, and this formulation 

presents significant opportunities for the use of quantitative market research models when 

designing products that are physically produced. 

While some opportunities for future work have already been discussed, it is important to note 

that the results presented in this paper only consider model parameter uncertainty. Structural 

uncertainty has been discussed in the literature, though it was not addressed in this paper. 

Further, the incorporation of uncertainty into market simulators can include uncertainty related to 

the product attributes used by the firm, component costs, and the attributes and prices of 

competitor products. Incorporating these additional uncertainties will increase the computational 

expense of a simulation. Yet, the potential hazard of ignoring uncertainty in market simulators 

can lead to configuration and pricing decisions that forfeit value and can result in resource 

allocation decisions that cannot be easily reversed or corrected. 
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PROPERTIES OF DIRECT UTILITY MODELS FOR 

VOLUMETRIC CONJOINT 

JAKE LEE 
QUANTUM STRATEGY, INC 

ABSTRACT 

Volumetric conjoint models are an exciting, new area for choice modeling practitioners. The 

new models are based on established economic theory and don’t require duct tape. The models 

are very new and still need investigation to understand the circumstances when they work well 

and when adjustments need to be made. 

Direct utility models are more appropriate when you’d expect consumers to pick multiple 

options to maximize their utility. The model accounts for 2 ideas that may be new to the choice 

modeling community. Specifically, the model has parameters of budget constraint and satiation, 

to give a more complete understanding of the consumer choice process. 

A CASE STUDY—MACARONI AND CHEESE 

In 2016, macaroni and cheese sales were near $1.5B. With over 1,000 SKUs in total, the top 

40 SKUs represent 72% of total category revenue. And a small number of brands made up the 

majority of sales. 

We conducted an in-house study (no client) of this category to take a closer look at modeling 

options and impacts on managerial decision making. Here is an example choice task: 
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We collected 1,000 responses from consumers who had purchased any macaroni and cheese 

in the last 3 months. Each respondent provided purchase estimates for 8 scenarios. The average 

survey completion time came in just under 6 minutes. In addition to the choice exercise we asked 

just a few behavioral, attitudinal and demographic questions. 

Just like in the grocery store, respondents were free to choose any number of boxes or cups. 

They also could choose to not purchase any by selecting zero for each option. For convenience, 

the total cart amount was dynamically calculated for the respondent to see. 

The design elements were chosen after reviewing syndicated sales data for the category. They 

were chosen to accommodate most of the top 40 highest revenue products to later be put into the 

simulator. For fun, we included a few features that were not currently in the top products, but 

could be used as potential innovation in the category. 

In the chart below, each row represents an attribute with its various levels displayed from left 

to right. 

 

We included separate price ranges for boxes and cups to be consistent with the market values. 

The final price shown to respondents was calculated by multiplying the number of units in the 

package by the price level assigned to that alternative. 

A randomly generated experimental design was used to tee up product configurations for the 

respondents (more on experimental design later). 

After cleaning the data for consumers with zero demand and bad responses, the total sample 

size was 958. 

CONCERNS ABOUT RESPONDENT QUALITY—PROPOSED INTERACTIVITY 

Experienced researchers will have the same concern moments after seeing an example choice 

task with a volumetric response: What if respondents type in unreasonably large numbers? Won’t 

that have a large/undue impact on the model results? 

The answer is yes—unreasonably large responses can have a very dramatic impact on the 

results. Beyond cleaning respondents who give unbelievable responses, there are a few 

interviewing strategies that you can use to keep the responses closer to reality. 

Our proposed interactive interview process has 4 steps: 

1. Ask about past purchase behavior. 

2. Ask for a reasonable budget amount. 

3. Identify a threshold for what you consider “high” spend. 

4. If the total cart amount for any task exceeds the value from 2 or 3, provide an opportunity 

for them to revise their cart. 
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The interactive approach helped us to identify outliers or bad respondents. It also provided a 

mechanism for respondents to catch their own typos. 

For example, this respondent filled their cart with $234 worth of macaroni and cheese on 

their first task. After being prompted with an option to revise their cart, the dollar amount was 

reduced to $23. 

It looks like the first submission had a typo that otherwise would have led to having all of the 

respondent’s data tossed. 

 

Another respondent had some very weird response patterns. Each cart had high enough $ 

amount to trigger a prompt. After each prompt the respondent added more products to their cart. 

This behavior was exactly what we’d expect from a bot and they were removed from the final 

data. 
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What about overstatement? Don’t respondents exaggerate how much they will spend? Yes, at 

the 2017 ART Forum Hardt-Allenby showed for the same group of people, dollars spent on a 

conjoint task were about 50% higher than they were in store. 

Hardt-Allenby (2017 ART Forum) 

The disparity in spending didn’t seem to have an impact on managerial inference. They 

showed that you can uncover the same choice process for both conjoint and in-store shopping. 

Regardless, this is still something to keep an eye on. 

In the macaroni and cheese study, we allowed consumers to edit their cart and cart sizes 

(dollars) were adjusted downward by 48% in the first task. The adjustment tapered off 

dramatically in subsequent tasks. 
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Ideally, we’d like to compare the spending amounts with the transactional data, but we did 

not have that level of granularity in the syndicated sales data. 

WHY THE STANDARD MODEL DOESN’T WORK HERE 

In the world of choice models, the most common model applied is the multinomial logit 

model (MNL). This model does an exceptional job under a wide variety of circumstances and is 

often referred to as the standard model. 

The MNL requires the response data to be a single choice (including none). For macaroni and 

cheese, it is very common for people to buy multiple boxes/cups. Also, they can seek variety 

across different flavors and brands. Forcing respondents to only choose one option would go 

against the economic theory of consumer choice that states consumers will choose the option(s) 

that maximize utility. 

Volumetric conjoint loosens the restrictions of a single choice. But carries with it a more 

complicated model to understand and forecast the complexities of consumer choice. 

MODEL OVERVIEW 

A new R package is available to do the modeling. The package is called VDMDU. The 

package author, Nino Hardt, has done an amazing job making the modeling fast and robust (Kim 

and Hardt 2016). 

The model is based on Direct Utility Theory and brings in some new concepts (compared to 

the standard model) to help understand the consumer choice process. The two new features are 

the budget constraint and satiation. 
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Budget Constraint 

The model has an explicit parameter for budget. With this parameter, products or alternatives 

can be thought of as competing for the individual’s budget. The forecast spending is constrained 

such that it will never exceed the budget constraint. Any option that exceeds the budget 

constraint will have demand of zero. 

The estimation of the budget constraint is carefully modeled such that its lowest possible 

value corresponds to the highest spending value in any of the conjoint choice tasks. This 

guarantees that the optimal in sample predictions are feasible. 

In simulation you’ll see that lowering price frees up budget and consumers might buy more 

units of that product. 

Satiation 

sā′shē-āt′ 

1. To satisfy (an appetite, for example) fully 

2. To provide (someone) with more than enough 

The standard model has a completely reasonable assumption that utility can be maximized 

with just one option. That reasonable assumption works well in most choice situations. In some 

categories, like food and beverage, it is unrealistic. In these categories, consumers derive more 

utility from more units. 

The model’s satiation parameter governs the diminishing rate of utility for additional units as 

product utility increases or price decreases. 

Other Observations about the Demand Model 

There is an upper bound on simulated market revenue. Each respondent’s forecasted 

spending will not exceed their estimated budget constraint. This upper bound does not apply to 

units or profit—just revenue. This is different from the standard model that has an upper bound 

of share of choice. 

Forecasted quantity demanded increases with utility, but at a diminishing rate. If you make a 

product better, an individual might choose more of it. 

There is no price parameter in the model. The actual product price is part of the forecasting 

equation. Price sensitivity must be derived in simulation. Unlike the standard model, there is no 

chance of reversed price sensitivity. 

The derivation of the utility and demand functions are beyond the scope of this paper. See the 

academic work for the formulas and theoretical background. Howell (2013) provides a good 

overview. 

MODEL OUTPUT 

This class of models converges very fast compared to the standard model. Below is a 

traceplot of the posterior means. Every 10
th

 draw is plotted. The lines become horizontally flat (a 

sign of convergence) relatively quickly. 
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The model coefficients made sense when compared with the market sales data. 
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Attribute Level Mean 2.50% 97.50%

Intercept -2.55 -2.75 -1.35

Velveeta 0.62 0.01 0.81

Kraft 0.95 0.01 1.17

Annie's 0.21 0 0.36

Cracker Barrel -0.11 -0.2 0

Pasta Roni -0.29 -0.47 -0.02

Private Label -0.15 -0.26 0.01

Pepperidge Farm -0.16 -0.27 -0.01

Horizon

7.25 ounce box 0.64 0.07 0.77

2 ounce cup

Elbow Macaroni 0.1 -0.01 0.18

Shells 0.02 -0.05 0.08

Spiral -0.03 -0.11 0.05

Fun Shapes

Cheddar -0.07 -0.14 0

3 Cheese 0.05 -0.02 0.12

White Cheddar -0.11 -0.18 0

Sharp Cheddar -0.03 -0.09 0.04

Creamy 0 -0.07 0.08

Wisconsin Cheddar

Powder Cheese Packet -0.04 -0.09 0.02

Liquid Cheese Packet

Stove Top -0.04 -0.1 0.02

Microwave 0 -0.06 0.06

Stove Top or Microwave

No Claim "" 0.04 -0.03 0.12

Organic 0.03 -0.03 0.1

Gluten Free 0.02 -0.05 0.09

Low Calories -0.04 -0.11 0.03

10 grams of protein

Single pack -0.87 -1 -0.11

4 pack -0.02 -0.11 0.11

8 pack -0.09 -0.2 0.12

12 pack -0.05 -0.18 0.15

18 pack

ln(gamma) -1.18 -1.31 -0.49

ln( E) 2.7 2.51 2.77

ln(sigma) -0.26 -0.34 0.08

Health Claim

Pack Multiple

Brand

Size

Type

Flavor

Cheese Form

Preparation
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For practitioners used to the standard model, it can be surprising to see there is no coefficient 

for price. The actual/simulated price is in the demand function and we do observe downward 

sloping demand curves. 

 

Interestingly, for practitioners who are used to seeing occasional positive price coefficients in 

the standard model, this model will never have price reversals because lower price will always 

lead to more demand. The relationship is baked into the assumptions of the model. 

NOTES ON EXPERIMENTAL DESIGN 

The purpose of the experimental design is to efficiently reduce uncertainty. Most often d-

efficiency is used. Its objective function is to reduce the uncertainty in the parameter estimates. 

Other measures of efficiency (V, A, G, etc.) are possible. 

For the standard model a random design is essentially equivalent to a d-optimal design that 

assumes all parameters are zero. 

A random design for a volumetric model will struggle to accurately capture the new 

parameters for budget and satiation. For example, to get a good read on satiation, you will want 

tasks that push the boundaries on utility and price to best help the satiation parameter know 

where that fully satiated line is. 

You should either construct a model-specific efficient design, which is understandably 

difficult, or consider adding in some additional tasks to better model the relationship between 

volume and the model parameters at the extremes of price and utility. 

RECOMMENDATIONS AND CONCLUSION 

Volumetric models of demand for conjoint analysis are still very young. The model shows a 

lot of promise for managerial inference when the standard model assumptions don’t fit. 

The model is a natural fit for the food and beverage categories. It could be appropriate for 

entertainment categories like movies and theme parks. Any time consumers would regularly pick 
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multiple options that are competing for the consumer’s budget, the direct utility model may be 

more appropriate than the standard model. 

FUTURE RESEARCH 

In simulation we saw more price sensitivity than expected. Perhaps too much as the model 

suggested to optimize revenue, price should be set at the lowest value tested. We noted that the 

demand curves flattened out a bit when the satiation parameter, gamma, was higher. More work 

is needed to understand the right level of price sensitivity and the role of experimental design on 

the parameter estimates. 

 

  

 Jake Lee 
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INTRODUCTION1 

Volumetric models have a varied history in marketing. Some practitioners and academics avoid 

them. Volumetric models attempt to predict the number of units of a product or alternative a 

consumer would buy. Some argue the respondents are incapable of giving accurate volumetric 

responses to experimentally designed tasks (Huber, 2018 discussion of Jake Lee’s presentation). 

Others say the data are too inconsistent and too crazy to model in any reasonable fashion. Some 

even refer to bad experiences by previous researchers to model and predict volume (e.g., Turbo 

Choice Modeling discussions). Nevertheless, building volumetric models from data collected in an 

experimentally designed surveys has become the topic of recent papers at the Sawtooth Conference 

and ART Forums over the years (e.g., Eagle, 2010; Garratt and Eagle, 2010; Howell and Allenby, 

2012). Recent academic papers include the hierarchical Bayesian volumetric models proposed by 

Kim, Allenby and Rossi (2007) and, more recently, that of Pachali et al., (2017) and Hardt et al. 

(2017). 

The motivation of this presentation is two-fold: 

1. To promote the use of volumetric models which are now easier to estimate than ever before. 

2. To examine the patterns of substitution inherent in three different approaches to modeling 

volumetric data. 

THE MODELS COMPARED 

Joint Discrete/Continuous Model 

Eagle in (2010) proposed a series of models that consist of two components: a share model 

explicitly designed to capture the patterns of substitution among alternatives in a given scenario; 

and a volumetric model that uses the predictions from the share model to predict either total task 

volume or alternative specific volumes. 

By substitution we are referring to the change in the alternatives’ share (and units) of volume 

that occurs when the attributes of the alternatives change. For example, if we raise the price of 

product A, we would expect the volume of product A to drop. If that loss in volume goes to another 

product(s), then that change in the other products’ volume is called substitution. The multinomial 

logit model is an explicit choice model that directly predicts substitution. In the case of the 

                                                           
1The design of the data used in the study was done by Louviere and Islam. Louviere provided some input to the modeling and Islam commented on 

the material presented. Otherwise most of the work, including the writing was done by Eagle. 
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multinomial logit model, the substitution that is predicted is a constant relative change in the 

predicted probabilities of the non-changing alternatives. 

Originally estimated sequentially (i.e., the share model, then the volumetric model), these joint 

models can now be estimated jointly using hierarchical Bayesian methods. 

The first component of the model may consist of any valid specification of a probabilistic choice 

model. Typically, this is an MNL model, but any form of a choice model can be used. This 

component of the model is explicitly designed to capture the patterns of substitution among the 

alternatives in a scenario. The volumetric data is converted into a share of volume and those shares 

used to fit the share model component. 

The volumetric component uses the predictions from the share component as inputs into the 

volume model. In the case of the total task volume model, this input is the natural log of the net 

expected utility of the set of alternatives (e.g., Ln[Denominator of MNL model]). In the case of the 

alternative-specific volume model, the inputs are the predicted probabilities of the alternatives. 

Additional terms can be added into the volumetric model (such as bias adjustments: Train, 1986) 

and a common set of upper level model covariates may be used. 

Estimated simultaneously using hierarchical Bayesian methods (specifically RSGHB), the 

parameters of these two components now share a common parameter covariance matrix and the 

error components can be allowed to be correlated. Typically, one uses the lower-level posterior 

draws to predict (or point estimates of such a model), but one can also predict using the upper-level 

model parameters. See Eagle (2010) for details on the model formulas. 

This is a descriptive type of volumetric model, pure and simple. It is engineered to predict 

volume data without any direct ties to specific theories of demand. It is based upon the concept of 

indirect utility rather than direct utility. However, there is previous academic work using such 

models (Hanemann, 1984; Train, 1986; and Hausman, et al., 1995), but not in the context of fitting 

hierarchical Bayesian models. 

The Hardt-Allenby Model 

Hardt and Allenby (2017) presented an elegant direct utility form of a volumetric model which 

is an extension of the earlier model presented by Howell and Allenby in (2012). Mathematically 

derived and quite elegant, the authors have built a model that is comprised of three components: the 

consideration of an alternative at a given price; a budget constraint; and a satiation component. The 

consideration component addresses whether the respondent would even consider an alternative at it 

given price. This naturally affects the set of viable, or considered, alternatives in any scenario. The 

budget constraint is part of the consideration component, but it also affects whether the respondent 

would buy anything at all. This is captured through the use what is called the outside good (e.g., the 

None alternative in choice modeling parlance). All substitution among alternatives is captured 

through the outside good. There is no direct, alternative-to-alternative, modeling of substitution. The 

satiation parameter enables the model to capture the diminishing benefit of continually increasing 

volume. That is, there is satiation in demand. See Hardt, et al. (2017) for details of the model 

formulas. 

Nino Hardt has made the estimation of this hierarchical Bayesian model very easy. He has 

developed R code that is very fast and easy to setup, to fit, and predict using the model. One can 

acquire the R code direct from Hardt. The model includes covariates in the upper level and 
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estimates individual-level parameters. Predictions can be generated using the upper-level model or 

using lower-level posterior draws. 

The Hardt-Allenby model is an explanatory model of individual-level demand (Allenby 

discussion of this presentation, 2018). As such, it is designed to explain the behavior we see in 

addition to predicting it. It is not, however, optimized for prediction. That is not its main purpose. 

Nevertheless, it does predict quite well in the examples shown at conferences and in papers. 

Our focus was on the ability of the model to capture patterns of substitution among similar 

alternatives. We are skeptical of the ability of the model whose sole source of all substitution is 

through the outside good and budget constraint. To further elaborate, the main component of the 

Hardt-Allenby model is a direct utility function that is purely a function of the alternative’s 

attributes and the alternative’s price. If that price exceeds the budget constraint (a parameter in the 

model), then volume drops. That volume goes to the outside good, which includes not buying 

anything at all and all other alternatives. We want to see if the model works from the managerial 

perspective. 

The Latent Class Poisson Model with Cross Effects 

The final model tested is that of a Poisson model. Poisson, or count, models are often used to 

model volume. They are designed to model data that ranges from 0 to a maximum volume. The 

models are easily fitted in a variety of ways including regression-like aggregate models, latent class 

models, and hierarchical Bayesian models. We chose to use a latent class formulation for a change 

of pace. These models have as a dependent variable, the number of units assigned to an alternative. 

The independent variables are the attributes of the alternative under consideration. As such there is 

nothing in the model to capture the substitution of one alternative on the other. 

To remedy this lack of substitution in the classic Poisson model we add cross effects from the 

other alternatives into the specification of each product’s volumetric model. Rather than use every 

attribute as a cross effect, we limited the specification to only the two attributes that have the 

biggest impact on volume. Using too many cross-effect attributes leads to severe overfitting issues 

in these models. 

One important issue with any cross-effect model is what happens when you delete or add 

alternatives to a task. Deleting an alternative is simple enough: one simply drops the cross effects 

associated with the deleted alternative in the remaining alternatives’ volume models. Adding an 

alternative presents a problem. Does one add more cross-effect terms to the existing alternatives’ 

model specifications? If so, what should the new parameter values be? Or, should one replicate the 

existing alternatives’ models using the new alternative’s attribute values in the cross-effect terms of 

the replicated models, and average across the existing alternatives’ volume predictions? This issue is 

not discussed in the literature nor in Sawtooth Software’s previous conferences. In this paper we 

tried both methods and the results were approximately the same. We ended up using replicated 

cross-effect terms with their already estimated parameters to capture the effect of adding new 

alternatives to a task. 

THE DATA 

The data is from a study being conducted by the authors examining volumetric modeling across 

four different readily consumed products. The specific data used in this paper is for canned tuna. 
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Respondents are part of an IRI panel recording their actual purchase of the four products over a 

specific time horizon consisting of three waves: 

1. Wave 1. The respondents were given a stated preference, volumetric, set of tasks in addition 

to other survey information, 

2. Wave 2. The respondents’ purchases of the same product were monitored after conducting 

the volumetric task. 

3. Wave 3. A follow-up to wave 2 in which some respondents responded to a new set of 

volumetric tasks after their real purchases were monitored. 

There are 738 respondents with complete data across all waves for the canned tuna dataset. The 

canned tuna task is shown in Figure 1. The task is part of a designed volumetric stated preference 

task in which we asked for the number of units of canned tuna each respondent in a closed form 

response (0, 1, 2, . . . , to more than 6 units). Respondents could assign units to multiple alternatives 

in the task. If they selected zero for all alternatives in the task, then their total volume was zero. The 

context for the task was the respondent’s next regularly scheduled shopping trip. 

Figure 1. The example stated preference, volumetric task given to all respondents 

in waves 1 and 3. 
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The tasks were generated from a 5 (brands) x 2
4
 x 4 design. The attributes were: 

 Brand: 5 levels—StarKist, Chicken of the Sea, BumbleBee, A store brand, and Any other 

brand 

 Type of tuna: 2 levels—Albacore or Regular 

 Packed in: 2 levels—Oil or Water 

 Form: 2 levels—Chunk or Solid 

 Size: 2 levels—6 oz or 12 oz can 

 Price: 4 levels—unique levels assigned to each brand derived from using IRI data collected 

prior to wave 1 

The final design consisted of alternative-specific attribute levels constructed using a fractional 

factorial design. The design consisted of 8 blocks of 8 tasks each. Each respondent was randomly 

assigned to one of the 8 blocks. Tasks were randomly assigned to each respondent within each 

block. All respondents completed the same 4 holdout tasks. 

In this market, the expectation is that the products are substitutable and removing one brand, 

adding an additional SKU, and changing price while holding all else constant should lead to not 

only some change in the volume of the other alternatives/brands, but also a change in total volume 

purchased. There is likely some latent demand given the tasks show only 5 SKUs at any given time. 

So, adding a new SKU would likely increase total volume, but it would likely take some volume 

away from the original set of brands. Removing a brand should lead to the converse effect. 

An important point about these data and the design is that the number of alternatives remained 

constant across all tasks. As such, we have no data to explicitly compare to the model predictions 

when we add or remove products. Any substitution we predict while adding or removing an 

alternative is purely a result of the model estimated and its parameters. This will become an 

important point in the comparisons later. 

Figure 2 below shows the distribution of brand volume incidence by respondent (i.e., every time 

a respondent assigned a non-zero volume to a brand they are given a 1; else a zero) across the 8 

estimation tasks they saw. There is a good distribution of brands chosen across the tasks respondents 

saw. Only 6% of the respondents chose the same brand 100% of the time across their 8 tasks. 62% 

of the respondents chose 4 or more brands across all their tasks. 
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Figure 2. Distribution of Brand Choice Incidence by Respondent 

 

The volumes assigned across tasks also showed a good distribution. 39.6% of the tasks had a 

zero total assigned volume. 34.9% of the tasks had all volume assigned to a single alternative in the 

task. 25.5% of the tasks had volume assigned to 2+ alternatives. 

Figure 3 depicts the distribution of total task volumes assigned across tasks seen by the 

respondents. It shows a clear spike at zero and minor spikes at 2 and 6 units. It resembles a Poisson 

distribution. 
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Figure 3. Distribution of Total Tasks Volume Across All Tasks 

 

ESTIMATION 

The joint/discrete model and the Hardt-Allenby model were both estimated using hierarchical 

Bayesian methods. The R package RSGHB was modified to handle the simultaneous estimation of 

the joint discrete/continuous volumetric model by rewriting the likelihood function. The Hardt-

Allenby model was estimated using the highly refined R routines built by professor Nino Hardt. The 

latent class Poisson model was estimated using the Latent Gold package. 

All models were built using generic parameters across alternatives. That is, the impact of type of 

tuna is the same across all brands. Price was also estimated as a generic effect but transformed using 

the natural logarithm. The design allowed alternative-specific parameters to be estimated, but, for 

simplicity’s sake, we used generic parameters. 

Both the joint discrete/continuous and Hardt-Allenby models were estimated using 100,000 

burn-in iterations. 10,000 post burn-in iterations, saving every 10th iteration, were used for the 

model predictions in the subsequent model comparisons. We used the saved 1,000 posterior draws 

for all comparisons. We did predict volumes using the saved individual-level posterior parameters 

and using draws from the upper-level model in order to compare them. The predicted values for 

volume across both prediction methods were indistinguishable from one another. This is likely 

because we did not include any covariates in the upper level of the model estimation. 

The latent class Poisson model estimated using Latent Gold was conducted using all 5 brands’ 

volume models. Each brand had its own set of unique constants, generic main effect parameters, and 

alternative-specific cross effects of every other brand in their model. This enabled the latent class 

program to build a single set of segments across all brand volume models. The solution showed a 

continuously improving BIC criteria up to 20 segments—where we stopped estimation. This 

suggests an extreme amount of heterogeneity in the data. 
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As most practitioners and clients have difficulty with more than 6-8 segments, we examined 

how the BIC criteria shrank as the number of segments grew. A scree plot of the BIC criteria across 

the number of segments showed a bend at six segments. Six segments were ultimately used for the 

latent class Poisson model. The model parameters were consistent with respect to the main effects 

with those of the HB estimated models. However, the cross-effect parameters were a mix of positive 

and negative signs. 

In the case of every model, all parameters were included in the final set of models. Dropping 

those terms that might be considered insignificant based upon the conventional criteria for both the 

HB and latent class was not done—as would normally be the case in model prediction. 

PREDICTION TO ESTIMATION DATA AND HOLDOUT TASKS 

Estimation Data Fit Measures 

Tables 1 and 2 show some key prediction metrics from the models. In the tables and figures 

below the following labels are used: 

 JDC for the joint discrete/continuous volumetric model 

 Hardt-Allenby for the Hardt-Allenby direct utility volumetric model 

 LC Poisson for the latent class cross-effect Poisson model 

Table 1. R-square Values of the Actual Volumes vs. the Predicted Volumes 

Total Volume Volume by Alt 

JDC 0.61 JDC 0.47 

Hardt-Allenby 0.53 Hardt-Allenby 0.48 

LC Poisson 0.26 LC Poisson 0.29 

Examining the R-square values across models on the estimation data (Table 1) shows that the 

JDC model performs better in predicting the total volume across all alternatives across tasks. When 

examining the alternative specific volumes predicted across tasks the JDC model and the Hardt-

Allenby model predict about the same. The latent class Poisson model is the clear runner-up, but it 

has many fewer parameters than either HB model. 

Table 2. Mean Absolute Error in Units of Volume 

Total Volume Volume by Alt 

JDC 1.417 JDC 0.459 

Hardt-Allenby 1.566 Hardt-Allenby 0.475 

LC Poisson 2.287 LC Poisson 0.571 

Table 2 shows the mean square error of estimation for each model for the total and alternative-

specific volumes. The JDC model predicts the actual volume data in the estimation data set for both 
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total task and alternative-specific volumes better than the other models. The difference between the 

JDC and Hardt-Allenby model is small, whereas the latent class Poisson model again trails in terms 

of internal model fit. 

Holdout Task Prediction 

Tables 3-6 show the predicted total volumes for each model to the 4 holdout tasks. Each table 

shows the actual vs. predicted total task volumes, the percentage difference in the values, and the 

mean absolute error across the 5 alternatives in each task. The general conclusion is that the Hardt-

Allenby model performs better in both the estimation of total task volume and alternative specific 

volumes across all 4 holdout tasks. 

Table 3. Holdout Predictions to Holdout Task 9 

Holdout 9 JDC Hardt-
Allenby 

LC Poisson 

Predicted Total Volume  
(Actual: 1047 units) 1082 996 782 

% Diff +3.3% -4.9% -25.3% 
MAE (units across 5 alts) 47.97 30.93 53.03 

 

Table 4. Holdout Predictions to Holdout Task 10 

Holdout 10 JDC Hardt-
Allenby 

LC Poisson 

Predicted Total Volume  
(Actual: 805 units) 944 693 594 

% Diff +17.3% -13.9% -26.2% 
MAE (units across 5 alts) 48.92 26.75 43.68 

 

Table 5. Holdout Predictions to Holdout Task 11 

Holdout 11 JDC Hardt-
Allenby 

LC Poisson 

Predicted Total Volume  
(Actual: 2876 units) 1932 2806 1924 

% Diff -32.8% -2.4% -33.1% 
MAE (units across 5 alts) 197.76 90.23 190.47 
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Table 6. Holdout Predictions to Holdout Task 12 

Holdout 12 JDC Hardt-
Allenby 

LC Poisson 

Predicted Total Volume  
(Actual: 2283 units) 1551 1996 1427 

% Diff -32.1% -12.6% -37.5% 
MAE (units across 5 alts) 163.67 95.71 171.12 

Figures 4 and 5 depict the actual vs. predicted alternative-specific volume and total task 

volumes for two of the 4 holdout tasks (9 and 11). The Hardt-Allenby model predictions are much 

better on a consistent basis than either the JDC or LC Poisson models. An inconsistency of 

predicting total task volume is apparent in the JDC model if one compares the predicted total task 

volumes for the JDC model across Figures 4 and 5. 

Figure 4. Alternative-Specific and Total Task Volumes for Holdout Task 9 

 

 



277 

Figure 5. Alternative-Specific and Total Task Volumes for Holdout Task 11 

 

The JDC model does well at predicting the total task volume and alternative-specific volumes 

for holdout task 9. In fact, all the models do about the same in this holdout task. However, in 

holdout task 11 the Hardt-Allenby model predicts the total volume and the alternative specific 

volumes better than the JDC or LC Poisson models. 

MODEL COMPARISONS 

Four different scenarios are used for model comparison. The emphasis is not about prediction 

accuracy, rather it is about the face validity of inferences management would make about the 

consumer behaviors inherent in the model predictions. Because of this emphasis, measures of 

predictive accuracy are not reported. We simply show charts that would typically be used to present 

the results of these different market scenarios and report on the differences we see across the model 

predictions. The four comparisons include: 

1. Remove a single alternative from a market (task)—to model a temporary out of stock 

situation. 

2. Add an additional SKU (alternative) for a brand into a market—to model a line extension. 

3. Examine the price sensitivity of a brand in a market—examine the own and cross-price 

sensitivities to a single brand changing its prices. 

4. Add an additional SKU to each brand in a market. 

Remove a Single Alternative 

In this scenario we start with the holdout task number 9. This scenario is outside the domain of 

tasks shown to respondents. That is, we never showed respondents a task with a single alternative 

removed; nor did we ever show a task where we added an alternative. All tasks shown to 
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respondents had the same number of alternatives. Therefore, the predictions are based upon the 

assumed nature of substitution inherent in the models. Additionally, we do not have raw data to 

support or refute the predictions of any of the models. 

Table 7 shows the attributes and levels for this holdout task. The last two columns show what 

proportion of the sample gave a non-zero volume to the alternative and the mean volume for those 

respondents assigning a non-zero volume to the alternative. Every alternative has the same non-

price attribute values. The prices are the are the lowest 12 oz can price for each brand. In this 

scenario we will drop the Chicken of the Sea 12 oz can from the market.  

Table 7. Holdout Task 9 

 HO_9 

Brand Type Packed-In Form Size Price % of R 
choice 

Mean 
volume 
given 
choice 

StarKist Albacore Oil Solid 12 oz $2.99 12.8% 1.80 
BumbleBee Albacore Oil Solid 12 oz $3.68 8.1% 2.03 
Chicken of the Sea Albacore Oil Solid 12 oz $2.89 12.7% 1.90 
Store brand Albacore Oil Solid 12 oz $2.47 11.0% 2.22 
Other brands Albacore Oil Solid 12 oz $2.80 4.8% 1.87 

Figures 6 through 8 present the volumetric share predictions for the joint discrete/continuous 

(JDC) volumetric model, the Hardt-Allenby direct utility volumetric model, and the latent class 

Poisson (LC Poisson) volumetric models respectively. In each figure is shown: 

1. The predicted volumetric share when all 5 alternatives are in the task (e.g., JDC label), and 

2. The predicted volumetric share when the Chicken of the Sea brand is dropped (e.g., -CS 

JDC label) 

The figures look remarkably similar. In each figure the StarKist and Chicken of the Sea brands 

have the highest actual (1st of the 3 bars) and predicted volumetric shares (2nd of the 3 bars) before 

Chicken of the Sea is removed. In each figure the removal of the Chicken of the Sea brand results in 

an increased share of volume for every remaining brand (the 3rd bar in each figure). It appears the 

largest proportion of the Chicken of the Sea volume goes to StarKist, BumbleBee, and Store brands. 

In fact, these changes in volumetric share are roughly equivalent to what one would expect if the 

IIA property held in the models. 
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Figure 6. Volumetric Shares for Dropping a Single Alternative 

Joint Discrete/Continuous Model 

 

Figure 7. Volumetric Shares for Dropping a Single Alternative— 

Hardt-Allenby Model 
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Figure 8. Volumetric Shares for Dropping a Single Alternative—LC Poisson Model 

 

The figures are hiding a key aspect of differentiation across the models. While volumetric share 

is important to know, many clients wish to know the amount of volume change in units so that 

revenues and potential profits may be measured. To understand this, we must convert the figures 

into the number of units predicted before and after the dropping of the Chicken of the Sea brand. 

Figures 9-11 depict the number of units predicted for the same three models for the same 

scenario. Examination across these 3 figures, while expressing the same model results, but in units 

of volume, reveals some key differences. The first set of three bars depicts what happens to the total 

task volume. The first bar is the actual task volume. The 2nd bar is the model’s predicted total task 

volume before dropping the alternative. The third bar is the predicted total volume after dropping 

Chicken of the Sea. The remaining sets of bars are the actual predicted-before and predicted-after 

volumes for the alternatives in the task. 

The JDC model (Figure 9) shows some substitution when the Chicken of the Sea brand is 

dropped. The bars for the remaining alternatives show an increase in volume units, but the net effect 

is for predicted total volume to drop. The increase in volume to the remaining alternatives is nearly 

what one would expect given the MNL component of the model which assumes IIA. While it is not 

exactly IIA, it is very close. 

Figure 11, the LC Poisson model, shows a very similar pattern of growth in the volume in units 

for the remaining brands and a drop in the total volume, but the substitutional pattern deviates from 

IIA more than the JDC model. StarKist’s volume grows by less than 1%; BumbleBee’s by ~3%; the 

store brand by ~11%; and the Other brands by 32%. If IIA held, these percentage changes would be 

nearly the same. 



281 

Figure 9. Volume in Units for Dropping a Single Alternative— 

Joint Discrete/Continuous Model 

 

Figure 10. Volume in Units for Dropping a Single Alternative— 

Hardt-Allenby Model 
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Figure 11. Volume in Units for Dropping a Single Alternative— 

LC Poisson Model 

 

The Hardt-Allenby model (Figure 10) makes substantially different predictions than the other 

two models. The first set of 3 bars show a drop in predicted total task volume when Chicken of the 

Sea is dropped. This is consistent with the other 2 models except the amount of total task volume 

loss is greater between the before and after scenarios (i.e., the drop between the 2nd and 3rd bars of 

the first set of 3 bars is much greater for the Hardt-Allenby model than the other two models). More 

remarkable is what happens to the volumes of the remaining alternatives. When Chicken of the Sea 

is dropped the Hardt-Allenby model predicts that the volumes of the remaining alternatives do not 

change. The alternatives’ volumes stay the same, except for the zeroing out of the Chicken of the 

Sea brand. The predictions before and after dropping an alternative were within 1-4 units when 

aggregated across all respondents! 

This suggests zero substitution among the alternatives. Dropping Chicken of the Sea results in a 

drop in total volume, but the volume of all other brands remains constant. All volume is lost. Most 

managers would have a hard time believing such a story if their expectations assumed some degree 

of product substitution. The IRI data suggests there is some substitution among the brands, but the 

Hardt-Allenby model does not support this expectation. Are these results a function of the stated 

volume data, the design, the context of the choice, or the Hardt-Allenby model itself? That is, is the 

Hardt-Allenby’s model assumption of all substitution, captured by the comparison of each 

alternative’s price to a budget constraint and volume change, going and coming through the outside 

good, the reason for these results? 

Adding a Single Alternative 

As a counter to removing a single alternative, the second comparison examines what is 

predicted by the models when one additional SKU is added to a brand. The expectation is the 
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opposite of removing an alternative: the total task volume should increase and the volume going to 

the original alternatives should decrease (or stay about the same). 

Figures 12 through 14 show the predicted volume in units for the three models. In this case we 

used holdout task 11 which has all brands with regular tuna type, packed-in water, chunk style, 12 

oz cans, and prices at the lowest level of the 12 oz can for each specific brand. We add a single 

BumbleBee 6 oz can at its lowest price. 

The results look like what we would expect when adding an alternative. The JDC model (Figure 

12) shows an increase in total task volume. The original brands of 12 oz cans show a decrease in the 

number of units being sold, while the new SKU captures some of their volume and some latent 

demand (for 6 oz cans). 

Figure 12. Volume in Units for Adding a Single Alternative—JDC Model 

 

The Hardt-Allenby model (Figure 13) suggests the volume in units for the new Bumblebee SKU 

is from pure latent demand. Like the previous comparison, there is no meaningful change in the 

volume for the original alternatives. The change in unit volume for the 5 original brands ranged 

from -3 to +6 units on an average of 563 aggregate units. This suggests all new volume came from 

outside the original 5 brand market. As a result, the total task volume is all from latent demand. The 

increase in total task volume is much larger than the other models. 
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Figure 13. Volume in Units for Adding a Single Alternative—Hardt-Allenby Model 

 

The chart from the LC Poisson model (Figure 14) is different from the other models. Note there 

are two predictions for the LC Poisson model: “+BB 1 LCP 1” and “+BB 1 LCP2”. These are two 

different ways to attempt to predict using a cross-effects model with a fixed number of brands in a 

task. The results associated with “+BB 1 LCP 1” were derived by duplicating the BumbleBee’s 

cross effects (and parameters) in the other alternatives’ model predictions. That is, a single model 

for each of the other brands attempt to capture both BumbleBee SKUs within their prediction. The 

original BumbleBee equations were used to predict the volume going to each SKU using the 

appropriate attribute levels for each BumbleBee SKU. The second set of predictions took the 

approach of predicting two sets of results for every brand and SKU using the appropriate levels of 

the existing and new BumbleBee SKUs for the cross effects. The predictions for each pair of 

equations were averaged to produce the results on the chart. While there are minor differences in the 

predictions for the Chicken of the Sea brand than the Store brand, the other alternatives share 

similar results across the two methods. 
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Figure 14. Volume in Units for Adding a Single Alternative—LC Poisson Model 

 

The results of the LC poison model resemble the Hardt-Allenby model. There is very little 

change in the unit volume for the original brands. Almost all the volume associated with the new 

BumbleBee SKU is generated from outside the original market—that is, latent demand. The 

predicted volume for the Store Brand and the Chicken of the Sea using the “+BB 1 LCP 1” method 

are an anomaly in that they show an increase in volume when the new BumbleBee SKU is added. 

This is likely the result of overfitting with the cross effects and the duplication of the cross-effect 

parameters in this approach. The issue of handling the addition of new alternatives to cross-effect 

models is an area where future research needs to be done. 

Price Sensitivity of a Brand in a Market 

In this comparison we go back to using holdout task 9. We examine the price sensitivity of a 

single alternative across its entire breadth of prices (i.e., across both 6 oz and 12 oz cans). We 

arbitrarily chose to change the price of the StarKist brand. The attributes and prices of the other 

brands are held constant. Model predictions are used to build a set of price sensitivity curves. We 

show what happens to the total predicted task volumes, the volume of StarKist, and that of the other 

brands as we move from the lowest 6 oz can price to the highest 12 oz can price for StarKist. Figure 

15 shows the prediction for the total volume and StarKist-own volumes as we change StarKist’s 

prices. Figure 16 shows what happens to the volumes of all the brands when StarKist changes its 

prices. 
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Figure 15. Volume in Units for Total Task Volume and StarKist’s Own Volume 

When StarKist Prices Change 

 

The three upper lines in Figure 15 show the change in total task volume as StarKist’s prices 

increase from $1.03 for a 6 oz can to $3.66 for a 12 oz can. The vertical line and clear drop in 

volume in the price curves indicate where the StarKist SKU changed from the 6 oz to 12 oz can. 

There is a clear preference for the 6 oz can, especially when one can buy two 6 oz cans for less than 

a single 12 oz can. This pricing is clearly a design flaw. Except for a promotion, it is unlikely one 

would ever see 6 oz cans priced at less than 50% of the 12 oz can. However, given that a StarKist 

6 oz can was never shown side-by-side with a 12 oz can, this pricing dominance was likely not 

apparent to respondents. 

The total volume curves behave as one might expect. The three solid, upper curves depict each 

model’s total task volume predictions. They reveal a similar pattern: dropping volume as price 

increases. The JDC model shows the least amount of absolute unit change from the lowest to 

highest price. The Hardt-Allenby shows the greatest absolute change in volume. The Hardt-Allenby 

model predicts the greatest volumes among the 6 oz cans, whereas the JDC model predicts the 

highest volume among the 12 oz cans. This is likely due to the strong reliance of the Hardt-Allenby 

model on price and the budget constraint. Recall, in the Hardt-Allenby model price is not a 

traditional attribute. All the non-price attributes utilities are directly scaled in price units. The other 

two models impose no budget constraint and price is treated a typical attribute. 

The StarKist-own (dashed) price curves reveal a similar pattern: as we increase price, the 

StarKist volume goes down—with the discontinuity between the 6 and 12 oz cans also present. The 

largest difference between the three models is in the 6 oz can price range. For the 12 oz cans they 

are similar. 

When we begin to examine the impact of StarKist price changes on the other alternatives 

(Figure 16) we really see a difference among the models. Figure 16 shows the impact of changing 
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StarKist prices on Chicken of the Sea. The StarKist-own price sensitivity is shown, again, as dashed 

curves. They are the same as Figure 15. The solid curves near the bottom of the chart reveal the 

changes in the volume of Chicken of the Sea that occur when StarKist changes its prices and shifts 

from a 6 oz to a 12 oz can. The curves of the other brands (not shown) behave the same as that of 

Chicken of the Sea. 

In Figure 16 we see as StarKist prices rise, the JDC model predicted volume of StarKist drops 

and predicted volume of Chicken of the Sea rises, albeit slowly. This aligns with what we might 

expect given the nature of the JDC model. The Hardt-Allenby model and the LC Poisson model 

depict curves that are virtually flat. The predictions show a very slight increase in Chicken of the 

Sea volume for the LC Poisson model, but the Hardt-Allenby model predictions are truly flat. As 

StarKist raises its prices, the volume held by StarKist in the Hardt-Allenby model is lost completely. 

The volume leaves the market. This is contrary to basic market expectations in a market of 

substitutable goods. Aggregated actual sales purchase data suggest some substitution in the real 

world, when prices change and/or promotions occur. The Hardt-Allenby model results are 

unreasonable if clients were expecting to see substitution among the products and they see all 

volume change NOT coming from other alternatives. 

Figure 16. Volume in Units All Brands When StarKist’s Prices Change 

 

Add an Additional SKU to Each Brand in a Market 

In this comparison we use holdout task 11 again and we add an additional SKU to every brand. 

In this case we added a 6 oz can for every brand. The other non-price attributes are held the same 

across all alternatives. We set price for the 12 oz cans and the 6 oz cans to each brand’s respective 

price mid-point (i.e., half way between the highest and lowest prices for the respective can sizes). 

Rather than showing all the charts again, we summarize the results. 
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Basically, the JDC model behaves as before. There is an increase in total task volume and there 

is substitution among the brands. The total task volume increases by ~41%. The original alternatives 

(12 oz cans) all lost some volume roughly proportional to the IIA assumption of the MNL 

component of the JDC model (the drop ranged from relative amounts between -18% to -25.1%). For 

the total task volume, the increase was 702 units. The original brands lost 342 units (across all 5 

brands) and the new brands gained 1,044 units (702 = 1,044–342). This appears consistent with our 

original substitution expectation. 

The Hardt-Allenby model behaved as the previous comparisons. Total volume rose by 92.1% 

(2,158 units!). The original 5 brands lost a total of 2 units across all 5 brands (ranging from -4 to + 3 

units). All the increase in total task volume originates from latent demand uncovered by adding the 

5 new 6 oz cans to the task. The model predictions suggest, again, there is no substitution at all 

among the SKUs. 

The LC Poisson model fails badly in this comparison. We only tested the adding of alternatives 

to the scenario and averaging across them to test the LC Poisson model in this case (i.e., we used 

the “+BB1 LCP 2” approach described earlier). The increase in total task volume is 116.2% (1,976 

units!). Some of the existing alternatives gained volume (i.e., BumbleBee +13.5%; Chicken of the 

Sea +37.8% and other brands +34.9%). The other brands lost volume as we might expect (StarKist 

-11.8%; Store brand -8.9%). Of course, all the new 6 oz cans gained volume. These results would 

suggest a strong market complementarity which is unrealistic in this market. The mix of existing 

alternatives gaining and losing volume is really an example of cross effects having overfit the 

model. This comparison really stretches the capabilities of any cross-effects model and 

demonstrates the weakness of such models in predicting beyond the domain in which they were 

estimated. 

CONCLUSION AND DISCUSSION 

Volumetric modeling is hard. It is in its infancy in the field of marketing. There is disagreement 

on the best way to model volume. The disagreements focus on the differences between models of 

prediction and explanation, they concern whether a respondent has the ability answer volumetric 

tasks, and the different issues faced by practitioners vs. academic modelers. Regardless of what side 

you are on in any of these issues, volumetric modeling should no longer be avoided. 

There are several points we wish to raise with these data and model predictions. They include 

recommendations on the design of volumetric tasks, and a discussion of the model results and some 

empirical evidence of support to the Hardt-Allenby predictions. 

Survey Design Recommendations 

The design used in this study has some weaknesses. Namely, the design used did not provide 

any data that would allow us to support or refute any of the predictions of the comparisons where 

alternatives were added or removed. The tasks always consisted of a single SKU from each brand. 

The SKUs varied, but there were never two SKUs from a single brand presented in a task together. 

Additionally, no brands were dropped from a task. Because of these design characteristics, we have 

no data to refute the results of the Hardt-Allenby model, or support that of the joint 

discrete/continuous model when adding or dropping alternatives. The patterns of substitution we see 

from the model predictions are based solely upon the assumptions inherent in the models. In the 

case of the joint discrete/continuous model, substitution is “forced” by the MNL component of the 
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model. The lack of substitution in the Hardt-Allenby model may be a function of the data or the 

model’s method of capturing substitution through the outside good or a lack of identification in 

some of the key parameters. 

Our recommendations for building volumetric designs are the following: 

1. Build designs that enable the measurement of within-brand substitution—have more than 1 

SKU per brand where possible. 

2. Use a presence/absence design to control the presentation of the SKUs of interest—

especially if absence on the shelf is of interest. 

3. Build designs using alternative-specific attributes—it is best to estimate alternative-specific 

parameters where appropriate. It is always easy to make alternative-specific attributes 

generic rather than the other way around. 

4. Ensure there are many exposures to each level of each attribute. 

5. Carefully build an appropriate context for the task. In these data the context for the task was 

the next shopping trip. In this context it is easy for the respondent to give a zero volume 

because that may have suggested they would wait until their next shopping trip to see a 

better set of alternatives and prices. A longer context, such as having the respondent consider 

the shopping behaviors over the course of a month could lead to quite different volumes and 

alternative choosing behaviors. 

6. Examine your data carefully and look for outliers—both within each respondent and across 

respondents. We were less concerned with such outliers here because we limited the 

volumes to be within a range. One should cap or remove extreme outliers when open-ended 

volume responses are elicited. 

7. Lastly, clean, and reclean, the data. Look not only for outliers, but also for inconsistent total 

task volumes. Someone who has zero total task volume in their last N tasks may be a quitter. 

Someone who sped through the task and have zero variance in total task volume may not be 

a good respondent. 

Model Results 

Looking at the holdout data, the Hardt-Allenby model is the winner, with the joint 

discrete/continuous model coming in second. The LC Poisson using cross effects is the third runner-

up (though an HB Poisson would have done better . . .). 

The Hardt-Allenby model is the clear exception with respect to its predictions and substitution 

patterns. It showed no substitution whatsoever. Is the lack of substitution a model flaw? Is it an 

estimation flaw (e.g., an improper specification of the Priors as Jake Lee’s paper suggests, 2018)? Is 

it a design flaw, or is it a true representation of the data? That is hard to say with certainty. 

The joint discrete/continuous model is a descriptive, predictive model of volume. It works well 

in markets where substitution is expected. It is flexible because any form of a choice model may be 

used to capture substitution. It is also flexible in that the volumetric component can be any form of 

count model: linear, Poisson, negative binomial, zero-inflated. It can contain bias adjustments or 

other terms that may directly affect volume. And, using a system of models that nest alternatives, 

one can even capture complementarity across the nests of alternatives using cross effects in the 

volume component. It may not fit our data as well as the Hardt-Allenby model, but it will always 

work when substitution among products is expected. 
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The LC Poisson model, as we specified it, should never be used. Separate count models using 

cross effects with no constraints on the nature of those cross effects or across the system of 

equations is not an appropriate approach to modeling demand. The approach taken in the paper was 

naïve and the model clearly overfitted. Would a hierarchical Bayesian model have done better? In 

terms of overall predictability, yes. But, without constraints on the magnitude and sign of the cross 

effects, severe overfitting will occur. The impact of the cross effects would not make sense for many 

of the respondents and likely the sample as whole. 

Can the Hardt-Allenby model capture substitution? Professor Nino Hardt ran some simulations 

using their model when we shared our results with him prior to presenting the paper. In those 

simulations he found that the model’s satiation and budget parameters affect predictions of 

substitution in their model. The simulations showed that reducing the magnitude of the satiation and 

budget parameters (i.e., bringing them closer to zero), increases the amount of substitution among 

alternatives in a task ceteris paribus. The Hardt-Allenby model in this paper has a budget parameter 

that is higher and more highly variable than one might typically expect
2
. 

Our discussant, Greg Allenby (2018), in reviewing the presentation, suggested there might also 

be a “siloing” effect in our data. That is, respondents’ stated volumes stayed within a specific 

attribute level, or levels, and the respondents never varied this behavior across tasks. We call this a 

repertoire effect. For example, one might have always assigned a nonzero volume to 6 oz cans from 

BumbleBee only, and, when that alternative did not appear, the total task volume went to zero. This 

is hard to examine within the context of a fractional factorial design. It might be easier to examine 

in a design where there are duplicated alternatives on all but one attribute (but such may be a bad 

design). 

To test Greg’s hypothesis, we produced a chart showing the mean alternative-specific volumes 

across tasks for all brands as StarKist’s prices changed. These are not predictions but means across 

tasks of the raw data. There are only about 4-5 points per brand. The actual means are shown as 

different points in the chart. We allowed Excel to draw the regression line among each set of points 

to see what the slope of each line might be. If substitution occurs, we would expect the slope of 

each non-StarKist line to be positive and greater than zero. Figure 17 shows these results. 

                                                           
2 The mean, median, and 95% confidence intervals for the Hardt-Allenby satiation and budget parameters are: 

Satiation upper-level model parameter: mean = -0.900; median = -0.901; 5% = -0.843; and 95% = -0.957 

Budget upper-level model parameter: mean = 3.270 (!); median = 3.269; 5% = 1.397; and 95% = 5.391 
The budget parameter is highly uncertain! 
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Figure 17. Plot of the Marginal Means of the Raw Data Averaged Across Attributes for 

Each Brand While Changing the Available Prices of StarKist 

 

This chart (Figure 17) shows clearly that the impact of raising StarKist’s prices on the average 

volume of the other brands is quite small. Except for Other brands, the slopes are all positive as we 

might expect if substitution were occurring, but they are all near zero. They are almost flat. This 

lends support to the results of Hardt-Allenby model. All price curves for the non-StarKist brands 

show the same pattern. 

Nevertheless, one could argue that these results might be a difficult sell to managers who expect 

substitution in the market. We still are skeptical of the ability of Hardt-Allenby model to predict 

substitution. While this data seems to support the total lack of substitution among these alternatives, 

one still questions how well the Hardt-Allenby model would capture substitution in a data set where 

it is more pronounced. More importantly, as a practitioner, we are aware of our clients’ expectations. 

Many of us have been put into situations where we sometimes must sacrifice accuracy to present 

results that meet our client’s “gut feel”. In situations where substitution is expected, there is still 

some uncertainty of how well the Hardt-Allenby model would be accepted vis-à-vis a descriptive 

model such as the joint discrete/continuous model. 
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DIRECT ESTIMATION OF KEY DRIVERS FROM A FITTED BAYESIAN 

NETWORK 

BENJAMIN CORTESE 
KS&R 

ABSTRACT 

Key driver analysis (KDA) is a technique to identify a subset of attributes, known as key 

drivers, which have a strong impact on a target attribute, such as satisfaction, likelihood to 

purchase, or likelihood to recommend. There is a wide array of techniques to estimate attribute 

level driver scores, but those most commonly used are unable to provide information about the 

interactions between drivers. The introduction of Bayesian networks (BNs)—graphical 

representations of attribute relationships—help make sense of these complex interactions. 

Attempts to combine KDA and BNs through separate analysis often lead to conflicting results 

from the estimated top drivers and the attribute relationships depicted by the network. 

We propose a new algorithm, BNKDA, to calculate driver scores directly from a fitted 

Bayesian network. This method relies on the Max-Min Hill-Climbing (MMHC) network fitting 

algorithm, Bayesian Information Criterion (BIC) and arc strengths calculated from the network. 

A weight factor is suggested for use to reduce the impact of longer paths to the target attribute. 

This technique provides both the directed acyclic graph (DAG) visualizing attribute relationships 

and corresponding driver scores to tell a cohesive story. 

The algorithm is compared to two widely adopted driver analysis methods—Kruskal’s 

relative importance (a variant of a Shapley value) and partial least squares path modeling 

(PLSPM)—through simulation studies. It is found that all three techniques identify similar top 

drivers in terms of ordering, but the magnitude of scores differs. The regression based methods 

(Kruskal and PLSPM) favor directly impacting attributes in the hierarchy, while BNKDA 

provides more balanced estimates. Consistency of driver estimates obtained from BNKDA imply 

that this is a viable option to calculate driver scores directly from a BN. 

INTRODUCTION 

Key driver analysis (KDA), also known as relative importance, is a longstanding market 

research method to identify the strength of relationships of a set of attributes and their influence 

on performance metrics such as satisfaction or customer loyalty. This is an exploratory 

technique, providing hypotheses about possible relationships that are used to guide 

recommendations that will most likely lead to improvement of the target metric. 

As an example, consider a business that has been tasked with improving satisfaction with a 

specific product. In order to pinpoint a few key areas to focus resources, a survey was conducted 

to measure consumer ratings in areas such as product warranty, ease of use, product value, 

customer service, etc. The raw ratings data provides little differentiation between attributes, 

making it difficult to suggest strategic recommendations. The typical solution to this problem is 

KDA, run with product satisfaction as the target attribute and the others as predictors. A driver 

score (also referred to as an index) is assigned to each predictor to indicate the level of 
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importance or impact that attribute has on satisfaction. The attributes with larger scores are 

identified as possible drivers, and can then be targeted with additional resources to improve 

overall satisfaction. 

There are many approaches to estimate driver scores and those most commonly applied are 

regression based methods. These techniques include correlation analysis, multiple regression and 

Kruskal’s relative importance, and are used to provide a single importance score associated with 

each attribute. Correlation analysis is a very simple technique with fast turnaround time and does 

not require a large sample. Multiple regression is similar to correlation but requires model 

validation and can be misleading in the presence of multicollinearity. Kruskal’s relative 

importance, a variant on the Shapley value for R-squared, accounts for multicollinearity by 

averaging over each squared partial correlation for all predictor attributes, but does not support 

predictive follow-up analysis (Kruskal, 1987). These methods are designed to pinpoint the most 

relevant drivers but are not capable of modeling the interrelationships between attributes. 

The growing popularity of Bayesian networks (BNs) has opened the door to innovative 

techniques that provide information on the entire ecosystem of attributes, as well as the 

traditional attribute importance score. The BN methodology has been adopted over the past 

several years, but the direct calculation of the importance score from a BN remains to be 

explored. 

At first, a two-step process was developed to generate importance scores using the BN. The 

network structure, i.e., all information regarding attribute relationships, was obtained by fitting a 

BN to the data. The importance scores were then estimated using a subsequent analysis of the 

network structure, such as partial least squares path modeling (PLSPM), structural equation 

modeling (SEM), or probabilistic structural equation modeling (PSEM) (Vinzi, Trinchera, & 

Amato, 2010). Specifically, the scores were calculated by taking the product of the outer weights 

and total effects to the target attribute. This method is referred to as BNPLSPM. While it has 

proved sufficient, BNPLSPM can sometimes lead to inconsistencies between the network model 

and the importance scores, such as overstatement of direct drivers or understatement of indirect 

drivers. 

These inconsistencies identified the need for a different approach. This paper introduces an 

algorithm, Bayesian Network Key Driver Analysis (BNKDA), to calculate importance scores 

directly from a BN, eliminating the need for subsequent modeling. No benchmark comparison 

method exists for KDA so instead, simulation results are used to compare the algorithm to the 

widely accepted Kruskal’s relative importance index and two-step procedure BNPLSPM via 

consistency and estimates of driver scores. 
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BACKGROUND 

A BN is a directed acyclic graph, or DAG, that models probabilistic dependencies and 

independencies among attributes, also known as nodes. These specific DAGs are graphical 

representations of conditional probabilities represented by arcs with arrowheads from the one 

node to another. Each arc must have a unique direction that implies a causal relationship with no 

loops in the graph. An example of a BN is given in Figure 1. 

Figure 1. Sample BN 

 

Each network is comprised of parent and child nodes, and occasionally independent or 

standalone nodes. For the following definitions, see Figure 1 for reference. 

 Parent node: A node with at least one outgoing arc to another node in the BN, such as 

Customer service. 

 Child node: A node with at least one incoming arc from another node in the BN, such as 

User manual. 

 Independent node: A node with no path to the target attribute, such as User manual. 

 Terminal node: A node with no children, such as User manual. 

 Initial node: A node with no parents, such as Customer service. 

A target attribute is required when fitting any driver analysis model, but is not necessary 

when fitting a BN. Because of this, the target attribute (or attributes) must be specified prior to 

modeling, forcing this attribute to be a terminal node. Other terminal nodes may be present in the 

final fitted network, for example, User manual in Figure 1. This indicates that User manual is 

conditionally independent of PSAT. 
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Fitting the BN 

The proposed algorithm requires a fitted BN. While there are a wide variety of fitting 

algorithms, the algorithm of choice for this paper is Max-Min Hill-Climbing (MMHC) 

(Tsamardinos, Brown, & Aliferis, 2006). For information on other fitting algorithms, see (Daly & 

Shen, 2007; Margaritis, 2003; Russell, 2009; Tsamardinos, Aliferis, & Statnikov, 2003). 

The MMHC algorithm fits the network in a two stage process. 

First, in the Max-Min portion of the algorithm, candidate sets of all possible parent and child 

nodes are identified through tests of conditional independence individually, for each attribute in 

the data. At this stage, related attributes are grouped into sets, but no orientation is assigned. 

Then, starting from an empty graph, a Greedy Hill-Climbing search is performed by iterating 

through edge operations, such as edge addition, deletion, and orientation reversal, to 

incrementally improve the BIC. In this particular case, “Greedy” indicates that the only edges 

included in the Hill-Climbing stage are those identified as possible parents or children in the 

Max-Min stage. The search returns the BN (with orientation) that scored the optimal BIC. 

This MMHC fitting algorithm is currently one of the most popular used in practice due both 

to its efficiency and accuracy. 

Arc Strength 

Once the structure of the BN is fit using MMHC, the strengths of the relationships between 

attributes, known as arc strengths, are estimated. There are various methods to estimate arc 

strength, such as linear correlation, mutual information, contribution to AIC or BIC, and others 

specific to networks estimated from discrete data (Ebert-Uphoff, 2007; Nicholson, 1998). For the 

purposes of this paper, the arc strength is calculated via the contribution to the BIC. 

This method quantifies every arc in the network, assigning a value denoted by 

                , and is based on that arcs contribution to the overall BIC of the network. 

This contribution is calculated by removing each arc from the network, one at a time, and 

recalculating the BIC of the resulting simpler network. 
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Figure 2. Sample BN with Arc Strength 

 

As an example, consider the BN in Figure 2, with arc strength for                  
     listed as 3.2. Suppose that the BIC of the full network is 100. When that arc is removed, 

the BIC of the simplified network without that arc is 96.8, a decrease of 3.2, defining: 

                                

Note that the definition of the BIC is rescaled by a factor of -2, so in this case, the higher the 

BIC, the better the network. All arc strengths of this network are shown in Table 1 for reference. 

Weight Factor 

The purpose of any KDA exercise is to provide strategic recommendations on where to focus 

resources from a typically large set of attributes. This decision relies on the methodology to 

pinpoint a smaller subset of highly impactful attributes on the target metric. 

Typical BNs are complex, with some attributes having dozens of paths to a target attribute. 

These highly connected attributes are usually non-parents of the target, with longer paths to reach 

the target. This raised the question of how to handle the proximity, or path length, from an 

attribute to the target. 

Any parent of the target attribute should have the opportunity to have a larger driver score 

than non-parents. Because of this, a weight factor is introduced (denoted     ), prioritizing 

proximity to the target by penalizing attributes with longer paths to reach the target. The purpose 

of the weight factor is to balance connectivity (many paths) and proximity (shorter path length) 

to the target attribute. 

Four path weights are introduced—            and   —and their impacts explored via 

simulation. 
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BAYESIAN NETWORK KEY DRIVER ANALYSIS 

The BNKDA algorithm described requires a fitted Bayesian network with estimated arc 

strengths, and produces an importance score for each attribute in the model. For the purposes of 

this paper, the network is fit using the MMHC algorithm, arc strengths are produced via the 

contribution to the BIC method and the scores are calculated based on a summary function, 

typically the sum, which summarizes the strengths of all complete paths from each driver to the 

target. 

The Algorithm 

The first step of BNKDA is to clean the network by removing any nodes that are 

conditionally independent of the target. This includes all (non-target) terminal nodes and nodes 

whose children are only (non-target) terminal nodes, among others. For example, in Figure 2, 

User manual will be removed. 

After the network is cleaned, the arc strengths are standardized. The standardization 

procedure is intended to prevent a handful of large arc strengths from dominating the driver score 

estimates. For example, the arc from Customer service to Tech support in the sample BN has a 

strength of 191.8, while the largest arc strength of a parent of PSAT is 59.3. The arc strength of 

191.8 is obviously an important connection, but its relevance to the driver score estimates of 

PSAT is limited. All standardized arc strengths for the sample network are shown in Table 1 

below, for reference. 

The standardization procedure works in the following way. Starting with the target node, the 

arc strengths of all arcs originating from the parent nodes are standardized relative to one 

another. That is, each arc strength from the parent node to the target node is divided by the sum 

of the arc strengths of all parents of the target. The result is a set of arc strengths ranging from 0 

to 1 where the stronger relationships are rewarded with larger values. 

The standardization procedure then shifts to the next level of the network and repeats, 

standardizing all arcs of corresponding parent nodes for each child node in the network. If a child 

node has a single parent, that arc strength is standardized to 1 regardless of the other arc 

strengths in the network. 

Standardized arc strengths are formally defined as follows. Let     denote the     child node 

in the network with     total parents and                      
 denote the parents of    . For fixed 

  and for all            , the standardized arc strength for the arc           is: 
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Table 1. Arc Strengths of the Sample BN 

 

Determining the strength of the relationship of a predictor node to the target requires 

estimation of the strength of every possible arc to that node. In Figure 1, Ease of use has a single 

path to the target node: 

                , 

whereas Customer service has four paths: 

                       

                                     

                                    

                                                                      

The strength of each of these paths will be used to calculate the final node strength. 

The raw path strength (RPS) of each path from one node to the target node is calculated by 

multiplying the standardized path strengths together. Define a generic path of length l as: 

                          

then the raw path strength is calculated as: 

                                

   

   

  

Next, the weight factor      is applied to each RPS, resulting in a weighted path strength (WPS). 

          
         

    
  

The idea of a path weight for modeling node importance was first defined for mutual 

information in section 5 of (Nicholson, 1998). The impact of the choice of weight factor is 

explored in the simulation study using four candidate weights—        and   . Both the RPS and 

WPS calculated from the sample BN (Figure 1) are available in Table 2 below, with        .  

Parent Child Raw strength Standardized strength 

Ease of use PSAT 59.3 0.41 

Product value PSAT 56.2 0.39 

Tech support PSAT 14.4 0.10 

Customer service PSAT 12.3 0.08 

Product warranty PSAT 3.2 0.02 

Product reliability Product value 1.7 0.17 

Customer service Product value 8.3 0.83 

Customer service Tech support 191.8 1.00 

Product assembly Product warranty 0.7 1.00 

Tech support Product reliability 59.5 1.00 
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Table 2. RPS and WPS of the Sample BN 

Path RPS      WPS 

                                                  
                    

0.064    0.003 

                                   0.099    0.049 

                                    0.322    0.161 

                      0.084   0.084 

                                                     0.064    0.011 

                  0.099   0.099 

                                       0.064    0.032 

                   0.386   0.386 

                                       0.022    0.011 

                      0.022   0.022 

                 0.408   0.408 

The weighted path strengths are combined into a raw node score (RNS) by summing all path 

strengths with common initial node, that is: 

                 ll  aths with Ini al  ode         

The WPS defines the importance index for each node from the fitted network. If desired, the 

scores can be standardized to sum to 1 for ease of interpretation. The scores are listed in Table 3 

below. 

Table 3. Raw and Standardized Node Scores from the Sample BN 

Node Raw Score Standardized Score 

Ease of use 0.408 0.322 

Product value 0.386 0.305 

Customer service 0.298 0.235 

Tech support 0.110 0.086 

Product reliability 0.032 0.025 

Product warranty 0.022 0.017 

Product assembly 0.011 0.009 

User manual 0.000 0.000 

Summary of BNKDA 

A brief step-by-step summary of the Bayesian network key driver analysis algorithm is listed 

below. 

1. Fit the Bayesian network using MMHC. 

2. Calculate the arc strength for each arc in the network using the contribution to the BIC. 

3. Standardize the arc strengths according to the corresponding parent nodes. 

4. Calculate raw path strengths by multiplying the standardized arc strengths in each path. 

5. Weight the raw path strengths via a weighting factor     . 
6. Calculate node strength by summing all path strengths with common initial node. 

7. Report the BN importance index as the standardized node score. 
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SIMULATION RESULTS 

A simulation study was designed with two goals in mind. First, to explore the estimated 

driver scores using BNKDA with a variety of data structures; and second, to better understand 

the impact of the weight factor     . Three models were developed using sample sizes varying 

from 75 to 1,000 and are outlined in detail in the Appendix. The choice of this range is most 

representative of sample sizes common to market research, as samples of size greater than 1,000 

are often out of the scope of a study. 

It is well known that the ability to successfully fit the correct structure of a BN relies on a 

relatively large sample size. Small samples were included in the simulation study to compare 

results with Kruskal’s relative importance, which works quite well in the presence of small 

samples. 

For each of the three models and each sample size, 1,000 data sets were simulated using the 

statistical language R. Driver scores were modeled using both Kruskal’s relative importance 

(from the relaimpo package) and BNKDA (fit using the bnlearn package) for each data set and 

averaged together to analyze overall performance and differences in method behavior 

(Grömping, 206; Scutari, 2010). Comparison between BNPLSPM (using SmartPLS 3) and 

BNKDA is also provided, but due to time and resource restrictions, models are limited to a single 

data set for each simulation (Ringle, Wende, & Becker, 2015). 

BNKDA Performance and Driver Estimation 

Each of the simulated data sets was designed to study specific aspects of the BNKDA 

algorithm and associated weight factor. In this section, all reported statistics are computed from 

1,000 randomly generated data sets, each with a sample of size 500. The sample of size 500 was 

selected based on typical sample sizes present in market research studies. 

The intended structure for each BN is provided along with the top four drivers (after 

rescaling and taking averages) for each weight factor for Models 1 and 2, and the entire table for 

Model 3. The columns of each driver table are listed in decreasing order of penalty on longer 

paths, starting with the largest weight, the factorial. 

Model 1 

The data representing Model 1 is intended to simulate a typical driver analysis model with 

eight nodes, one of which is conditionally independent of the target, and a two level hierarchy. 

Figure 3. Model 1 Intended Network Structure 
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Table 4. Model 1 Rescaled Mean Driver Index for Top 4 Attributes (N = 500) 

                              

X6 29.0% X6 29.0% X6 25.5% X6 21.9% 

X5 27.3% X5 27.3% X5 24.1% X5 20.7% 

X1 13.7% X1 13.7% X1 17.1% X1 20.7% 

X7 8.0% X7 8.0% X2 9.2% X2 11.2% 

The top three drivers are identical for each of the four weight factors, with the fourth 

changing from X2 to X7 for larger weights. This is likely because the smaller values of      
enable longer paths to have larger strength (see Figure 3, nodes X1, X2 and X3) and, in turn, 

directly linking nodes will have lower relative driver scores in the presence of many indirect 

nodes. 

Not shown in Table 4 are the driver scores for the conditionally independent node X8. All 

four weights resulted in an average standardized driver score of 0%, indicating that a sample size 

of 500 was adequate to detect the conditional independence in this particular model. (Samples as 

small as N = 150 produced an average driver score of 0% for X8.) 

Model 2 

The data for Model 2 is used to explore the impact of a highly connected node with no direct 

link to the target. 

Figure 4. Model 2 Intended Network Structure 

 

Table 5. Model 2 Rescaled Mean Driver Index for Top 4 Attributes (N = 500) 

                              

X4 39.8% X4 39.8% X1 40.4% X1 48.7% 

X1 32.5% X1 32.6% X4 35.2% X4 30.2% 

X6 10.3% X6 10.3% X6 9.2% X6 7.9% 

X2 7.7% X2 7.7% X2 6.8% X2 5.9% 

The results from Model 2 are precisely as expected. Node X1 in Figure 4 has no direct link to 

the target node, but has five paths through directly linking nodes. Because of this, X1 should be a 

top driver for any choice of weight and, as shown in Table 4, it is in the top two for all 

simulations. The larger choices of      allow a directly linking node, X4, to have the largest 

driver score, while the smaller choices of      lead to node X1 as the top driver. The above 

results indicate that at least some weight should be applied to each RPS to prevent a node such as 

X1 from dominating the output. 
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Model 3 

Model 3 is intended to analyze the effect of differing path lengths on node importance. This 

model is made up of four single paths to the target of lengths one, two, three and four. 

Figure 5. Model 3 Intended Network Structure 

 

Table 6. Model 3 Rescaled Mean Driver Index for All Attributes, 

Top 4 Highlighted (N = 500) 

Node                               

X5 24.3% 22.5% 18.5% 14.5% 

X8 22.4% 20.6% 16.9% 13.1% 

X10 12.7% 11.5% 9.3% 7.1% 

X2 11.8% 11.0% 12.8% 14.1% 

X6 11.4% 10.5% 12.1% 13.2% 

X9 6.9% 6.3% 7.1% 7.5% 

X3 3.8% 6.9% 9.7% 13.0% 

X1 3.6% 3.4% 2.9% 2.3% 

X7 2.5% 4.2% 5.8% 7.6% 

X4 0.7% 3.1% 4.9% 7.4% 

When varying path lengths are present in the BN, as shown in Figure 5, the choice of weight 

factor has a strong influence on the ability of BNKDA to differentiate a few key drivers from the 

rest. In this case, each node has exactly one path to the target, forcing any indirect node to have a 

lower driver score than those it must pass through. 

When       , there are exactly four unique driver scores—those corresponding to the 

directly impacting nodes. (In the results above, the scores of the node sets (X2, X5), (X3, X6, X8) 

and (X4, X7, X9, X10) will be equal when the network structure is specified correctly. Using 

1,000 random draws occasionally will produce a misclassification of the network structure, 

causing the inconsistencies in Table 5.) These results provide evidence that some weight factor is 

necessary to avoid ambiguity in drivers and counterintuitive results. 
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Comparison to Other Methods 

Driver analysis techniques have no true benchmark comparison method to identify accuracy 

of the estimated driver scores. Instead, the driver estimates of BNKDA are compared to those of 

Kruskal’s relative importance and BNPLSPM to identify similarities and differences in outcomes 

for various data structures. 

The simulation study to compare these methods relies on the same synthetic data outlined in 

the previous section, with sample sizes ranging from 75 to 1,000. Samples of size 1,000 were 

used when comparing BNKDA to BNPLSPM in order to ensure correct estimation of the 

Bayesian network structure. 

Kruskal’s Relative Importance versus BNKDA 

Overall, the results of Kruskal’s relative importance are similar to those of BNKDA. 

Comparing Table 7 to those in the previous section (Tables 4–6), it is clear that both methods 

identify similar attributes as top drivers in each of the models, although the associated scores 

differ substantially from model to model. In particular, the top two drivers in Models 1 and 3 and 

the top four drivers in Model 2 are the same, up to ordering. 

Table 7. Kruskal’s Rescaled Mean Driver Index for Top 4 Drivers and All Models (N = 500) 

Model 1 Model 2 Model 3 

x6 27.4% x4 37.3% x5 30.1% 

x5 23.5% x6 15.4% x8 23.0% 

x7 18.6% x1 13.5% x10 15.1% 

x4 15.9% x2 13.5% x1 8.7% 

The choice of weight factor plays a role in BNKDA achieving similar results to Kruskal’s 

relative importance. When        , the two methodologies show the most similar estimates. 

With this choice of weight factor, we have: 

 Model 1: Identical top two drivers with similar score estimates 

 Model 2: Identical top four drivers (up to ordering) 

 Model 3: Identical top three drivers with similar score estimates 

When smaller values of      are selected, there are substantial differences in attribute rank and 

score estimates. 

The key difference between these two methods, regardless of choice of weight, is that 

Kruskal’s relative importance tends to favor directly linking nodes, assigning them higher driver 

scores than BNKDA. As shown in Table 7, the top four drivers for both Model 1 and Model 3 

using the estimates from Kruskal’s relative importance are those nodes with a direct link to the 

target. When using the estimates from BNKDA, X4 in Model 1 has scores ranging from 7.5% to 

8.7%, nearly half that of Kruskal’s estimate and, as shown in Table 6, no score of X1 in Model 3 

is larger than 3.6%. 

Another difference between the two methods is the ability to differentiate attributes with no 

impact on the target via driver scores of 0. For example, X8 in Model 1 represents an attribute 

that is independent of the target, simulated with no statistical relationship to Y, and should have 

an estimated driver score of 0. While Kruskal’s relative importance does assign a small score to 
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X8, results in Table 8 show that BNKDA provides a correct driver estimate for X8 for samples as 

small as N = 150. 

Table 8. Mean Standardized Driver Score for Independent Node X8 in Model 1 

Sample 

size 

Kruskal’s relative 

importance 

BNKDA 

(       ) 
BNKDA 

(      ) 
BNKDA 

(       ) 

BNKDA 

(      ) 

75 2.5% 0.5% 0.5% 0.5% 0.5% 

150 1.3% 0.0% 0.0% 0.0% 0.1% 

250 0.8% 0.0% 0.0% 0.0% 0.0% 

500 0.4% 0.0% 0.0% 0.0% 0.0% 

1000 0.2% 0.0% 0.0% 0.0% 0.0% 

Consistency of estimates is critical to any driver analysis technique. The variability of 

estimates for BNKDA is much larger than that of Kruskal’s relative importance for small 

samples, but once modest sample sizes are achieved (N ~ 500), this disparity disappears. The 

small sample behavior is not a surprise, as the structure of a BN tends to be under-fit in the 

presence of small samples (Zuk, Margel, & Domany, 2012), while Kruskal’s relative importance 

is not greatly impacted. 

The sample variation of the top driver, as identified by BNKDA (with        ), for each of 

the three models and sample sizes from 75 to 1,000 is shown in Figure 6. The sample variances 

for each of the BNKDA methods are much larger than those associated with Kruskal’s relative 

importance for N = 75, but they are nearly identical for N = 500 and sometimes lower when N = 

1,000. 

Figure 6. Sample Variation of Top Driver Identified by BNKDA (       ) for 

Varying Sample Sizes Over 1,000 Simulations 

 

BNPLSPM, BNKDA and Kruskal’s Relative Importance 

With limited simulations for BNPLSPM, it is difficult to draw conclusions about the 

performance of this methodology. Findings discussed below are only preliminary, but indicate 

that estimated scores from BNPLSPM align reasonably well with the output of BNKDA and, in 

terms of top three drivers, are identical to Kruskal’s relative importance up to ordering. Similar 

to Kruskal’s relative importance, BNPLSPM tends to reward directly linking nodes with higher 

driver scores as compared to BNKDA (see X7 in Model 1 or X1 in Model 3 as examples). This 

does not come as a surprise, as both BNPLSPM and Kruskal’s relative importance are regression 

based methods, while BNKDA relies on conditional independence/dependence. 
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A comparison of BNKDA and BNPLSPM from Tables 9–11 is summarized below. 

 Model 1: Identical top driver, other driver scores are quite different 

 Model 2: Identical top three drivers (up to ordering) 

 Model 3: 

o Results are quite different when        

o Identical top two drivers with similar score estimates when         
o Identical top three drivers with similar score estimates when        or    

Table 9. Model 1 Single Simulation of BNPLSPM Compared to BNKDA and 

Kruskal’s Relative Importance (N = 1,000), Top 3 Drivers Highlighted 

Model 1 

Node BNKDA 

(       ) 
BNKDA 

(      ) 
BNKDA 

(       ) 

BNKDA 

(      ) 

BNPLSPM Kruskal’s 

relative 

importance 

X1 13.2% 13.2% 16.4% 19.8% 12.9% 7.3% 

X2 6.7% 6.7% 8.4% 10.1% 7.6% 2.8% 

X3 8.9% 8.9% 11.1% 13.4% 8.9% 2.5% 

X4 5.3% 5.3% 6.2% 7.2% 13.0% 13.4% 

X5 26.3% 26.3% 23.1% 19.8% 18.4% 22.7% 

X6 31.2% 31.2% 27.5% 23.5% 20.3% 31.7% 

X7 8.4% 8.4% 7.4% 6.3% 18.9% 19.6% 

X8 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 

 

Table 10. Model 2 Single Simulation of BNPLSPM Compared to BNKDA and 

Kruskal’s Relative Importance (N = 1,000), Top 3 Drivers Highlighted 

Model 2 

Node BNKDA 

(       ) 
BNKDA 

(      ) 
BNKDA 

(       ) 

BNKDA 

(      ) 

BNPLSPM Kruskal’s 

relative 

importance 

X1 33.3% 33.3% 41.4% 50.0% 25.2% 11.7% 

X2 2.2% 2.2% 1.9% 1.6% 9.5% 8.8% 

X3 7.4% 7.4% 6.5% 5.6% 12.6% 11.2% 

X4 37.2% 37.2% 32.7% 27.9% 24.7% 38.6% 

X5 5.8% 5.8% 5.1% 4.3% 12.0% 11.0% 

X6 14.1% 14.1% 12.4% 10.6% 16.0% 18.7% 
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Table 11. Model 3 Single Simulation of BNPLSPM Compared to BNKDA and 

Kruskal’s Relative Importance (N = 1,000), Top 3 Drivers Highlighted 

Model 3 

Node BNKDA 

(       ) 
BNKDA 

(      ) 
BNKDA 

(       ) 

BNKDA 

(      ) 

BNPLSPM Kruskal’s 

relative 

importance 

X1 0.2% 0.2% 0.1% 0.1% 5.5% 3.6% 

X2 12.6% 11.6% 13.3% 14.3% 7.1% 7.2% 

X3 3.6% 6.6% 9.2% 12.3% 7.5% 2.3% 

X4 0.6% 3.5% 5.6% 8.6% 2.6% 0.4% 

X5 25.3% 23.1% 18.7% 14.3% 18.4% 33.0% 

X6 10.8% 9.9% 11.3% 12.3% 11.9% 6.9% 

X7 2.5% 4.6% 6.5% 8.6% 5.0% 1.3% 

X8 21.6% 19.8% 16.0% 12.3% 17.0% 23.1% 

X9 7.6% 6.9% 7.9% 8.6% 10.5% 6.7% 

X10 15.2% 13.9% 11.2% 8.6% 14.5% 15.5% 

DISCUSSION AND SUMMARY 

Differences from Traditional KDA Methodologies 

While BNKDA will often identify the same top drivers as more common techniques, there 

are several differences between the methodologies. 

 When using BNs with KDA, scores estimated from BNKDA align with the BN, telling a 

single, cohesive story. 

 BNKDA makes use of the interrelationships between drivers when estimating scores, 

while traditional techniques assume only a direct relationship from driver to target. 

 BNKDA is able to handle multiple target attributes simultaneously, while other methods 

would require separate models. 

 The resulting estimates from traditional techniques, when compared to those of BNKDA, 

tend to favor attributes with a direct relationship to the target. 

 BNKDA uses a series of conditional independence tests and a greedy hill-climbing search 

algorithm based on the BIC, while traditional methods rely on regression theory. 

 The alternative fitting technique specific to BNKDA may yield estimates when other 

models fail due to multicollinearity or other strict assumptions (but use caution in these 

cases as the estimates may be unstable). 

 The MMHC algorithm to fit a BN is prone to completely removing some attributes from 

the model, resulting in driver estimates of 0. 

Weight Factor Recommendation 

Evidence from the simulation study indicates that a weight factor is necessary to avoid 

ambiguity in driver estimates and counterintuitive results. Findings from the weight comparison 

point to the choice of weight factor         for the following reasons:  
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 Provides adequate differentiation among drivers 

 Driver estimates are most consistent with the other methods 

 Emphasizes attributes with shorter paths to the target, i.e., attributes that will impact the 

target in a more direct fashion 

Future Exploration 

While the simulation study shows promising results, there is still a lot to explore with 

BNKDA. 

 There is a wide array of methods available to calculate arc strength. What impact would 

different methodologies have on the overall driver estimates? 

 Changing the arc strength standardization procedure would change the driver estimates, 

but how? 

 How would a different path strength aggregation function other than the sum (such as the 

mean or median) impact driver estimates? 

These are some open areas reserved for future research. 

Summary 

Traditional KDA methods present a single driver score for each attribute, providing probable 

candidates for key drivers, but offer little to no information about the interrelationships between 

them. Bayesian networks provide insights into those relationships via a DAG, but provide 

limited guidance on a set of key features. The proposed algorithm, BNKDA, links the 

methodologies together by calculating driver estimates directly from a fitted BN. This produces 

both the network visualization and driver scores to pinpoint key attributes. 

While further study is required to fully understand the behavior of BNKDA, results from the 

simulation study indicate that implementation of this technique will provide similar results to 

traditional KDA methods, without emphasizing attributes that directly influence the target. The 

additional insights gained from BNKDA make this a useful addition to the KDA toolbox. 

 

 

 Benjamin Cortese 
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APPENDIX 

All models are simulated using the statistical language R. Each hierarchical model is defined 

using the notation N      for a normal distribution with mean   and variance   and 

Binom      for a binomial distribution with   trials and success probability  . The intended arc 

structure for each model is provided in Tables 12–14. 

Model 1 

Table 12. Intended Arc Structure for Model 1 

Model 1 Arc Structure 

From To 

X5 Y 

X6 Y 

X7 Y 

X4 Y 

X4 X7 

X1 X5 

X2 X6 

X3 X6 

 

          

          

          

          

          

           

     
       

 
    

           

                              

         

After each of the above are generated from the specified normal distribution, the values are 

rounded to the nearest integer and coerced to the interval        to simulate a 10-point scale 

survey response. 
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Model 2 

Table 13. Intended Arc Structure for Model 2 

Model 2 Arc Structure 

From To 

X1 X2 

X1 X3 

X1 X4 

X1 X5 

X1 X6 

X2 Y 

X3 Y 

X4 Y 

X5 Y 

X6 Y 

 

    inom          

    

        inom         

         inom         

       inom         

  

    

        inom         

         inom          

       inom         

  

    

        inom         

         inom       

       inom         

    

    

        inom         

         inom         

       inom         

  

    

        inom         

         inom          

       inom         

  

   inom        where      

 

   

 and  

    
       0.  
        0. 

       

  

    

       0. 
        0.  
        

  

    
       0.  
        0. 
      0.  

  

    

       0. 
        0.  

       

  

    

       0.  
        0.  
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Model 3 

Table 14. Intended Arc Structure for Model 3 

Model 3 Arc Structure 

From To 

X1 Y 

X5 Y 

X8 Y 

X10 Y 

X2 X5 

X6 X8 

X9 X10 

X3 X6 

X7 X9 

X4 X7 

 

    inom          

    inom          

    inom          

    inom          

    

        inom         

         inom         

       inom          

  

    

        inom         

         inom         

       inom         

  

    

        inom         

         inom       

       inom          

    

    

        inom          

         inom          

       inom          

  

    

        inom          

         inom          

       inom          

  

     

        inom         

         inom         

       inom          

  

 

   inom        where 

     
          

 and  

    
       0. 

        0.  
        

  

    

       0. 
        0. 

      

  

    

       0.  
        0. 
      0.  

  

     

        0.  
         0.  
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1 INTRODUCTION 

Consumers enter the marketplace to find products that will serve as solutions in helping them 

address their needs or accomplish their goals. Products are composed of a variety of features or 

attributes. A consumer uses these attributes to infer the effectiveness of a given product to serve 

as a solution. A product that a consumer believes will be able to help address their specific needs 

and goals is relevant to that consumer. However, not all attributes are used in the same way to 

determine product relevance. Furthermore, the way consumers identify product relevance reveals 

information about the needs they want to address or the goals they seek to accomplish. 

Most of the attributes that compose a given product serve tangible functions (e.g., flavor). At 

least two of the attributes are different: price and brand. Price can serve as a signal of quality but 

primarily determines how a product fits within a consumer’s budget and the greater basket of 

products. Brand, out of all attributes, is uniquely tied to consumer inference about product 

relevance. The consumer enters a marketplace with beliefs about brands already formed, 

including each brand’s effectiveness in serving as a solution for the consumer’s needs and goals. 

Thus, brand beliefs can serve as a simple heuristic in order to shortcut consumers’ decision-

making process and reduce their cognitive load. In other words, brand alone can be used to 

determine product relevance. 

Attributes beyond brand and price can also be used to determine product relevance. In 

particular, the presence of certain attribute levels may lead a consumer to perceive a given 

product as able to address their specific needs and goals despite what they believe about the 

product’s brand. In this way, the determination of product relevance is a sub-compensatory 

process. Either a product’s brand is enough for a consumer to infer product relevance or the 

presence of certain attribute levels leads a consumer to infer product relevance. We develop a 

model that allows us to capture these two ways to product relevance as part of an extended 

model of choice. 

The heuristics consumers adopt in order to shortcut the decision-making process and reduce 

cognitive load are an essential feature of screening models in the non-compensatory choice 

literature (Aribarg, Otter, Zantedeschi, et al. 2018). We adapt the structure of these models as a 

way to uncover the particular attribute levels that lead to product relevance beyond pre-existing 

brand beliefs. In order to employ a screening model in this way, we make two critical 

assumptions. First, consumers consider and choose relevant products. Second, attribute levels 

that are not used to screen (i.e., remove products from consideration) are those that help a 

consumer infer product relevance. 

Firms benefit from understanding which attributes drive product relevance, and thus 

consideration. This is especially true for brands without strong existing loyalties and when those 
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attributes that drive product relevance are different from those that lead to choice. Furthermore, 

understanding which attributes drive product relevance reveals something about consumers’ 

needs and goals that drive them to the marketplace to begin with. Answers with respect to the 

why of product relevance can inform product development and promotion strategies in a way to 

engender brand loyalty and inform consumers’ brand beliefs. 

The remainder of the paper will be organized as follows. In Section 2, we consider model-

free, empirical evidence with respect to this idea of product relevance and its place in consumer 

choice. In Section 3, we specify our model. In Section 4, we provide results. In Section 5, we 

conclude. 

2 EMPIRICAL EVIDENCE 

Consumers determine product relevance based either on existing brand beliefs or the 

presence of certain attribute levels. Before specifying a model to untangle these two ways to 

infer product relevance, we consider empirical evidence that illustrates the importance of its 

development. In particular, with information on brand beliefs, we can consider model-free 

evidence with respect to choices made for products that are or are not “brand relevant” (i.e., 

relevant based on brand beliefs). 

We collected conjoint data in the premium chocolate category. Our 788 respondents 

completed 10 choice tasks, each with four product alternatives plus an outside option. We 

specified nine attributes, including brand and price, with a total of 70 attribute levels. Prior to the 

conjoint, respondents were asked to indicate which chocolate brands they would consider 

purchasing. 

Using this stated brand consideration (i.e., brand belief) information, we can count how many 

of the chosen alternatives were brand relevant. Figure 1 shows that less than half of the chosen 

alternatives are brand relevant. If brand beliefs were strong enough, we might expect to see all of 

the chosen alternatives as brand relevant, particularly because respondents could always pick the 

outside option (i.e., the “none” option) if a brand-relevant alternative wasn’t included in a given 

choice task. However, that’s not what we observe in aggregate. 

The proportion of brand-relevant chosen alternatives for each respondent is shown in Figure 

2. This is a tightly-packed bar plot where each respondent has their own bar, sorted by the 

proportion of brand-relevant chosen alternatives. We can see there is a subset of respondents for 

whom all of their chosen alternatives are brand relevant (the section of respondents with 

complete dark bars on the left) as well as a subset of respondents for whom none of their chosen 

alternatives are brand relevant (the section of respondents with complete light grey bars on the 

right). For this second group, the subset of respondents for whom none of their chosen 

alternatives are brand relevant, 86% of them did say prior to the conjoint that at least one brand 

was relevant, but still never selected a brand-relevant alternative. 
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Figure 1 

 

Figure 2 

 

We see that respondents are choosing alternatives with brands they initially said they would 

not consider. One final model-free check would be to determine whether or not this behavior is 

simply driven by price. In other words, when presented with a more expensive, brand-relevant 
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alternative and a less expensive, brand-irrelevant alternative, are respondents more likely to 

choose the latter? In Figure 3, we see the number of chosen alternatives that are and are not 

brand relevant split by the relative price level for each choice task. We can clearly see that the 

more relatively expensive alternatives are chosen less frequently. However, if price was driving 

respondents to pick brand-irrelevant alternatives, we would see a disproportionate increase in the 

number of brand-irrelevant choices as the price gets cheaper. We do not observe this. 

Figure 3 

 

Something is driving respondents to choose things that are not brand relevant, but it isn’t 

price. The only other explanation is that there are certain attribute levels present that lead 

respondents to see product alternatives as relevant, despite their belief about the associated 

brand. With this empirical evidence in hand, we will now walk through the development of a 

model to disentangle the two ways to product relevance. 

3 MODEL SPECIFICATION 

Non-compensatory choice models provide a more realistic description of consumer choice. 

Such models specify a two-stage decision process that begins with consideration and ends with 

choice. In these models, consumers typically screen products (i.e., remove them from 

consideration) based on certain attribute levels, which are identified using chosen products alone. 

The screening mechanism is assumed to be the same for each attribute. Finally, the propensity to 

screen based on a given attribute level is typically homogeneous. We develop a non-

compensatory choice model that identifies screening based on chosen products and brand beliefs, 

includes two different ways for products to be considered, and allows for the propensity to screen 

to be heterogeneous. 

Our interest is which attribute levels are being used to infer product relevance and which 

products are being considered. As previously stated, we assume that products that are relevant to 

the consumer are considered and chosen. We also assume that attribute levels that are not being 

used to screen (i.e., remove products from consideration) help consumers infer product 

Cheapest Second Cheapest Second Most Expensive Most Expensive

Not Relevant Not Relevant Not Relevant Not Relevant

0

250

500

750

1000

Brand Relevance

C
h
o

s
e

n
 A

lt
e

rn
a

ti
v
e

s

Brand−Relevant Chosen Alternatives by Price Level per Task



317 

relevance. We adapt the structure of a non-compensatory screening model in order to uncover 

those attributes that drive product relevance outside of brand beliefs. 

Conjunctive Screen 

The standard random utility model is fully compensatory. No matter how much a consumer 

dislikes a certain attribute level, this disutility can be compensated for by the presence of 

attribute levels that they highly prefer. The standard non-compensatory model adds a simple 

constraint such that if certain attribute levels are present for a product alternative for a given 

respondent, they will never choose that alternative. In other words, the inclusion of their most-

preferred attribute levels will do nothing to compensate for the presence of the attribute levels 

they are screening on. The simplest way this non-compensatory or screening process is 

represented is by what is called a conjunctive screen: an alternative is considered as long as none 

of the attribute levels a given respondent is screening on are present. 

This conjunctive screening model adds a set of respondent-level screening parameters to the 

model beyond the standard respondent-level part-worth utilities. These screening parameters are 

binary, with a separate parameter associated with each of the attribute levels. A screening 

parameter of one indicates the respondent screens on that attribute level. Thus, if that attribute 

level (or any other attribute level the respondent may be screening on) is present in an 

alternative, that respondent will not choose it—the product is removed from consideration. 

Conjunctive screens are identified by the attribute levels in the chosen or picked alternatives. 

If an attribute level is ever in the picked alternatives, we know it isn’t being used to screen; if it’s 

never in the picked alternatives, it may or may not be used to screen and its probability of being 

used to screen is drawn from a Bernoulli distribution with a parameter representing a 

homogeneous propensity to screen. This is depicted in Figure 4, where h,l is the screening 

parameter for respondent h and attribute level l and l is the propensity to screen on attribute 

level l across respondents. 

Figure 4 

 

Disjunction of Conjunctive Screens 

Our proposed non-compensatory choice model uses a disjunction of conjunctive screens 

where an alternative is considered when none of the attribute levels a given respondent is 

screening on are present or the given respondent is explicitly considering the brand. It is this or 

that creates a disjunction. These two ways to screen products out of consideration describe the 

two ways product relevance is inferred. A product is relevant (i.e., not screened from 

consideration) if the given respondent believes the brand can serve as a solution or the presence 

of certain attribute levels (i.e., ones with screening parameters of zero) lead the given respondent 

to believe the product can serve as a solution, regardless of their brand beliefs. The identification 

of the screening parameters in this proposed model is slightly more complicated given the 

disjunction, as depicted in Figure 5. 
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Figure 5 

 

Additionally, we would like to allow for the propensity to screen based on a given attribute 

level (i.e., l) to be heterogeneous (i.e., h,l). This is accomplished by including an upper-level 

model for each of the propensities to screen variables so that information can be shared across 

respondents, with a function similar to the usual HB upper-level model over the part-worth 

utilities. 

4 RESULTS 

Again, our conjoint data is from the premium chocolate category. Our 788 respondents 

completed 10 choice tasks, each with four product alternatives plus an outside option. We 

specified nine attributes, including brand and price, with a total of 70 attribute levels, a subset of 

which are provided in Figure 6. Prior to the conjoint, respondents were asked to indicate which 

chocolate brands they would consider purchasing, giving us information to drive the brand 

portion of the proposed disjunction of conjunctive screens. 

Figure 6 

 

We ran five different models. The HMNL model is the standard, fully compensatory choice 

model. The Conjunctive Screen with l is the standard screening model with homogeneous 

propensity to screen on each of the attribute levels. The Conjunctive Screen with h,l is a 

screening model modified to allow for heterogeneous propensity to screen on each of the 

attribute levels. The Disjunction of Conjunctive Screens with l is a version of our proposed 

model simplified by assuming a homogeneous propensity to screen. The Disjunction of 

Conjunctive Screens with h,l is our complete proposed model. Model results are provided in 

Figure 7. 
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Figure 7 

 

In-sample fit is calculated using the log-marginal density (closer to zero is better). Out-of-

sample fit on a single, randomly selected choice task for each respondent is calculated using 

mean squared error, hit rate, and hit probability. While the standard screening model, which is 

easiest to identify, performs best in terms of in-sample fit, the simplified version of our proposed 

model performs best in terms of out-of-sample fit. This evidence suggests that these two ways to 

infer product relevance are indeed present in our data. Furthermore, the reason the complete 

proposed model doesn’t perform better is likely out of the difficulty of identifying respondent-

level propensity to screen parameters given the shallowness of the data (i.e., only 10 choice tasks 

per respondent over 70 attribute levels). 

More than building a better choice model, the proposed non-compensatory choice model also 

allows us to consider the drivers of product relevance vs. the drivers of choice. The estimates of 

the propensity to screen variables suggest that Filling Flavor (Caramel, Peach, Hazelnut, and 

Peanut Butter) is the most important driver of product relevance via attributes. In contrast, the 

part-worth utility estimates suggest that Brand, Price, and Packaging Type are the most important 

drivers of choice. That Filling Flavor leads to product relevance suggests the needs or goals 

consumers have with respect to the premium chocolate category is focused on hedonic 

consumption. This isn’t surprising, but it’s something that we may have downplayed if all we 

considered were the part-worth utilities. If a firm is trying to move into this category with a 

brand that lacks loyalty, clearly the right Filling Flavor can help it be initially considered by 

consumers. 

5 CONCLUSION 

Consumers consider and thus purchase products that are relevant to them—either because of 

their brand beliefs or the presence of certain attribute levels. Separating and uncovering the 

drivers of product relevance allow firms to understand something of the underlying motivations 

driving consumers into the marketplace to begin with. This knowledge will help firms to design 

promotions and products that address those motivations, build brand loyalty, and inform 

consumers’ brand beliefs. 
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